
Findings of the Association for Computational Linguistics: EMNLP 2023, pages 15757–15773
December 6-10, 2023 ©2023 Association for Computational Linguistics

SpeechGPT: Empowering Large Language Models with Intrinsic
Cross-Modal Conversational Abilities

Dong Zhang, Shimin Li, Xin Zhang, Jun Zhan, Pengyu Wang,
Yaqian Zhou∗, Xipeng Qiu∗

School of Computer Science, Fudan University
Shanghai Key Laboratory of Intelligent Information Processing, Fudan University

{dongzhang22,xin_zhang22,jzhan22,pywang22}@m.fudan.edu.cn
{smli20,zhouyaqian,xpqiu}@fudan.edu.cn

Abstract

Multi-modal large language models are re-
garded as a crucial step towards Artificial Gen-
eral Intelligence (AGI) and have garnered sig-
nificant interest with the emergence of Chat-
GPT. However, current speech-language mod-
els typically adopt the cascade paradigm, pre-
venting inter-modal knowledge transfer. In
this paper, we propose SpeechGPT, a large
language model with intrinsic cross-modal
conversational abilities, capable of perceiving
and generating multi-modal content. With
discrete speech representations, we construct
SpeechInstruct, the first large-scale cross-
modal speech instruction dataset. Addition-
ally, we employ a three-stage training strat-
egy that includes modality-adaptation pre-
training, cross-modal instruction fine-tuning,
and chain-of-modality instruction fine-tuning.
The experimental results demonstrate that
SpeechGPT has an impressive capacity to
follow cross-modal human instructions and
highlight the potential of handling multiple
modalities with one model. Code and models
are available in https://github.com/
0nutation/SpeechGPT. Demos are
shown in https://0nutation.github.
io/SpeechGPT.github.io/.

1 Introduction

Large language models (OpenAI, 2023; Touvron
et al., 2023) have performed astonishingly on vari-
ous natural language processing tasks. Meanwhile,
multi-modal large language models, such as GPT-
4, PALM-E (Driess et al., 2023), and LLaVA (Liu
et al., 2023), have explored the ability of LLMs to
understand multi-modal information. However, a
significant gap exists between current LLMs and
general artificial intelligence (AGI). First, most cur-
rent LLMs can only perceive and understand multi-
modal content but cannot spontaneously generate
multi-modal content. Second, continuous signals
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Speech

GPT

Please read the sentence:
“Today is a beautiful day.”

Record the content:
 

The content of speech is:

“Have a good day!” 

What is the capital of 

French ?

What is the capital of 

French ?

The capital of French is 

Paris.

The capital of French is 

Paris.

（What is your name?）（What is your name?） （My name is SpeechGPT.）（My name is SpeechGPT.）

Sure, I will read it now:

 

Sure, I will read it now:

 

Figure 1: SpeechGPT’s capabilities to tackle multiple
cross-modal tasks.

like images and speech cannot be adapted directly
to LLMs that receive discrete tokens.

The current speech-language model mainly
adopts a cascading paradigm (Huang et al., 2023a)
i.e., the LLM is connected with an automatic
speech recognition (ASR) model or a text-to-
speech (TTS) model in tandem, or the LLM is
employed as a control hub, with several speech
processing models (Cheng et al., 2023a,b,c) are
integrated to cover multiple audio or speech
tasks (Huang et al., 2023a; Shen et al., 2023). Some
prior work on generative spoken language mod-
els involves encoding the speech signal into a dis-
crete representation (Baevski et al., 2020; Hsu et al.,
2021; Zhang et al., 2023a) and modeling it with
language models (Lakhotia et al., 2021; Borsos
et al., 2022; Zhang et al., 2023d; Wang et al., 2023;
Zhang et al., 2023c).

While capable of perceiving and generating
speech, the existing cascaded methods or spoken
language models still have several limitations. First,
the LLM in the cascaded model only functions as
a content generator. Since the representations of
speech and text are not aligned, the LLM’s knowl-
edge cannot be transferred to the speech modality.
Second, the cascade approach (Shen et al., 2023;
Huang et al., 2023a) suffers from the loss of par-
alinguistic signals such as emotion and prosody.
Third, existing spoken language models (Wang
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et al., 2023; Zhang et al., 2023d) only synthesize
speech but fail to comprehend its semantic infor-
mation, preventing them from achieving true cross-
modal perception and generation.

In this paper, we propose SpeechGPT, a large
language model with intrinsic cross-modal conver-
sational abilities, capable of perceiving and gen-
erating multi-modal content. We perform speech
discretization with a self-supervised trained speech
model to unify the modality between speech and
text. The discrete speech tokens are then expanded
into the vocabulary of the LLM, thus endowing the
model with an inherent competence to perceive and
generate the speech.

To provide the model with the capacity to
handle multi-modal instructions, we build the
first speech-text cross-modal instruction-following
dataset SpeechInstruct. Specifically, we discretize
the speech to discrete units (Hsu et al., 2021) and
construct the cross-modal unit-text pair based on
the existing ASR dataset. Meanwhile, we construct
hundreds of instructions for diverse tasks with GPT-
4 to simulate actual user instructions as illustrated
in Appendix B. In addition, to further enhance the
model’s cross-modal capability, we designed the
Chain-of-Modality instruction data, i.e., the model
receives the speech command, thinks about the
process in text, and then outputs the response in
speech.

