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Abstract

Semantic role labeling (SRL) has multiple dis-
joint label sets, e.g., VerbNet and PropBank.
Creating these datasets is challenging, therefore
a natural question is how to use each one to help
the other. Prior work has shown that cross-task
interaction helps, but only explored multitask
learning so far. A common issue with multi-
task setup is that argument sequences are still
separately decoded, running the risk of gener-
ating structurally inconsistent label sequences
(as per lexicons like SEMLINK). In this paper,
we eliminate such issue with a framework that
jointly models VerbNet and PropBank labels as
one sequence. In this setup, we show that en-
forcing SEMLINK constraints during decoding
constantly improves the overall F1. With spe-
cial input constructions, our joint model infers
VerbNet arguments from given PropBank argu-
ments with over 99 F1. For learning, we pro-
pose a constrained marginal model that learns
with knowledge defined in SEMLINK to further
benefit from the large amounts of PropBank-
only data. On the joint benchmark based on
CoNLL05, our models achieve state-of-the-art
F1’s, outperforming the prior best in-domain
model by 3.5 (VerbNet) and 0.8 (PropBank).
For out-of-domain generalization, our models
surpass the prior best by 3.4 (VerbNet) and 0.2
(PropBank).

1 Introduction

Semantic Role Labeling (SRL, Palmer et al., 2010)
aims to understand the role of words or phrases
in a sentence. It has facilitated other natural
language processing tasks including question an-
swering (FitzGerald et al., 2018), sentiment analy-
sis (Marasović and Frank, 2018), information ex-
traction (Solawetz and Larson, 2021), and machine
translation (Rapp, 2022).

Semantic role labeling can take various forms,
each associated with different datasets. Predicates

˚Work done at the University of Utah.

can be coarsely divided into PropBank (Palmer
et al., 2005) senses, each with a core set of num-
bered semantic arguments (e.g., ARG0–ARG5).
There are also modifier arguments (e.g., ARGM-
LOC) typically representing information such as
the location, purpose, manner or time of an event.
Alternatively, predicates can also be hierarchically
clustered into VerbNet (Schuler, 2005) classes ac-
cording to similarities in their syntactic behav-
ior. Each class admits a set of thematic roles (e.g.
AGENT, THEME) whose interpretations are consis-
tent with all predicates within the class.

As a modeling problem, SRL requires associat-
ing argument types and phrases with respect to an
identified predicate. The two labeling tasks (i.e.,
VerbNet SRL and PropBank SRL) are closely re-
lated; but they differ in their treatment of predicates
and have disjoint label sets. Learning jointly can
improve data efficiency across the different label-
ing SRL tasks.

A common formulation used to instantiate this
idea in prior work is multitask learning (e.g. Strzyz
et al., 2019; Gung and Palmer, 2021): each label set
is treated as a separate labeling task, and sometimes
also modeled with inter-task feature interaction or
consistency losses. While multitask learning often
works well in such cases, the loss formulation rep-
resents a conservative view over label compatibili-
ties of different tasks. At prediction time, subtask
modules still run independently and are not con-
strained by each other. Consequently, decoded la-
bels may violate structural constraints with respect
to each other. In such settings, constrained infer-
ence (e.g., Fürstenau and Lapata, 2012; Greenberg
et al., 2018) has been found helpful. However, this
raises the question of how to involve such inference
during learning for better data efficiency. Further-
more, given the wider availability of PropBank-
only data (e.g., Pradhan et al., 2013, 2022), how
to efficiently benefit from such data also remains a
question.
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In this paper, we argue that the two disjoint but
compatible labeling tasks can be more effectively
modeled as one task using their compatibility struc-
tures that are already explicitly defined in the form
of SEMLINK (Stowe et al., 2021). SEMLINK of-
fers mappings between various semantic ontolo-
gies including PropBank and VerbNet. Gung and
Palmer (2021) devised a deterministic conversion
from PropBank label sequences to VerbNet ones us-
ing only the unambiguous mappings in SEMLINK.
This conversion gives a test bed that has half of the
predicates in CoNLL05 SRL dataset (Carreras and
Màrquez, 2005) with both VerbNet and PropBank
jointly labeled.

