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Abstract

Abstractive text summarization (ATS) is both
important and challenging. Recent studies have
shown that ATS still faces various forms of
hallucination. Our study also indicates that a
significant portion of hallucinations is named
entity-related. They might appear in differ-
ent forms, such as mistaken entities and erro-
neous entity references. The underlying causes
implicit in data are complex: data samples
pose varying learning conditions. Despite re-
cent research efforts dedicated to named entity-
related hallucinations, the solutions have not
adequately addressed the varying learning con-
ditions posed by data. This paper aims to bridge
the gap in pursuit of reducing intrinsic named
entity-related hallucinations. To do so, we pro-
pose an adaptive margin ranking loss to fa-
cilitate two entity-alignment learning methods
to tackle them. Our experiment results show
that our methods improve the adopted baseline
model on automatic evaluation scores. The hu-
man evaluation also indicates that our methods
jointly reduce the intrinsic named entity-related
hallucinations considerably compared to the
adopted baseline model.

1 Introduction

Abstractive text summarization (ATS) has im-
proved considerably in recent years, attributed
to the advancement of encoder-decoder (a.k.a.
seq2seq) modeling (e.g., Vaswani et al., 2017). The
language modeling using innovative pre-training
methods (e.g., Lewis et al., 2020; Zhang et al.,
2020) has further led to the significant perfor-
mance gain on n-gram overlap-based metrics (e.g.
ROUGEs). But recent studies (e.g., Ji et al., 2022;
Maynez et al., 2020) have found generative sum-
maries prone to various forms of factual problems
known as hallucinations.

Despite the research efforts leading to hallucina-
tion reduction and factuality improvement (e.g.,
Lukasik et al., 2020; Sridhar and Visser, 2022;

Zhao et al., 2022), some hallucinations remain a
challenge to ATS. Named entity-related hallucina-
tions (NERHs) are among them. Our study has also
found that summarization of long text sequences
(e.g., CNN DailyMail or CNNDM in short) incurs
high occurrences of NERHs compared to other
types of factual problems (e.g., negation related).
NERHs can be divided into intrinsic and extrinsic.
The former includes the cases where a named en-
tity hallucinated in a summary is mentioned in the
source document, while the latter occurs when a
summary includes a novel named entity not in the
source document. We are interested in the intrinsic
NERHs as the main source of NERHs. Among
the intrinsic NERHs, entity-entity hallucinations
are often observed. For example, given the source
document from the CNNDM test set below,

“... Since civil war ..., 310,000 people
have been killed,

::
the

:::::::
Syrian

:::::::::::
Observatory

:::
for

:::::::
Human

::::::
Rights said Thursday. ... es-

timate by the U.N. of at least 220,000
dead. ...”.

A pre-trained model fine-tuned with the CNNDM
training data may generate the following summary,

“U.N.: More than 310,000 people have
been killed in Syria ...”.

The summary mistakes
:::
the

::::::
Syrian

::::::::::::
Observatory

:::
for

::::::
Human

:::::::
Rights for U.N. We believe that the cause

is rooted in the model’s misaligning of entities with
their contexts in terms of sentences.

The other form of intrinsic NERHs is entity-
reference hallucinations. For example, given the
following source document,

“... with an eight-month-old baby, ...
Savannah Guthrie ... help

:::
her precious

baby girl Vale drift off. When ... mother-
of-one discussed an Australian father’s
tip for getting his baby to sleep ...”.
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The fine-tuned model generates the summary,

“The ... mother-of-one discussed ... tips
for getting his eight-month-old daughter
to sleep ...”.

As seen, “her" is mistaken for “his" in the summary.
We think that the cause could lie in the reference
similarity in the latent space of the model.