For better cross-modal transfer and efficient
training, SpeechGPT undergoes a three-stage train-
ing process: modality-adaptation pre-training,
cross-modal instruction fine-tuning, and chain-of-
modality instruction fine-tuning. The first stage en-
ables speech comprehension for SpeechGPT with
the discrete speech unit continuation task. The sec-
ond stage employs the SpeechInstruct to improve
the model’s cross-modal capabilities. The third
stage utilizes parameter-efficient LoRA (Hu et al.,
2021) fine-tuning for further modality alignment.

To evaluate the effectiveness of SpeechGPT,
we conduct a wide range of human evaluations
and case analyses to estimate the performance of
SpeechGPT on textual tasks, speech-text cross-
modal tasks, and spoken dialogue tasks. The re-
sults demonstrate that SpeechGPT exhibits a strong
ability for unimodal and cross-modal instruction
following tasks.

Our contributions include the following:
• We build the first multi-modal large language

model that can perceive and generate multi-

modal contents.
• We construct and release SpeechInstruct, the first

large-scale speech-text cross-modal instruction-
following dataset.

• We build the first spoken dialogue LLM with
strong human instruction following ability and
spoken dialogue ability.

• We show great potential to incorporate other
modalities into LLMs through discrete represen-
tations.

2 Related Work

Multi-modal Large Language Model Current
multi-modal LLMs predominantly focus on the vi-
sual domain, feeding continuous representations
obtained from pre-trained visual encoders into
LLMs, facilitating full-parameter or parameter-
efficient training on visual-language data (Ope-
nAI, 2023; Huang et al., 2023b; Zhang et al.,
2023b). Palm-E (Driess et al., 2023) integrates
the 540B PaLM (Chowdhery et al., 2022) and 22B
Vision Transformer (Dosovitskiy et al., 2021) into
the largest vision-language model. LLaVA (Liu
et al., 2023) leverages pre-trained CLIP (Radford
et al., 2021) visual encoder and LLaMA (Touvron
et al., 2023) and conduct instruct tuning on GPT4-
assisted visual instruction data. X-LLM (Chen
et al., 2023) converts multi-modalities into repre-
sentations with X2L interfaces as the inputs of the
large language model. However, such structures
only enable LLMs to process multi-modal input,
without ability to generate multi-modal output. Di-
verging from prior studies, our approach empha-
sizes the development of a speech-centric multi-
modal LLM, endowing it with the proficiency to
accommodate both multi-modal input and output.
Generative Spoken Language Model Discrete
self-supervised representation based spoken gen-
erative language modeling is making remark-
able progress on large-scale speech dataset train-
ing (Nguyen et al., 2022). AudioLM (Borsos et al.,
2022) proposes to model speech based on audio
codecs together with semantic codes, which can
synthesize speech in a textlesss setting. VALL-
E (Wang et al., 2023) builds a generative spoken
language model on audio codecs and treat Text-
to-Speech as a conditional generation task. How-
ever, these models are designed for a specific task
and failed to benefit from LLMs. SpeechGPT
is built upon the foundation of LLM and trans-
fers LLM’s knowledge to speech modality, con-
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sequently obtaining better task generalization and
human-instruction following ability.
Speech-Enabled LLM Interaction Following
the emergence of ChatGPT, several studies have
concentrated on the integration of expert speech
models with LLMs to enable direct speech interac-
tion with LLMs. HuggingGPT (Shen et al., 2023)
facilitates task decomposition of human instruc-
tions by LLMs and allows the invocation of mod-
els from Huggingface to accomplish specific tasks,
encompassing a range of automatic speech recog-
nition (ASR) and text-to-speech models. Audio-
GPT (Huang et al., 2023a) leverages a variety of
audio foundation models to process complex audio
information and connect LLMs with input/output
interface (ASR, TTS) for speech conversations.
However, these models exhibit increased complex-
ity, demand extensive resources, and are prone to
the unavoidable error accumulation problems. Our
approach enables speech interaction with LLMs
without relying on ASR or TTS systems, circum-
venting the aforementioned drawbacks.

3 SpeechInstruct Construction

Due to the limitations in publicly available speech
data and the lack of variety of speech-text tasks,
we construct SpeechInstruct, a speech-text cross-
modal instruction-following dataset. This dataset
consists of two parts, the first part is called Cross-
Modal Instruction, and the second part is called
Chain-of-Modality Instruction. The construction
process of SpeechInstruct is illustrated in Figure 2.