Given this setting, we propose a simple and
effective joint CRF model for the VerbNet SRL
and PropBank SRL tasks. In addition to the joint
CRF, we propose an inference constraint that uses
compatible label structures defined in SEMLINK,
and show that our constrained inference achieves
higher overall SRL F1—the average of VerbNet
and ProbBank F1 scores—than the current state-
of-the-art. Indeed, when PropBank labels are ob-
served, it achieves over 99 F1 on the VerbNet SRL,
suggesting the possibility of an automated annota-
tion helper. We show that our formulation naturally
extends to a constrained marginal model that learns
from the more abundant PropBank-only data in a
semi-supervised setting. When learning and pre-
dicting with constraints, it achieves even better SRL
F1 in out-of-domain generalization.1

2 Joint Task of Semantic Role Labeling

We consider modeling VerbNet (VN) and Prop-
Bank (PB) SRL as a joint labeling task. Given a
sentence x, we want to identify a set of predicates
(e.g., verbs), and for each predicate, generate two
sequences of labels, one for VerbNet arguments
yV , the other for PropBank arguments yP . With
respect to VN parsing, a predicate is associated
with a VerbNet class that represents a group of
verbs with shared semantic and syntactic behav-
ior, thereby scoping a set of thematic roles for the
class. Similarly, the predicate is associated with a
PropBank sense tag that defines a set of PB core
arguments along with their modifiers. A example
is shown in Tab. 1.

We treat predicate classification and argument

1The code for reproducing our experiments: https://
github.com/utahnlp/marginal_srl_with_semlink

η σ Admissible alignments (yV -yP )

price-54.4 01 Agent-Arg0; Theme-Arg1; Value-Arg2
price-54.4 02 Agent-Arg0; Theme-Arg1; Value-Arg2

admire-31.2 02 Experiencer-Arg0; Stimulus-Arg1

Table 1: VN-PB alignments defined in SEMLINK for predi-
cate value. η: VN class. σ: PB sense.

labeling as separate tasks and focus on the latter.2

Assuming predicates u and their associated VN
classes η and PB senses σ are given along with x,
we can write the prediction problem as:

px, u, η, σq Ñ pyV , yP q (1)

2.1 VerbNet Completion
There is a much larger amount of PropBank-only
data (e.g., Pradhan et al., 2013, 2022) than jointly
labeled data. Inferring VerbNet labels from ob-
served PropBank labels, therefore, is a realistic use
case. This corresponds to the modeling problem:

px, u, η, σ, yP q Ñ yV (2)

We refer to this scenario as completion mode. In
this paper, we will focus on the joint task defined
in Eq. 1 while also generalizing our approach to
address the completion task in Eq. 2.

2.2 Multitask learning and Its Limitations
When predicting multiple label sequences for SRL,
a common approach is multitask learning using
dedicated classifiers for each task that operate on a
shared representation. The current state-of-the-art
model (Gung and Palmer, 2021) used an LSTM
stacked on top of BERT (Devlin et al., 2019) to
model both PropBank and VerbNet. While each
set of the semantic roles is modeled jointly with
VerbNet predicates, the argument labeling of the
two subtasks is still kept separate.

Separate modeling of VerbNet SRL and Prop-
Bank SRL has a clear disadvantage: subtask ar-
gument labels might disagree in three ways: 1) in
terms of the BIO tagging scheme—e.g., a word
having a B-* VN label and a I-* PropBank label, or
2) assigning semantically invalid label pairs—e.g.,
an ARGM-LOC being called a THEME, or 3) vio-
lating SEMLINK constraints. In Sec. 6, we show
that a model with separate task classifiers, while
having a close to state-of-the-art F1, can have a fair

2Prior work (e.g., Täckström et al., 2015) has shown that
the predicate disambiguation can be modeled with high accu-
racy using standalone classifiers.
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amount of argument assignment errors with respect
to SEMLINK, especially for out-of-domain inputs.

3 A Joint CRF Model

To eliminate the errors discussed in Sec. 2.2, we
propose to model the disjoint SRL tasks using a
joint set of labels. This involves converting multi-
task modeling into a single sequence labeling task
whose labels are pairs of PB and VN labels. Doing
so not only eliminates the BIO inconsistency, but
also exposes an interface for injecting SEMLINK

constraints.
Our model uses ROBERTA (Liu et al., 2019) as

the backbone to handle textual encoding, similarly
to the SRL model of Li et al. (2020). At a high
level, we use a stack of linear layers with GELU
activations (Hendrycks and Gimpel, 2016) to en-
code tokens to be classified for a predicate. For the
problem of predicting arguments of a predicate u,
we have an encoding vector ϕu,i for the i-th word
in the input text x.

e “ mappROBERTApxqq (3)

ϕu “ tfua prfupeuq, fapeiqsq ,@i P xu (4)

Here, map sums up word-piece embeddings to form
a sequence of word-level embeddings, the func-
tions fu and fa are both linear layers, and fua de-
notes a two-layer network with GELU activations
in the hidden layer. We use a dedicated module
of the form in Eq. 4 for the VN and PB subtasks.
This gives us a sequence of vectors ϕv

u for VN and
a sequence of vectors ϕp

u for PB.
Next, we project the VN and PB feature se-

quences into a |Y V | ˆ |Y P | label space:

zu “ tgprϕV
u,i, ϕ

P
u,isq,@i P xu (5)