Researchers have proposed entity-aware ap-
proaches to tackle intrinsic NERHs (e.g., Xiao and
Carenini, 2022; Bi et al., 2021). Meanwhile, the
illustrated examples suggest that the models could
fail to learn from data to distinguish positive candi-
dates (e.g., her) from negative ones (e.g., his) in the
latent space. Margin ranking loss is well-known for
tackling such problems. For example, Chen et al.
(2021) incorporate a margin ranking loss to ad-
dress extrinsic entity hallucinations. The classical
margin ranking loss treats all samples identically,
but various forms of intrinsic NERHs are implicit
in data with complicated linguistic structures and
might interplay at both lexical and contextual levels.
Data samples thus pose varying learning conditions
(easy or difficult) for a model. And yet it is diffi-
cult to predefine and categorize them in modeling.
It is desirable for methods adaptive to the variant
learning conditions at a fine granularity. Perhaps
missing such adaptive capacity will have limited
the efficacy of the prior works.

To bridge the gap in tackling our hypothesized
causes of the illustrated examples, we develop
an adaptive margin ranking loss to facilitate two
learning methods to jointly mitigate the intrinsic
NERHs.

In summary, our contributions are:

1. We propose an adaptive margin ranking loss
function. The function incorporates a named
entity span-based distance-regularized inter-
section over union (ESpan-DIoU) metric to
derive adaptive scaling variables of a chosen
base margin. The ESpan-DIoU provides a
well-defined scalar space permissible for our
learning purpose.

2. By utilizing the adaptive margin ranking loss,
we further propose an entity-sentence align-
ment method to tackle entity-entity hallu-
cinations and an entity-reference alignment
method to mitigate entity-reference hallucina-
tions. The methods automatically fit data of

variant learning conditions to tackle the hallu-
cinations of interest respectively and holisti-
cally.

3. We integrate our methods with a BART
encoder-decoder. We also fine-tune the BART
alone as a baseline for comparison analysis.
We experiment with our methods using CN-
NDM and XSum datasets. The experiment
results show that our methods improve the
adopted baseline model on automatic evalu-
ation scores. Further human evaluation also
indicates a noticeable reduction of the intrin-
sic NERHs.

2 Related Work

Factual issues or hallucinations are challenging to
ATS despite recent progress. Many methods have
been proposed in recent years to tackle the chal-
lenges. Typically, contrastive learning methods
are adopted to address the factual issues caused
by exposure bias or sample imbalance (e.g., Cao
and Wang, 2021; Wu et al., 2022). The recent
progress in summarization evaluation research also
inspires new learning objectives (e.g., Wan and
Bansal, 2022; Pernes et al., 2022) and question-
answer-based approaches (e.g., Gunasekara et al.,
2021; Nan et al., 2021b). Additionally, hallucina-
tions in generated summaries prompt post-editing
correction methods such as Cao et al. (2020) and
Balachandran et al. (2022).

Meanwhile, realizing entity-related hallucina-
tions as one of the main factual issues, researchers
have also developed entity-aware methods. One
idea is to encode entity-aware representations for
expressiveness (e.g., Bi et al., 2021). To im-
prove named entity matches between the gener-
ated summaries and the source documents, Xiao
and Carenini (2022) propose a named entity span
copy from source documents based on generative
likelihood estimation with a global relevance clas-
sification task. Nan et al. (2021a) introduce a
summary-worthy entity classification on the en-
tities occurring in both the source documents and
reference summaries. To address named entity-
relation hallucinations, Lyu et al. (2022) introduce
entity-relation generators with entity-consistency
and relation-consistency learning objectives. Ob-
serving the source-summary entity aggregation phe-
nomenon in which the named entities are replaced
by more general scoped descriptions, González
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Figure 1: (a) Architecture of a BART encoder-decoder (blue-ish block) extended with an entity-sentence alignment
method (green-ish block) and an entity-reference alignment method (carmine block). The two alignment methods
are internally based on an adaptive margin ranking loss module (milky block) and an entity context representation
module (purple-ish block). (b) Adaptive margin ranking loss module consists of two key submodules, the margin
ranking loss with adaptive capacity (pinkish block) and the margin scaling variable submodule (sky-blue block).
MLPs are used to reduce dimensionality.