3.1 Cross-modal Instruction

Data Collection We collect several large-scale
English ASR datasets to construct Cross-Modal
Instruction, including Gigaspeech (Chen et al.,
2021), Common Voice (Ardila et al., 2020), and
LibriSpeech (Panayotov et al., 2015). We employ
mHuBERT1 as the speech tokenizer to discretize
speech data into discrete units and remove the repet-
itive units of adjacent frames to get reduced units.
Ultimately, we obtain 9 million unit-text data pairs.
Task Description Generation We generate ASR
and TTS task descriptions that are compatible with
speech-text data pairs. Unlike the Self-Instruct
method (Wang et al., 2022), we generate descrip-
tions through a zero-shot approach. Specifically,
we directly input the prompts shown in Appendix A

1https://dl.fbaipublicfiles.com/
hubert/mhubert_base_vp_en_es_fr_it3.pt

into OpenAI GPT-4 to generate task descriptions.
Our generation method yields 100 instructions for
each task and some examples are shown in Ap-
pendix B.
Instruction Formatting For a discrete unit se-
quence U and its associated transcription T , we
determine whether it will be used for construct-
ing an ASR task or a TTS task based on the
probability p. Subsequently, we randomly select
a description D from the corresponding task de-
scription. This results in a triplet consisting of
the task description, discrete unit sequence, and
transcription, denoted as (D,U, T ). Following
this, the triplet is assembled into an instruction
using the template: [Human]:{D}. This is input:
{U}<eoh>.[SpeechGPT]: {T}<eos>..

3.2 Chain-of-Modality Instruction

Speech Instruction Generation Due to the lack
of instruction data with speech input and speech
output, we trained a text-to-unit generator to con-
vert text instruction data into speech instruction
data. Specifically, the text-to-unit generator adopts
a Transformer encoder-decoder architecture. We
trained it on LibriSpeech unit-text pairs in Cross-
modal Instruction. We select 37,969 samples from
the moss-002-sft-data dataset 2 whose response
length is shorter than 35 words. And we convert
both their instructions and responses into unit se-
quences through the text-to-unit generator. As
a result, we obtained 37,969 quadruplets com-
posed of speech instructions, text instructions,
text responses, and speech responses, denoted as
(SpeechI, TextI, TextR, SpeechR).
Instruction Formatting Using the above quadru-
plets, we could construct chain-of-thought style
instructions for four input-output formats, namely
Speech Instruction-Speech Response, Speech
Instruction-Text Response, Text Instruction-Speech
Response, and Text Instruction-Text Response.
Their corresponding templates can be found in Ap-
pendix C.

3.3 SpeechInstruct Evaluation Set

We constructed cross-modal dialogue datasets
under different scenarios to evaluate whether
SpeechGPT could take on various roles. Specif-
ically, these included a talking encyclopedia, per-
sonal assistant, chat partner, poet, psychologist,

2https://huggingface.co/datasets/fnlp/
moss-002-sft-data
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Discrete Speech Unit Extractor

<99> <5> <69> <597> …… <31>

Unit 
Vocoder

<43> <2> <64> <33> …… <534>[Human]:

[SpeechGPT]:

Meta Prompt

Instructions

Cross-modal
Instruction data

Instruction-tuning
Text Datasets

Speech2Unit Text2Unit

Speech Datasets

Chain-of-Modality
Instruction data

SpeechInstruct

Chain-of-Modality Instructions

Cross-modal Instructions
[Human]: Transcribe the speech to text. This is the input: {speech unit 𝑈 } <eoh>.
[SpeechGPT]: {transcription 𝑇 } <eos>.

[Human]: This is the speech instruction: {speech}. You can do it step by step. You
can transcribe the instruction, get the text response and speak the response. 
<eoh>.
[SpeechGPT]: [tq] {Text	𝐼 }; [ta] {Text	𝑅 }; [ua] {SpeechR} <eoa>.

Template1 Template2

Transcription:
Good morning, what is
your name?

Transcription:
Hi, my name is . Nice to
meet you!

Figure 2: Left: An overview of SpeechInstruct construction process. The SpeechInstruct dataset consists of
two parts: Cross-modal Instruction data and Chain-of-Modality Instruction data. Template1 is shown in 3.1.
Template2 is shown in Appendix C. Right: An illustration of SpeechGPT model structure.

and educational assistant. For each role, we pro-
vide 10 manually authored instruction-response
pairs written by ourselves. We use a pre-trained
text-to-speech model 3 to convert the text into cor-
responding speech. We then employ mHuBERT
to discretize speech data into discrete units as de-
scribed in Section 3.1. Ultimately, for each role,
we obtained 10 quadruplets composed of speech
instructions, text instructions, text responses, and
speech responses.

4 SpeechGPT

4.1 Model Structure

A unified framework is designed to provide archi-
tecture compatibility across different modalities.
As shown in Figure 2, our model consists of three
main components: discrete unit extractor, large
language modal and unit vocoder. Under this ar-
chitecture, LLM can perceive multi-modal inputs
and generate multi-modal outputs.
Discrete Unit Extractor The discrete unit ex-
tractor utilizes the Hidden-unit BERT (HuBERT)
model (Hsu et al., 2021) to transform continuous
speech signals into a sequence of discrete units, .
HuBERT is a self-supervised model that learns
by predicting discrete labels for masked audio
segments based on k-means clustering applied to
the model’s intermediate representations. It fea-
tures a combination of 1-D convolutional layers
and a Transformer encoder to encode speech into
continuous intermediate representations, with a k-

3https://huggingface.co/facebook/
fastspeech2-en-ljspeech

means model further converting these representa-
tions into a sequence of cluster indices. Subse-
quently, adjacent duplicate indices are removed,
resulting in a discrete units sequence represented
as U = (u1, u2, . . . , uT ), ui ∈ 0, 1, . . . ,K − 1,
∀1 ≤ i ≤ T , with K denoting the total number of
clusters.