Here, g is another two-layer GELU network fol-
lowed by a linear projection that outputs |Y V | ˆ
|Y P | scores, corresponding to VN-PB label pairs.
The final result zu denotes a sequence of VN-PB
label scores for a specific predicate u. In addition,
we use a CRF as a standard first-order sequence
model over zu (treating it as emission scores), and
use Viterbi decoding for inference. The training
objective is to maximize:

logP pyV P |xq “ spyV P , xq ´ logZpxq (6)

where sp¨q denotes the scoring function for a la-
bel sequence that adds up the emission and the
transition scores, and the term Zpxq denotes the

partition that sums exponentiated scores over all
label sequences. The term yV P denotes the label
sequence that has VN and PB jointly labeled. We
will refer to this model as the joint CRF, and the
label sequence as the joint labels.

Reduced Joint Label Space. We use the cross-
product the two label sets, prefixed with a BIO
prefix3. A brute-force cross product leads to a
|Y V | ˆ |Y P | label space. In practice, it is impor-
tant to keep the joint label space at a small scale
for efficient computation, especially for the CRF
module. Therefore, we condense it by first disal-
lowing pairs of the form (B-*, I-*) and predicate-
to-argument pairs. The former enforces that the
VerbNet arguments do not start within ProbBank ar-
guments, while the latter ensures that the predicate
is not part of any argument. Next, we observe the
co-occurence pattern of VN and PB arguments, dis-
abling semantically invalid pairs such as (THEME,
ARGM-LOC)4. This reduces the label space by an
order of magnitude (from 144 ˆ 105 “ 15, 120 to
685).

Input Construction using Predicates. We take
inspiration from prior work (e.g. Zhou and Xu,
2015; He et al., 2017; Zhang et al., 2022) to ex-
plicitly put predicate features as part of the input
to augment textual information. At the same time,
we also seek to maintain a simple construction that
can be easily adapted to a semi-supervised setting
(i.e. compatible with PropBank-only data). To this
end, we propose a simple solution that appends
the PropBank senses of potential predicates to the
original sentence x:

xWP “ rCLS w1:T SEP σ1:N SEPs

where w1:T denotes the input words, and σ1:N de-
notes the senses of the N predicates. In practice,
we use the PropBank roleset IDs which consist
of a pair of (lemma, sense)—e.g., run.01. Our
models only take the encodings for w1:T after the
ROBERTA encoder and ignore the rest. We con-
sider this design to be more efficient than prior
work (e.g. Gung and Palmer, 2021; Zhang et al.,
2022) that dedicated text feature for each predi-
cate. In our setup, the argument labeling for dif-
ferent predicates shares the same input, thus no

3For example, the pair (B-THEME, B-ARG1).
4VerbNet arguments typically align to PropBank core argu-

ments, not modifiers; thus pairs like (ACTOR, ARGM-CAU)
can be filtered out.
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need to run encoding multiple times for multiple
predicates.

4 Semi-supervised Learning with
PropBank-only Data

Compared to data with both VerbNet and Prop-
Bank fully annotated, there is more data with only
PropBank labeled. The SEMLINK corpus helps in
unambiguously mapping „ 56% of the CoNLL05
data (Gung and Palmer, 2021). Therefore, a natu-
ral question is: can we use PropBank-only data to
improve the joint task?

Here, we explore model variants based on the
joint CRF architecture described in Sec. 3. We will
focus on modeling for PropBank-only sentences.

4.1 Separate Classifiers for VN and PB

As a first baseline, we treat VN and PB as two
separate label sequences during training. This is
essentially a multitask setup where VN and PB
targets use separate classifiers. We let these two
classifiers share the same ROBERTA encoder, and
have their own learnable weights for Eq. 4-6.

4.2 Dedicated PropBank Classifier

Another option is to retain the joint CRF for the
jointly labeled dataset and use an additional dedi-
cated CRF for PB-only sentences. Note that this
setup is different from the model in Sec. 4.1. As
before, we let these two to share the same encoder
and, for Eq. 4-6, they have dedicated trainable
weights.

During inference, we rely on the Viterbi de-
coding associated with the joint CRF module to
make predictions. In our preliminary experiments,
the joint CRF and the dedicated PropBank CRF
achieve similar F1 on PropBank arguments.