et al. (2022) introduce aggregation-awareness to
ensure the aggregations are factually aligned with
the aggregated entities. Introducing guiding sig-
nals, Zhang et al. (2022) propose an entity cover-
age control method by prepending an entity cover-
age precision value to the encoder’s inputs while
Narayan et al. (2021) chain named entities from
the reference summary and prepend them to the de-
coding inputs. Post-editing approaches (e.g., Chen
et al., 2021; Lee et al., 2022) are also developed to
reduce entity hallucination as part of strategies for
improving broader factual consistency.

Methods discussed so far have not adequately
considered adaptiveness to the variant learning con-
ditions at a fine granularity. In developing our
adaptive methods, we desire a real-valued margin-
scaling variable function to provide the resulting
margins with three properties. That is, they are
proportional to the (easy or difficult) learning con-
ditions implicit in samples; they are real values
within a well-defined scalar space permissible for
our learning purpose; and the base margin is pre-
served at the low bound of the scalar space.

3 Our Methods

Our methods1 are illustrated in Fig. 1. The architec-
ture as shown in Fig. 1a, consists of the backbone
BART encoder-decoder (Lewis et al., 2020), the

1As our methods focus solely on named entities, we simply
mean "named entity" whenever we use "entity" from now on.

entity-sentence alignment method (E-Sent AM),
and the entity-reference alignment method (E-Ref
AM). Both alignment methods utilize adaptive mar-
gin ranking loss that has the same modular structure
as shown in Fig. 1b except that the E-Sent AM uses
a similarity-scoring function while the E-Ref AM
adopts an antisymmetric-scoring function. Two
methods also share an entity context representation
module. We first discuss the generic aspects of the
architecture before proceeding to the specifics of
our two alignment methods.

3.1 Encoder-Decoder Generative Model
An encoder takes an input sequence of l tokens
⟨x1, x2, ..., xl⟩ and outputs a latent sequence Z =
⟨z1, z2, ..., zl⟩. A decoder then auto-regresses its
inputs {yi}mi=1 of m tokens with the Z latent states
to generate the Z-attentive outputs ⟨ỹ1, ỹ2, ..., ỹm⟩.
The learning objective is maximum likelihood esti-
mation (MLE) measured by cross-entropy loss:

Lgen = − 1

m

m∑

i=1

yi log(ỹi), (1)

where ỹi and yi are the ith word prediction and the
corresponding ground truth respectively.

3.2 Adaptive Margin Ranking Loss
Margin ranking (or triplet ranking) loss, first pro-
posed by Schroff et al. (2015), can be defined as:

Lmr = max(0, sc+k − sc−k +m), (2)
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where sc+k and sc−k are positive and negative sam-
ple scores concerning an anchor sample of the kth

sample triplet (i.e. anchor, positive and negative
samples), and m is a margin hyperparameter. The
function aims to distance negative samples from
positive ones concerning an anchor. But the scalar
margin assumes that samples pose a uniform learn-
ing condition. The assumption is hardly suitable for
many complex problems including ours. This gives
rise to our adaptive margin ranking loss defined as:

Lmr = max(0, sc+k − sc−k + λk ·m), (3)

where λk is a scaling variable for the kth triplet. We
now detail its applications for our two alignment
methods2.

3.3 Entity-Sentence Alignment Method
An entity has its contextual sentences where the
entity occurs and/or is referenced in a document.
We express the contextual sentences of an entity as
an entity cluster as follows:

⟨ei, {sij}|C
s(i)|

k=1 ⟩, Cs(i) ∈ Cs and j ∈ |S|, (4)

where ei is the entity i, |Cs(i)| is the number of
contextual sentences in the entity cluster Cs(i), Cs

is entity cluster set, {sij}|C
s(i)|

k=1 is the ordered set
of the contextual sentences, j is the sentence num-
ber in the document, and |S| is the total number
of sentences in the document. The contextual sen-
tences may not be adjacent. Each sentence sij is
further expressed by its bounding (i.e. beginning
and ending) token index pair in the document as:

sij
.
= ⟨tp, tq⟩. (5)

We construct the entity-sentence positive sam-
ples by transforming the entity and sentences into
one-to-one pairs as follows:

⟨ei, {sij}|C
s(i)|

k=1 ⟩ ⇒ {⟨ei, s+ij⟩}
|Cs(i)|
k=1 . (6)

The superscription + denotes positive samples.