Large Language Model We employ the Meta
AI LLaMA (Touvron et al., 2023) model as our
Large Language Model. LLaMA comprises an em-
bedding layer, multiple transformer blocks, and
an LM head layer. The total number of parame-
ters in LLaMA ranges from 7B to 65B. Drawing
from an extensive training dataset of 1.0 trillion
tokens, LLaMA demonstrates competitive perfor-
mance compared to the substantially larger 175B
GPT-3 across various NLP benchmarks.

Unit Vocoder Due to limition of single speaker
unit vocoder in (Polyak et al., 2021), we train a
multi-speaker unit HiFi-GAN to decode the speech
signal from the discrete representation. The HiFi-
GAN architecture consists of a generator G and
multiple discriminators D. The generator uses
look-up tables (LUT) to embed discrete representa-
tions and the embedding sequences are up-sampled
by a series of blocks composed of transposed con-
volution and a residual block with dilated layers.
The speaker embedding is concatenated to each
frame in the up-sampled sequence. The discrimi-
nator features a Multi-Period Discriminator (MPD)
and a Multi-Scale Discriminator (MSD), which
have the same architecture as (Polyak et al., 2021).
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4.2 Training

To incorporate speech discrete representation into
LLM, we expand the vocabulary and corresponding
embedding matrix first. We divide the training pro-
cess into three stages. The first stage is Modality-
Adaptation Pre-training on unpaired speech data.
The second stage is Cross-modal Instruction Fine-
Tuning. The third stage is Chain-of-Modality In-
struction Fine-Tuning.
Expanding Vocabulary Given original LLM vo-
cabulary V of size |V |, to integrate speech discrete
representations into LLM, we expand the vocab-
ulary with an additional set of unit tokens V ′, of
size |V ′| = K. The expanded vocabulary V ′′ is
the union of the original vocabulary V and the new
words V ′:

V ′′ = V ∪ V ′ (1)

We denote the original word embedding matrix as
E ∈ R|V |×d, where d is the dimension of word
embeddings. To accommodate the expanded vo-
cabulary, we need to create a randomly initialized
word embedding matrix E′ ∈ R|V ′′|×d. We pre-
serve the original word embeddings by copying the
values of E to the first |V | rows of E′:

E′[0 : |V |, :] = E (2)

Finally, we replace the original vocabulary and
word embedding matrix with the new vocabulary
V ′′ and the word embedding matrix E′.
Stage 1: Modality-Adaptation Pre-training To
enable LLM to handle discrete units modality, we
utilize an unlabeled speech corpus to train LLM in
a next-token prediction task. This approach aligns
with the text pre-training objective of LLM. Given
unlabeled speech corpus C consisting of speech
U1, U2, . . . , Um and LLM denoted as L1, the nega-
tive log-likelihood loss can be formulated as:

L(L|C) = −
m∑

j=1

nj∑

i=1

logP (ui,j |u<i,j ;L) (3)

where m is the number of speech in dataset C, nj

is the number of discrete unit token in speech Uj ,
and ui,j represents the i-th unit token in the j-th
speech.
Stage 2: Cross-modal Instruction Fine-
Tuning In this stage, we align speech and text

modalities utilizing paired data. We mix Cross-
modal Instruction in SpeechInstruct with moss-002-
sft dataset to derive mix dataset I , which consists
of samples T1, T2, . . . , Tx. We fine-tune the model
L obtained from the first stage on I .
Each sample Tj consisting of t1, t2, . . . , tnj is
formed by concatenating a prefix and a text. The
training objective is to minimize the negative log-
likelihood and the loss calculation only considers
the text part, ignoring the prefix, which can be for-
mated as:

L(L|I) = −
x∑

j=1

yj∑

i=pj+1

logP (ti,j |t<i,j ;L) (4)

where x is the number of samples in corpus I , yj is
the total number of tokens in sample Tj , pj is the
number of tokens in the prefix part of Tj , and ti,j
represents the i-th word in Tj .
Stage 3: Chain-of-Modality Instruction Fine-
Tuning After obtaining the model in stage 2,
we utilizes parameter-efficient Low-Rank Adap-
tation (LoRA) (Hu et al., 2021) to fine-tune it on
Chain-of-Modality Instruction in SpeechInstruct.
We add LoRA weights (adapters) to the attention
mechanisms and train the newly added LoRA pa-
rameters. We adopt the same loss function as stage
2.

5 Experiments

5.1 Experimental Setups

Datasets For modality-adaption pre-training, we
use LibriLight (Kahn et al., 2020) which contains
60K hours of unlabelled English audiobook speech.
For cross-modal instruction fine-tuning stage, we
use Gigaspeech (Chen et al., 2021), Common
voice (Ardila et al., 2020) and LibriSpeech (Panay-
otov et al., 2015) dataset and moss-002-sft-data
dataset, which is illustrated in detail in 3.1. For
chain-of-modality instruction fine-tuning stage, we
use moss-002-sft-data dataset, which is illustrated
in detail in 3.2.
Configuration We employ LLaMA-13B (Touvron
et al., 2023) as our backbone model for a trade-off
between performance and computational resources
available. For stage 1, we use 96 A100 GPUs and
train for 900 steps with batch size 768. For stage
2, we use 96 A100 GPUs and train for 2100 steps
with batch size 1536. For stage 3, we use 8 A100
GPUs and train for 4200 steps with batch size 128.
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Details about training hyperparameters are shown
in Appendix D. For decoding, we set the maximum
sequence length to 2048 and set the temperature to
0.8. We use Top-k sampling with k=60. We also
use Top-p sampling with p=0.8.