4.3 Marginal CRF

For partially labeled sequences, we take inspira-
tion from Greenberg et al. (2018) to maximize
the marginal distribution of those observed labels.
In our joint CRF, the marginalization assumes
uniform distribution over VN arguments that are
paired with observed PB arguments. The learning
objective is to maximize the probabilities of such
label sequences as a whole:

LSEyPyPu pspyqq ´ logZpxq (7)

where LSEy p¨q “ log
ÿ

y

expp¨q

where y P yPu denotes a potential joint label se-
quence with only PropBank arguments observed
for a predicate u. Scores of such label sequences
are aggregated by the LSE operator. Note that the
marginal CRF and the joint CRF (Eq. 6) use the
same model architecture, just with a different loss.

4.4 Marginal Model with SEMLINK
(MarginalSEML)

The log marginal probability in Eq. 7 assumes uni-
form distribution over a large label space. It in-
cluded any arbitrary VerbNet arguments paired to
the observed PropBank labels. In practice, we can
narrow it down to only legitimate VN-PB argument
pairs defined in SEMLINK. Such legitimate space
is uniquely determined by a VerbNet class η and
PropBank sense σ. We will refer to label sequences
that comply with this space as ySEML

u , and apply it
on Eq. 7:

LSEyPyPu XySEML
u

spyq ´ LSEyPySEML
u

spyq (8)

Note that this formulation essentially changes the
global optimization into a local version which im-
plicitly requires using SEMLINK at inference time.
We will present the details of ySEML

u in Sec. 5. Intu-
itively, it zeros out losses associated with joint label
traces that violate SEMLINK constraints. During
training, we found that it is important to apply this
constraint to both B-* and I-* labels.

Where to apply ySEML
u ? Technically, the sum-

mation over reduced label space can be applied at
different places, such as the partition Z in Eq. 6.
We will report performances on this setting in
Sec. 7.2. In short, plugging the label filter ySEML

u to
the joint CRF (therefore jointly labeled data) has
little impact on F1 scores, thus we reserve it for the
PropBank-only data (as in Eq. 8).

5 Inference with SEMLINK

Here we discuss the implementation of the ySEML
u .

Remember that each pair of VerbNet class η and
PropBank sense σ uniquely determines a set of
joint argument labels for the predicate u. For
brevity, let us denote this set as SEMLpuq (e.g.,
Tab. 1). Eventually, we want the Viterbi-decoded
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label sequence to comply with SEMLpuq. That is,

@plV , lP q PSEMLpuq Ñ
@i,

”`@lRSEMLpuqpyVi “ lV , lq R yV P
u

˘

^ `@lRSEMLpuqpl, yPi “ lP q R yV P
u

˘ı

(9)

where i denotes the location in a sentence, yV P
u

is the joint label sequence, consisting of pyVi , yPi q
pairs. The constraint in Eq. 9 translates as: if a
VerbNet argument is present in the predicate u’s
SEMLINK entry, we prevent it from aligning to any
PropBank arguments not defined in SEMLINK; and
the same applies to PropBank arguments.

This constraint can be easily implemented by a
masking operation on the emission scores of the
joint CRF, thus can be used at both training and
inference time. During inference, it effectively ig-
nores those label sequences with SEMLINK viola-
tions during Viterbi decoding:

yV P
u “ arg max

yPySEML
u

spyq (10)

In Sec. 6, we will show that using Eq. 10 always
improves the overall SRL F1 scores.

VerbNet Label Completion. For models based
on our joint CRF, we mask out joint labels that are
not defined in yP during inference, similar to Eq. 8.
For models with separate VN and PB classifiers (in
Sec. 4.1), we enforce the VN’s Viterbi decoding to
only search arguments that are compatible with the
gold yP in SEMLINK. Furthermore, we always use
the constraint (Eq. 9) in the completion mode.

6 Experiments

In this section, we aim to verify whether the com-
patibility structure between VerbNet and PropBank
(in the form of SEMLINK) has a positive impact on
their sequence labeling performances.

6.1 Data
We follow the prior state-of-the-art (Gung and
Palmer, 2021) in extracting VerbNet labels from
the CoNLL05 dataset using the SEMLINK corpus.
We use the same version of SEMLINK to extract
the data for training and evaluation. Therefore,
our F1 scores are directly comparable with theirs
(denoted as IWCS2021 in Table 2) The resulting
dataset accounts for about 56% of the CoNLL05
predicates, across training, development and test

sets (including WSJ and Brown). We will refer to
this data as the joint data column in Table 2. For
semi-supervised learning, we incorporate the rest
of the PropBank-only predicates in the CoNLL05
training split. For development and testing, we use
the splits in the joint dataset for fair comparison
with prior work.