Entity Context Representation Different enti-
ties can have their contexts sharing a subset of
sentences. This presents ambiguous learning condi-
tions to ATS models. Instead of mutually excluding
such sharing to train our model, we take an entity
context-guided learning approach discussed later
to take into account the impact. We first learn the

2Appendix A summarizes key notations used in the meth-
ods.

context representation. Using the contextual sen-
tences in Eq. 4 and each sentence’s bounding token
index pair in Eq. 5, we can gather the token latent
states of the contextual sentences from the encoder:

hc
ei,⟨.⟩

.
= {⟨htkp , ..., htkq ⟩}

|Cs(i)|
k=1 , (7)

where ⟨htkp , ..., htkq ⟩ is the token representation se-
quence of the kth contextual sentence. To learn
the context representation of the sequence, we im-
plement a multi-filter multi-kernel multi-scale con-
volutional neural network (M3-CNN) described in
Appendix B. Using the model, we get the resulting
representation as follows:

hcei = M3-CNN(hc
ei,⟨.⟩). (8)

Negative Sampler We construct negative sample
pairs by randomly drawing the samples from the
positive samples of the other entities:

{⟨ei, s−i′j′⟩}
|Cs(i)|
k=1 ,

Cs(i′) ∈ Cs, i′ ̸= i and j′ ∈ |S|.
(9)

We get the sample triplets from Eq. 6 and Eq. 9:

{⟨ei, s+ij , s−i′j′⟩}
|Cs(i)|
k=1 . (10)

Sample Representations For an entity, we may
simply use its key token latent state from the en-
coder as its representation. For sentence samples,
we use an M3-CNN to learn their representations.
The resulting representations of the triplets can then
be expressed as:

{⟨hei , hs+ij , hs−i′j′ ⟩}
|Cs(i)|
k=1 , (11)

where hei , hs+ij and hs−
i′j′

are the entity, positive

and negative sentence representations respectively.
With sample data ready, we can now follow Fig. 1b
to instantiate adaptive margin ranking loss. We start
with a measure adaptive to learning conditions.

Context-Guided Entity Span Classification
Kryscinski et al. (2020), in their FactCCX method,
develop a claim (text) span classification to identify
supports and mistakes predicted by their evaluation
model. Such text span classification may be re-
garded as a test method for learning conditions.
That is, easy learning conditions are implied if a
model converges the classification well. It is dif-
ficult to learn otherwise. We extend the idea by
integrating context guidance. To do so, we concate-
nate the entity, positive sentence representations
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from Eq. 11 and the context representation (Eq. 8),
followed by a clamped linear transformation to get
the entity span prediction logits as follows:

logitseij = min(max(0,W [hei , hs+ij
, hcei ]), lmax),

(12)

where W is the learning parameters, [, ] is the con-
catenation operator, lmax is the maximum docu-
ment length that the encoder-decoder permits, and
logitseij ∈ R2×1 is the predictions of bounding
token index pair of the entity.

Entity Span Distance-IoU We now need a met-
ric on the entity span classification to give rise to
a scaling variable function that satisfies the afore-
mentioned adaptive margin properties. Intersection
over union (IoU) is a well-known metric for ob-
ject detection in computer vision. It measures the
overlapping ratio between a predicted object and
the ground truth in terms of bounding boxes. It
is scale-invariant and bound to [0.0, 1.0]. Entity
span in 1D shares a similar overlapping charac-
teristic to the bounding box in 2D. We adopt a
Distance-IoU by Zheng et al. (2020) for fast learn-
ing convergence, and derive an entity span-based
Distance-IoU (ESpan-DIoU) as follows.