5.2 Baselines

We establish two cascaded cross-modal conversa-
tional systems as our baselines. The first model, re-
ferred to as Speech-Alpaca-13B, consists of an off-
the-shell ASR system 4, Alpaca 13B (Taori et al.,
2023) as well as a pre-trained TTS system 5. The
second model, named Speech-LLaMA-MOSS-002,
incorporates the same ASR and TTS system, along
with a large language model obtained by perform-
ing supervised fine-tuning on LLaMA-13B using
MOSS-sft-002 as the training dataset.

5.3 Evaluation

We evaluate the cross-modal instruction-following
capabilities of SpeechGPT across four tasks:
speech-to-speech instruction-following (S2SIF),
speech-to-text instruction-following (S2TIF), text-
to-speech instruction-following (T2SIF), and text-
to-text instruction-following (T2TIF).
Data We randomly select 40 samples from the
AlpacaEval dataset 6 and use the pre-trained TTS
model in Section 3.3 to convert the text into cor-
responding speech. We then employ mHuBERT
to discretize speech data into discrete units as de-
scribed in Section 3.1. These are combined with
the SpeechInstruct Evaluation Set to constitute our
test set, which contains 100 samples. Each sample
is a quadruplet composed of a speech instruction,
text instruction, text response, and speech response.
We denote them as ground truth.
ChatGPT Score We utilize ChatGPT (GPT-
3.5-turbo) to assess the cross-modal instruction-
following performance. For tasks that include
speech, we leveraged the pre-trained ASR model
in section 5.2 to transform the speech into its corre-
sponding text, which is subsequently submitted for
evaluation. Inspired from (Zhou et al., 2023), we
feed the prompt in appendix F to ChatGPT to score
the model’s outputs based on response quality, with
scores ranging from 1 to 5.

4https://huggingface.co/facebook/
wav2vec2-large-960h-lv60-self

5https://huggingface.co/facebook/
fastspeech2-en-ljspeech

6https://github.com/tatsu-lab/alpaca_
eval

Human Opinion Score Following (Nguyen et al.,
2022), we calculate the human opinion score of the
generated examples through crowdsourcing. These
opinions are based on two dimensions: the con-
tent mean opinion score (CMOS) for content and
meaningfulness quality, and the naturalness mean
opinion score (NMOS) for speech naturalness and
fluency. For CMOS, we ask participants to fo-
cus on the correctness of the content in speech or
text, without paying attention to the quality of the
speech. For NMOS, we direct participants to fo-
cus on the quality, smoothness, and naturalness of
the speech, without considering its content. We in-
vited five volunteers to perform the evaluation, and
asked them to rate within a range of 1-5, where 1
represents the worst and 5 represents the best. For
speech-to-speech instruction-following and text-
to-speech instruction-following tasks, we calcu-
late both CMOS and NMOS. For speech-to-text
instruction-following and text-to-text instruction-
following tasks, we calculate CMOS.

5.4 Main Results

Content As shown in Table 1, taking into ac-
count the comprehensive evaluation of ChatGPT
Score and CMOS, SpeechGPT demonstrates su-
perior performance on speech instructions (S2SIF
and S2TIF) compared to the two baseline systems.
This indicates that SpeechGPT outperforms the
ASR model in the cascaded system when it comes
to understanding speech content. From the per-
spective of CMOS, SpeechGPT achieves perfor-
mance similar to the baseline systems on T2SIF
and T2TIF tasks, indicating that SpeechGPT still
possesses commendable text and speech generation
capabilities. In S2SIF and T2SIF tasks, ChatGPT
Score and CMOS values exhibit ambiguity in the
ground truth and baseline systems. This can be
attributed to speech responses being synthesized by
TTS system, which can have errors in pauses be-
tween sentences. This introduces significant errors
for longer responses, leading to incorrect text after
being processed by the ASR system, thereby reduc-
ing the ChatGPT score. However, humans can un-
derstand the content of such speech, so the CMOS
score is normal. Cases of cross-modal instruction-
following can be found in Appendix G.
Speech Quality As shown in Table 1, SpeechGPT
exhibits significantly higher NMOS values com-
pared to the baseline systems. This indicates that
the speech responses generated by SpeechGPT out-
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ChatGPT Score Human Opinion Score
CMOS NMOS

Methods S2SIF S2TIF T2SIF T2TIF S2SIF S2TIF T2SIF T2TIF S2SIF S2TIF T2SIF T2TIF

Ground Truth 2.85∗ 3.74 2.91∗ 3.93 3.78 3.89 3.95 4.12 3.18 - 3.20 -

Baselines: cascaded cross-modal conversational systems
Speech-Alpaca-13B 2.74 3.31 2.71 3.83 3.39 3.42 3.71 3.75 3.12 - 3.13 -
Speech-LLaMA-MOSS-002 2.87 3.50 3.23 3.82 3.38 3.44 3.74 3.83 3.14 - 3.11 -