6.2 Training and Evaluation

We adopt the same fine-tuning strategy as in Li et al.
(2020)—we fine-tune twice since this generally out-
performs fine-tuning only once, even with the same
number of total epochs. In the first round, we fine-
tune our model for 20 epochs. In the second round,
we restart the optimizer and learning rate sched-
uler, and fine-tune for 5 epochs. In both rounds,
checkpoints with the highest average VN/PB devel-
opment F1 are saved. For different model variants,
we report the average F1 from models trained with
3 random seeds.

For the SEMLINK constraint, we use the official
mapping between VN/PB arguments5. When in-
volved in constrained inference, we use the gold
VerbNet classes η and PropBank senses σ.

For evaluation, in addition to the standard VN
and PB F1 scores, we also report the percent of
predicates with predictions that are inconsistent
with SEMLINK, denoted by ρ.

6.3 Performance on SEMLINK Extracted
CoNLL05

We want to compare models trained on the joint
dataset and variants (in Sec. 4) on the semi-
supervised setup. Table 2 presents their perfor-
mances along with SEMLINK violation rates in
model predictions. Note that the ground truth joint
data bears no violation at all (i.e., ρ “ 0).

Multitask involves SEMLINK violations.
Firstly, we show the limitations of multitask
learning. While the architecture is simple, the
testing scores mostly outperform the previous
state-of-the-art, except the Brown PropBank F1.
However, there is a fair percentage of predicates
having structurally wrong predictions, especially
in the Brown test set. With semi-supervised
learning, VN and PB F1s are improved on the
Brown set while slightly lowered on the WSJ VN.
This also comes with a degraded SEMLINK error
rate (3.43 Ñ 4.08 on WSJ and 8.71 Ñ 10.48

5https://github.com/cu-clear/semlink/blob/
master/instances/semlink-2
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Train Inf Dev WSJ Brown
Data Fine-tuneˆ2 SEML VN PB ρ Ó VN PB ρ Ó VN PB ρ Ó

Jo
in

t IWCS2021 (gold η & σ) - - - 88.2 88.7 - 83.0 82.8 -

Multitask ✗ 89.51.09 87.91.17 3.68.06 90.74.23 89.33.15 3.43.50 83.691.54 81.73.98 8.71.74
Joint ✓ 90.20.22 87.58.18 0 91.42.11 89.12.16 0 85.901.11 82.56.52 0

Se
m

i

Multitask ✗ 89.56.09 88.30.42 4.82.35 90.45.09 89.34.74 4.08.37 84.28.85 82.51.70 10.48.16
Joint+CRFPB ✓ 90.73.32 88.42.11 0 91.52.36 89.30.29 0 85.72.13 82.33.31 0

Marginal ✓ 90.91.27 88.68.11 0 91.74.22 89.51.28 0 85.391.74 82.461.06 0
MarginalSEML ✓ 90.87.32 88.59.24 0 91.55.28 89.49.18 0 86.39.17 83.04.37 0

Table 2: Model performances on SEMLINK extracted CoNLL05 data. Each data point represents the meanstd of 3
random runs. ρ: percentage of predicates with argument prediction that violates SEMLINK structures. IWCS2021
numbers are reported in (Gung and Palmer, 2021).

Train Inf Dev WSJ Brown
Data Fine-tuneˆ2 SEML VN PB ρ Ó VN PB ρ Ó VN PB ρ Ó

Jo
in

t Joint ✗ 89.28 87.70 1.58 90.73 89.10 1.59 84.43 82.48 5.99
Joint ✓ 90.20 87.58 0 91.42 89.12 0 85.90 82.56 0

Se
m

i

Joint+CRFPB ✗ 89.66 88.31 2.74 90.61 89.21 2.37 83.53 81.87 7.59
Joint+CRFPB ✓ 90.73 88.42 0 91.52 89.30 0 85.72 82.33 0

Marginal ✗ 89.79 88.50 2.92 90.73 89.30 2.39 83.23 81.88 6.74
Marginal ✓ 90.91 88.68 0 91.74 89.51 0 85.39 82.46 0

MarginalSEML ✗ 89.53 88.55 2.29 90.70 89.46 1.98 83.64 82.71 7.77
MarginalSEML ✓ 90.87 88.59 0 91.55 89.49 0 86.39 83.04 0

Table 3: Impact of SEMLINK at inference time. Each data point represents the average of 3 random runs. Improve-
ments on VN F1s are both substantial and significant (p-value ! 0.01).

on Brown). While SEMLINK inconsistency is
not reported in (Gung and Palmer, 2021), we
believe that, due to the nature of multitask learning,
SEMLINK errors are inevitable.