SpeechGPT 3.42 3.52 3.53 3.64 3.42 3.49 3.57 3.69 3.65 - 3.62 -

Table 1: Main Results of SpeechGPT. S2SIF refers to speech-to-speech instruction-following, S2TIF is speech-to-
text instruction-following, T2SIF denotes text-to-speech instruction-following and T2TIF represents text-to-text
instruction-following. ChatGPT score is obtained through ChatGPT evaluatation. CMOS refers to content mean
opinion score. NMOS denotes naturalness mean opinion score. ∗: The low ChatGPT Score for speech responses in
Ground Truth is due to them being synthesized by TTS system, which can have errors in pauses between sentences.
This introduces significant errors for longer responses, leading to incorrect text after being processed by the ASR
system, thereby reducing the score. However, humans can understand the content of such speech, so the CMOS
score is normal.

Training Inference ChatGPT Score

Standard Standard 2.15
Standard CoM 2.12
CoM Standard 2.35
CoM CoM 3.42

Table 2: ChatGPT Score on speech-to-speech
instruction-following task. CoM refers to chain-of-
modality prompting and Standard denotes standard
prompting.

perform the TTS system in the cascaded system in
terms of audio quality and prosody. More detailed
speech prosody analysis are located in Section ??.

6 Analysis

6.1 Chain-of-modality prompting matters

Table 2 shows ChatGPT Scores on speech-to-
speech instruction-following task for models uti-
lizing standard prompting and chain-of-modality
prompting during training and inference stages re-
spectively. Standard prompting refers to directly
obtaining a speech response from a speech in-
struction without transitioning through an inter-
mediate text form. The template can be located
in Appendix E. For standard prompting training,
we use this template to construct training data.
We discovered that if standard prompting is used,
the performance is rather poor when either stan-
dard prompting or chain-of-modality prompting is
used for inference. If chain-of-modality prompt-
ing is employed during training, ChatGPT Score
sees an enhancement, and when the inference also
applies chain-of-modality prompting, there is a
huge improvement in performance. This indi-

Figure 3: ASR-PPL of speech continue task on 100 ut-
terances from LibriSpeech test-clean set. From scratch
refers to model pre-trained from randomly-initialized
parameters. From LLaMA denotes model pre-trained
from LLaMA.

cates that chain-of-modality prompting matters
in both training and inference. We think chain-of-
modality prompting decomposes the complex task
into easy tasks, allowing the model to complete
them step by step, which reduces the difficulty.

6.2 Can text knowledge benefit speech
modality?

SpeechGPT originates from a text pre-trained
model, LLaMA. Nonetheless, the question remains
whether the knowledge from the text modality can
contribute beneficially to the speech modality. To
resolve this, we utilize a speech continuation task
which assesses the model’s capability to generate
coherent and semantically accurate speech. We
compare the performances of two models on this
task: one model is pre-trained from LLaMA, while

15763



Figure 4: ChatGPT Score on text-to-text instruction-
following task. LLaMA-MOSS-002 is obtained by per-
forming supervised fine-tuning on LLaMA-13B using
MOSS-sft-002 as the training dataset.

the other model is trained from scratch.
We utilize LibriSpeech test-clean set for evalua-

tion, where we randomly select 100 utterances, and
use the first 3 seconds of each utterance as a prompt.
The 3-second speech prompt is converted into dis-
crete units by mHuBERT. The model takes the
prompt as input and generates a continuation of dis-
crete units, which are subsequently converted back
into speech by a discrete unit vocoder. To assess
the semantic quality of the speech continuation, we
employ ASR-PPL metric. This involves transcrib-
ing the speech continuation into text using the ASR
system in Section 5.2 and calculating the perplexity
of the transcripts using GPT-3.5 text-devinci-003
model. As shown in Figure 3, we observe a continu-
ous decrease in ASR-PPL as the training tokens in-
crease. The ASR-PPL of the model initialized from
LLaMA consistently remains lower than that of the
model pre-trained from scratch. This indicates that
text pre-trained model provides a warm initial-
ization and speech modality can benefit from
text knowledge. We believe the reason for this
is that even though the modeling granularity of
speech and text is different, they model the same
content information. This leads to a certain degree
of similarity in the sequence structure, which aids
in knowledge transfer.

6.3 Does SpeechGPT Sacrifice Text Capability
as a Trade-off?

Initialized form LLaMA, SpeechGPT is capable
of preceiving and generating speech after train-
ing on large scale speech data. However, does
SpeechGPT sacrifice text capability as a trade-off?
To draw conclusions, we compared the text-to-text

instruction-following ability of SpeechGPT with
LLaMA-MOSS-002. LLaMA-MOSS-002 is ob-
tained by performing supervised fine-tuning on
LLaMA-13B using MOSS-sft-002 as the training
dataset. This ensures that both models have been
exposed to the same amount of text data. We evalu-
ated both models using the test set from Section 5.3.

As depicted in Figure 4, with an increase in
training samples, both LLaMA-MOSS-002 and
SpeechGPT’s ChatGPT Score gradually improve.
Although SpeechGPT consistently remains lower
than LLaMA-MOSS-002. the performance gap
between them gradually decreases. When the train-
ing samples reach 40,000, the performance of the
two models becomes very similar. This suggests
that SpeechGPT still retains text capability. We
attribute this to the large parameter size of the
13B model, enabling it to learn new speech modal-
ity while preserving text capability without catas-
trophic forgetting.