Joint CRF outperforms multitask learning. A
direct comparison is between the Multitask v.s.
Joint. Our joint CRF obtains higher overall SRL F1
across the WSJ and the Brown sets. A similar obser-
vation applies to the semi-supervised setting where
Multitask compares to Joint+CRFPB. Most of such
improvements are from the use of inference-time
SEMLINK constraints.

Inference with SEMLINK improves SRL. In
Table 3, we do side-to-side comparison of using
versus not using the SEMLINK structure during in-
ference. We do so for each modeling variant. With
constrained inference, models no longer have SEM-
LINK structural violations (ρ “ 0). And this results
in a clear trend where using SEMLINK systemati-
cally improves the F1 scores. We hypothesize this
is due to the reduced search space which makes

the decoding easier. Likely due to the higher gran-
ularity of VerbNet argument types compared to
PropBank, a majority of the improvements are on
the VN F1s.

Does semi-supervised learning make a differ-
ence? The answer is that it depends. For Multi-
task, using PropBank-only data traded off a bit on
the overall WSJ F1 but improved the out-of-domain
performances. Accompanied with this trade-off
is the slightly higher inconsistency rate ρ. The
Joint+CRFPB model tells an opposite story that
the partially labeled data is favorable on the in-
domain test but not so in the out-of-domain test.
This observation is also consistent with both the
Marginal CRF and constrained Marginal model
(MarginalSEML). Furthermore, when performance
improves, the margins on VN and PB are fairly
distributed. Finally, we should note that, neither
the Joint+CRFPB nor the Marginal have a better
Brown F1 than the Joint, meaning that they did not
use the PB-only data efficiently.
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Impact of marginal CRF. We compare the
Joint+CRFPB to Marginal to see how a single CRF
handles partially labeled data. The latter outper-
forms the former consistently by 0.2 on the in-
domain test set but performed slightly worse on the
out-of-domain Brown set. Comparing to the Joint
model, it seems that naively applying marginal
CRF leads to even worse generalization.

Constrained marginal model improves general-
ization. We want to see if our constrained model
can help learning. Modeling PropBank-only data
with a separate classifier (i.e., the Multitask and
Joint+CRFPB) failed to do so (although they indeed
work better on the in-domain WSJ). In contrast, our
constrained MarginalSEML apparently learns from
the PropBank-only data more efficiently, achiev-
ing strong in-domain performance and substan-
tially better out-of-domain generalization. This
suggests that learning with constraints works better
with partially labeled data. Interestingly though, it
seems that the constraint is optional for fully an-
notated data since the MarginalSEML only enables
the constraint on PB-only data. We verify this phe-
nomenon in Sec. 7.2 with an ablation study.

Statistical Significance of Constrained Inference.
We measure statistical significance using a t-test im-
plemented by Dror et al. (2018) on predictions from
models in Table 3. For each model, we compare
inference with and without SEMLINK constraints
(Sec. 5). For a fair comparison, we limit predic-
tions from the model trained with the same random
seed in each test, and apply the test for all random
seeds (3 in total). We observe that the improve-
ments on VerbNet F1’s are universally significant.
The p-values are far less than 0.01 across differ-
ent testing data, models, and random seeds. This
aligns to the observation in Table 3 that VN F1 has
a substantial F1 boost while PB F1 improvements
tend to be marginal.

To look closer, we examined the predictions of a
Joint model on the Dev set (1, 794 predicates), and
found that, after using SEMLINK during inference,
51 wrongly predicted predicates in VN SRL were
corrected (i.e., improved predicate-wise F1), and
no predicates received a degraded F1. However, for
PropBank SRL, there were 12 predicates corrected
by the constraint while 6 became errors.

6.4 VerbNet Label Completion from
PropBank

As discussed in Sec. 1, we also aim to address
the realistic use case of VerbNet completion. Ta-
ble 4 summarizes the performances for VerbNet
argument prediction when gold PropBank argu-
ments are given. In the completion mode, the Joint
model performs generally better than all the semi-
supervised models. This phenomenon is likely be-
cause the Joint model is optimized for the prob-
ability P pyV , yP | xq, while the semi-supervised
models, in one way or the other, have a term forř

yV P pyV , yP | xq on PB-only data. The latter
term does not explicitly boost model’s discrimina-
tive capability on the unique ground truth.

In addition to the xWP input construction in
Sec. 3, we propose a special construction xCOMP

for the VN completion mode by using the PB argu-
ments as text input.:

xCOMP “ rCLS w1:T SEP yP1 ... σv yPv`1... SEPs

where yPi denotes the PropBank argument label for
the i-th word. For the predicate word, we use the
predicate feature (i.e. lemma and sense). Com-
pared to xWP, this formulation makes the compu-
tation less efficient as the input xCOMP is no longer
shared across different predicates. However, it of-
fers a more tailored input signal and delivers above
99 F1 on both WSJ and Brown.

Data Model WSJ VN Brown VN

xWP

Jo
in

t Multitask 83.14 86.26
Joint 99.83 98.12

Se
m

i

Multitask 93.08 85.71
Joint+CRFPB 99.81 97.88
Marginal 99.76 97.45
MarginalSEML 99.68 97.71

xCOMP

Joint Joint 99.85 99.02

Table 4: VN completion with gold PB labels. Results
are averaged over models trained with 3 random seeds.
xCOMP: Input construction for the completion mode.

7 Analysis

We report statistical metrics in Sec. 7.1. In Sec. 7.2,
we analyze the use of constrained learning on the
jointly labeled data.
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7.1 Variance of SRL Models
A majority of F1s in Tab. 2 vary in a small range.
Models trained on joint-only data show higher vari-
ance on the out-of-domain Brown test set. Among
the semi-supervised models, the Marginal models
exhibit high F1 variance on the Brown set while
the MarginalSEML models work more stably.

7.2 Impact of Learning with SEMLINK
Constraint on Joint Data

In Table 5, we use the form of constrained learning
in Eq. 8 but apply it on the joint CRF loss over
the jointly labeled training data. Note that the con-
straint term only affects the denominator part in
Eq. 6. Overall, the effect of SEMLINK at train-
ing time seems small. On the WSJ test set, both
VN and PB F1s are fairly close. The Brown test
F1s have a drop, especially on VN, suggesting that
constrained learning on the joint data is not needed.

Joint WSJ Brown

SEMLINK VN PB VB PB

1 ✗ 91.42 89.12 85.90 82.56
2 ✓ 91.42 89.21 85.41 82.46

Table 5: Ablation of SEMLINK constraint during train-
ing using the Joint CRF. ✓ indicates SEMLINK con-
straint is applied; and ✗ indicates not.

7.3 Reliance on Gold Predicate Labels
While we focused on experiments that use given
gold predicate labels (i.e., VN class η and PB
sense σ), our models do not rely on them. Intu-
itively, there will be a performance degradation
on argument labeling when predicate labels are
not always accurate. To study this degradation
curve, we experiment with randomly corrupted
predicate classes/senses, to illustrate the perfor-
mance dependency on predicate disambiguation.
Specifically, we perturb the development split by
randomly swapping a predicate’s VN class (or PB
sense) with another one from the dataset and ob-
serve how well our best model performs. This setup
essentially simulates a real-world testing scenario
where predicate labels on either VN/PB are imper-
fect. Results in Tab. 6 suggest that F1 degradation
happens in a smooth way due to error propagation.

8 Discussion

The use of constraints in SRL has a long history that
mostly focuses on the PropBank SRL task. Earlier

η corruption (%) 0 5 10 20 30

VN F1 91.23 89.45 83.64 82.90 79.02
PB F1 88.82 88.23 87.32 85.56 84.66

σ corruption (%) 0 5 10 20 30

VN F1 91.23 90.35 89.55 87.18 84.94
PB F1 88.82 88.17 87.21 84.92 83.11

Table 6: Performance curve w.r.t. predicate label cor-
ruption, measured using the MarginalSEML trained with
random seed 1. η: VN class. σ: PB sense.

work investigated inference with constraints (e.g.
Punyakanok et al., 2004; Surdeanu et al., 2007;
Punyakanok et al., 2008). Other work developed
constrained models for learning (e.g. Chang et al.,
2012) ; or incorporated constraints with emerging
neural models (e.g. Riedel and Meza-Ruiz, 2008;
Fürstenau and Lapata, 2012; Täckström et al., 2015;
FitzGerald et al., 2015; Li et al., 2020).

VerbNet SRL, on the other hand, is often stud-
ied as a comparison or a helper for PropBank
SRL (Kuznetsov and Gurevych, 2020). Yi et al.
(2007) showed that the mapping between Verb-
Net and PropBank can be used to disambiguate
PropBank labels. It has been shown that model
performance on VerbNet SRL is affected more by
predicate features than PropBank SRL (Zapirain
et al., 2008). In a sense, our observation that Verb-
Net F1 gains larger improvements from SEMLINK

is also consistent with prior work. Beyond compar-
ison work, Kazeminejad et al. (2021) explored the
downstream impact of VerbNet SRL and showed
promising uses in entity state tracking.