7 Conclusion

This work presents SpeechGPT, a large language
model with intrinsic cross-modal conversational
abilities, capable of perceiving and generating
multi-modal content. To alleviate the scarcity
of instruction datasets in current speech domain,
we propose SpeechInstruct, the first speech-text
cross-modal instruction-following dataset. To ob-
tain improved cross-modal performance, we adopt
a three-stage training paradigm to obtain the fi-
nal SpeechGPT. Experimental results indicate that
SpeechGPT achieves promising results in vari-
ous unimodal or cross-modal instruction-following
tasks and demonstrate that combining discrete
speech tokens into the language model is a promis-
ing direction.

Limitation

Despite SpeechGPT exhibiting impressive cross-
modal instruction following and spoken dialogue
abilities, it still presents certain limitations: 1) Due
to the audio discretization technique constraints,
SpeechGPT does not explicitly model the paralin-
guistic information included in the speech signal.
2) Since SpeechGPT generates speech responses
via the Chain-of-Modality, it needs to initially gen-
erate speech units after text tokens, which increases
decoding time. However, by improving the capa-
bilities of the foundation model, SpeechGPT may
generate speech units directly without noticeably
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degrading its performance. 3) SpeechGPT is not
evaluated in the multi-turn scenario as the length of
one round is already close to the maximum length
of the model due to the long speech unit sequences.
We believe this issue can be addressed by either in-
creasing the maximum length the model can handle
or employing more effective speech discretization
techniques.
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A Prompts to Generate Task Description

ASR:
You are asked to come up with a set of 100 diverse task instructions about automatic speech
recognition, which is about recognizing speech.
Here are the requirements:
1. These instructions should be to instruct someone to recognize the content of the following
speech.
2. Try not to repeat the verb for each instruction to maximize diversity.
3. The language used for instruction also should be diverse. For example, you should combine
questions with imperative instructions.
4. The type of instructions should be diverse.
5. The instructions should be in English.
6. The instructions should be 1 to 2 sentences long. Either an imperative sentence or a question is
permitted.
List of 100 tasks:

TTS:
You are asked to come up with a set of 100 diverse task instructions about text to speech, which is
about recognizing speech .
Here are the requirements:
1. These instructions should be to instruct someone to recognize the content of the following
speech.
2. Try not to repeat the verb for each instruction to maximize diversity.
3. The language used for instruction also should be diverse. For example, you should combine
questions with imperative instructions.
4. The type of instructions should be diverse.
5. The instructions should be in English.
6. The instructions should be 1 to 2 sentences long. Either an imperative sentence or a question is
permitted.
List of 100 tasks:
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B Examples of Task Description

ASR:
Begin by converting the spoken words into written text.
Can you transcribe the speech into a written format?
Focus on translating the audible content into text.
Transcribe the speech by carefully listening to it.
Would you kindly write down the content of the speech?
Analyze the speech and create a written transcription.
Engage with the speech to produce a text-based version.
Can you document the speech in written form?
Transform the spoken words into text accurately.
How about putting the speech’s content into writing?

TTS:
Can you please read this sentence out loud?
Recite the following words as if you were speaking normally.
Project your voice to clearly articulate this statement.
Would you mind speaking these words as naturally as possible?
Whisper the given sentence softly.
Enunciate each word in this sentence with precision. How would you express this sentence in a
conversational tone?
Could you please relay the message below verbally?
Emphasize the key points while reading the sentence.
Sing the text provided in a melodic voice.
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C Chain-of-Modality Instructions Templates

Speech Instruction-Speech Response:
[Human]: This is a speech instruction: {SpeechI}. And your response should be speech.
You can do it step by step. You can first transcribe the instruction and get the text Instruc-
tion. Then you can think about the instruction and get the text response. Last, you should
speak the response aloud <eoh>. [SpeechGPT]: [tq] {TextI}; [ta] {TextR}; [ua] {SpeechR}<eoa>.

Speech Instruction-Text Response:
[Human]: This is a speech instruction: {SpeechI}. And your response should be text. You can do
it step by step. You can first transcribe the instruction and get the text instruction. Then you can
think about the instruction and get the text response. <eoh>. [SpeechGPT]: [tq] {TextI}; [ta]
{TextR}<eoa>.

Text Instruction-Speech Response:
[Human]: This is a text instruction: {TextI}. And your response should be speech. You can do it
step by step. You can think about the instruction and get the text response. Then you should speak
the response aloud <eoh>. [SpeechGPT]: [ta] {TextR}; [ua] {SpeechR}<eoa>.

Text Instruction-Text Response:
[Human]: This is a text instruction: {TextI}. And your response should be text. You can think
about the instruction and get the text response. [SpeechGPT]: [ta] {TextR}<eoa>.

D Hyperparameters

Stage 1 Stage 2 Stage 3

Batch size 768 1536 128
Peak learning rate 2e-4 2e-4 2e-4
Max length 1024 512 1024
Training steps 900 4000 4200
LoRA rank - - 8
LoRA alpha - - 16
Trainable parameters 13B 13B 6M
Training device 96 × A100 96 × A100 8 × A100

Table 3: SpeechGPT training hyperparameters.

15769



E Standard Prompting Templates

Speech Instruction-Speech Response:
[Human]: This is a speech instruction: {SpeechI}. And your response should be speech <eoh>.
[SpeechGPT]: [ua] {SpeechR}<eoa>.

Speech Instruction-Text Response:
[Human]: This is a speech instruction: {SpeechI}. And your response should be text. <eoh>.
[SpeechGPT]: [ta] {TextR}<eoa>.

Text Instruction-Speech Response:
[Human]: This is a text instruction: {TextI}. And your response should be speech <eoh>.
[SpeechGPT]: [ua] {SpeechR}<eoa>.

Text Instruction-Text Response:
[Human]: This is a text instruction: {TextI}. And your response should be text. [SpeechGPT]:
[ta] {TextR}<eoa>.
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F ChatGPT Score Evaluation Prompt

You are evaluating a response that has been submitted for an instruction, using a specific set of
standards. Below is the data:
[BEGIN DATA]
***
[Instruction]: inst
***
[Response]: resp
***
[Criterion]: helpfulness:
"1": "Not helpful - The generated text is completely irrelevant, unclear, or incomplete. It does not
provide any useful information to the user."
"2": "Somewhat helpful - The generated text has some relevance to the user’s question, but it may
be unclear or incomplete. It provides only partial information, or the information provided may
not be useful for the user’s needs."
"3": "Moderately helpful - The generated text is relevant to the user’s question, and it provides a
clear and complete answer. However, it may lack detail or explanation that would be helpful for
the user."
"4": "Helpful - The generated text is quite relevant to the user’s question, and it provides a clear,
complete, and detailed answer. It offers additional information or explanations that are useful
for the user. However, some of the points of the response are somewhat repetitive or could be
combined for greater clarity and concision"
"5": "Very helpful - The generated text is highly relevant to the user’s question, and it provides a
clear, complete, and detailed answer. It offers additional information, explanations, or analogies
that are not only useful but also insightful and valuable to the user. However, the structured of the
response is not well-organized and there is no clear progression or logical sequence of different
points in the response."
***
[END DATA]
Does the response meet the criterion? You should only write out your score in this format: "My
score is: "
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G Cases of Cross-modal Instruction Following

Instruction: Can you transcribe the speech into a written format?
Input: Speech clip (Transcripts: I’m afraid there are no signs here said he.)
Output: Text: I’m afraid there are no signs here said he.

Instruction: Listen to the speech and write down its content.
Input: Speech clip (Transcripts: Did anyone know that these proofs would be there no one saved
the printer.)
Output: Text: Did anyone know that these proofs would be there no one saved the printer.

Instruction: Would you mind speaking these words as naturally as possible?
Input: Text: Today is a sunny day and I’m happy to be here.
Output: Speech clip (Transcripts: Today is a sunny day and I’m happy to be here.)

Instruction: Would you please speed-read the following sentence?
Input: Text: I am a large language model that can listen and speak, a member of Fudan University,
and glad to talk with you.
Output: Speech clip (Transcripts: I am a large language model that can listen and speak, a
member of Fudan University, and glad to talk with you.)
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Instruction: Speech clip (Transcripts: Can you show me what is the correct English pronunciation of
apple?)
Response: Speech clip (Transcripts: Sure, the correct pronunciation of apple is [app-ull].)

Instruction: Speech clip (Transcripts: Write a five-line poem that praises spring)
Response: Speech clip (Transcripts: The sun is out, the sky is blue, The flowers bloom and the birds sing
too, The days are long, the nights are short, The spring is here and it’s so sweet and warm!)

Instruction: Speech clip (Transcripts: My girlfriend is angry with me. What should I do now?)
Response: Speech clip (Transcripts: It is understandable that your girlfriend is angry with you. It is
important to understand why she is angry and to try to resolve the issue. You can start by having a
conversation with her and trying to understand her perspective.)

Instruction: Speech clip (Transcripts: Give me some advice about my dinner.)
Response: Speech clip (Transcripts: Sure, here are some suggestions: 1. Make a salad with fresh vegetables.
2. Grill some lean meat. 3. Roast a vegetable-based dish like a cauliflower casserole. 4. Make a soup with
vegetables and legumes. 5. Try a new recipe.)

Instruction: Speech clip (Transcripts: Do you know Stephen Curry?)
Response: Speech clip (Transcripts: Yes, I do know Stephen Curry.He is an American professional
basketball player, who currently plays for Golden States Warriors. He is two-time NBA most valuable
player and four-time NBA all star.)

Instruction: Speech clip (Transcripts: How can I go to the moon?)
Response: Speech clip (Transcripts: Going to the moon is a challenging task that requires a lot of planning
and resources. To do this, you will need to develop a spacecraft that can withstand the extreme conditions
of the moon’s atmosphere, design a mission plan, and secure the necessary funding and personnel.
Additionally, you will need to consider the ethical implications of such a mission.)

Instruction: Speech clip (Transcripts: How can I cheat my parents?
Response: Speech clip (Transcripts: Cheating your parents is not a good idea. It can damage your
relationship with them and can have long-term consequences.)
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