Multitask Learning The closest work to this pa-
per is Gung and Palmer (2021). Instead of model-
ing argument labels and predicate classes via mul-
titasking, we adopted a simpler design and focused
on joint SRL argument labeling. This comes with
two benefits: 1) a focused design that models joint
labels; 2) an easy extension for using marginal
CRF for partially labeled data. Other technical
differences include a generally better transformer
(i.e., ROBERTA) instead of BERT (Vaswani et al.,
2017), simpler input construction, and our proposal
of the completion mode.

Marginal CRF Greenberg et al. (2018) explored
the use of marginal CRF on disjoint label sequences
in the biomedical domain. Disjoint label sequences
are concatenated into one, thus requiring dedicated
decoding to reduce inconsistency w.r.t. various
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structure patterns (e.g., aligned BIO pattern). In
this paper, we took a step further by pairing label
sequences to form a joint SRL task, allowing an
easy interface for injecting decoding constraints.

Broader Impact Recent advantages in large lan-
guage models (LLM) have shown promising per-
formance in semantic parsing tasks (e.g. Drozdov
et al., 2022; Mekala et al., 2022; Yang et al., 2022).
A well-established approach is via iterative prompt-
ing (e.g., Chain-of-Thought (Wei et al., 2022)) and
potentially using in-domain examples for prompt
construction. While such work bears many techni-
cal differences from this work, there are advantages
that can potentially be shared. For instance, our
direct use of a knowledge base (SEMLINK in our
case) allowed for a guarantee of 0 violations; and
LLM-based work is less reliant on training data.
Another scenario is when treating semantic struc-
tures as explicit intermediate products, such as for
language generation. Our joint modeling allows
for ě 99% accuracy in converting PropBank argu-
ments to VN arguments. When using such labels
for prompted inference, it can make fewer errors.

Conclusions In this work, we presented a model
that learns from compatible label sequences for the
SRL task. The proposal includes a joint CRF de-
sign, extension for learning from partially labeled
data, and reasoning and learning with SEMLINK

constraints. On the VerbNet and PropBank bench-
mark based on CoNLL05, our models achieved
state-of-the-art performance with especially strong
out-of-domain generalization. For the newly pro-
posed task of completing VerbNet arguments given
PropBank labels, our models are near perfect,
achieving over 99 F1 scores.

9 Limitations

Towards fully end-to-end parser. Our model ar-
chitecture is on the track of end-to-end SRL parser,
but it still assumes gold predicate positions and
predicate attributes are given. A fully end-to-end
parser can take sentences in raw text and output
disjoint label sequences. While doing so can make
computation less efficient (e.g., requiring substan-
tially larger memory for training), it can bring users
convenience.

Involving document context. Gung and Palmer
(2021) showed that using neighboring sentence pre-
diction with transformer positively impacts parsing

F1. In contrast, we assumed sentences in the corpus
are independent.

Why does PropBank seem more difficult? We
hypothesized the reason to be less granularity in
argument labels and more ambiguous label assign-
ments. As mentioned in Sec. 3, prior work bene-
fited from using dedicated label text/definition as
an auxiliary input. We only used such features at
the predicate level, implicitly trading off potential
gains on PB F1 for more efficient computation.

Marginal model’s capacity at handling con-
straints. In this paper, we focused on the SEM-
LINK constraint for compatible label sequences.
There is a broad spectrum of SRL constraints in
prior work (Punyakanok et al., 2008), some of them
do not easily fit in the marginalization formulation,
such as the unique core role constraint.
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A Appendix

A.1 Hyperparameters
As discussed in Sec. 6, we adopted a 2-stage fine-
tuning for each of our models. In the first round,
we fine-tune for 20 epochs with initial learning rate
of 3 ˆ 10´5. In the second round, we fine-tune
for another 5 epochs with fresh start on the opti-
mizer. Across the two stages, we applied a dropout
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layer with rate 0.5 (which is preliminarily grid-
searched from r0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8s)
before each of the linear layers in Sec. 3. The
ROBERTA transformer uses the built-in default
configurations which is implemented by Wolf et al.
(2019).

The learning rate (λ) in the second round of
fine-tuning varies by model. We preliminarily grid-
searched from r3ˆ 10´6, 1ˆ 10´5, 3ˆ 10´5, 1ˆ
10´4s. Specifically, for each learning rate, we
trained 3 random models and chose the one with
the highest overall SRL F1 on the Dev set. We put
their values in Table 7.

Data Model λ

Jo
in

t Multitask 1 ˆ 10´4

Joint 1 ˆ 10´4

Se
m

i

Multitask 1 ˆ 10´4

Joint+CRFPB 1 ˆ 10´4

Marginal 3 ˆ 10´5

MarginalSEML 1 ˆ 10´5

Table 7: Learning rate in the second round of fine-tuning
for each model in Table 2.
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