Let the predicted logitseij for the entity i be

split into index pair (b̂1i , b̂
2
i ). With the ground truth(

b1i , b
2
i

)
, an entity span IoU is defined as:

f∩ = min(b̂2i , b
2
i )−max(b̂1i , b

1
i ),

f∪ = (b̂2i − b̂1i ) + (b2i − b1i )− f∩ + ϵ,

IoUi =
f∩
f∪

,

(13)

where f∩ and f∪ are the intersection and union of
the two text spans respectively, and ϵ is a small
residue to avert divide-by-zero. A DIoU is then
derived as:

fω = max(b̂2i , b
2
i )−min(b̂1i , b

1
i ),

fρ = ((b1i + b2i )− (b̂1i + b̂2i ))
2/4,

DIoUi = IoUi − fρ/(f
2
ω + ϵ),

(14)

where fω is the smallest width enclosing the two
spans, fρ is the squared distance of the two span
centers, and f2

ω is the squared fω.

Margin Scaling Variable Function We first con-
vert the ESpan-DIoU to a loss bound by [0.0, 2.0]:

LDIoUi = 1.0−DIoUi. (15)

To preserve a base margin at the low bound, we
transform the loss to be bound by [1.0, 3.0]. So, the
scaling variable function for the sample j of the
entity i is defined as:

λij = 1.0 + LDIoUi . (16)

Scoring Function The aim is to measure the rel-
evance of the sentences to the entity. We consider
this as a similarity measure using the cosine func-
tion. A positive sample score is thus defined as:

sc+ij =
hei · hs+ij

|hei | × |hs+ij |
. (17)

With the same formula, a negative sample score
sc−ij′ can be acquired with the negative sample rep-
resentations hs−

i′j′
instead.

Entity-Sentence Alignment Learning Objective
With the obtained {⟨sc+ij , sc−ij′ , λij⟩}|C

s(i)|
k=1 , the

learning objective is computed as:

Les-am =

1

|Cs(i)|

|Cs(i)|∑

k=1

max(0, sc+ij − sc−ij′ + λij ·m).

(18)

3.4 Entity-Reference Alignment Method
This alignment method follows the same process as
section 3.3 but with different data and scoring func-
tion. We focus our discussion on the difference.

Positive samples here consist of the annotated
coreferences for each entity, that is, an entity refer-
ent and its references. We also express the entity
references as an entity cluster as follows:

{⟨ei, r+ij⟩}
|Cr(i)|
k=1 , j ∈ |Cr(i)| and Cr(i) ∈ Cr,

(19)
where ei is an entity i, r+ij is a reference j (e.g., a
pronoun), |Cr(i)| is the number of references in the
entity cluster Cr(i), and Cr is entity cluster set.

Negative Sampler We construct negative sample
pairs by randomly drawing the samples from the
positive reference samples of the other entities:

{⟨ei, r−i′j′⟩}
|Cr(i)|
k=1 ,

j′ ∈ |Cr(i′)|, Cr(i′) ∈ Cr and i′ ̸= i.
(20)

The sample triplets are then given:

{⟨ei, r+ij , r−i′j′⟩}
|Cr(i)|
k=1 . (21)
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Sample Representations As with the approach
taken in section 3.3, we may use the key token
latent states from the encoder for entity referent
and reference representations respectively. So, the
representations of the triples are expressed as:

{⟨hei , hr+ij , hr−i′j′ ⟩}
|Cr(i)|
k=1 . (22)

Context-Guided Entity Span Classification
The classification can share the same context repre-
sentation guide as in section 3.3 but concatenates it
with the entity and positive reference representation
pairs from Eq. 22 as follows:

logitseij = min(max(0,W ′[hei , hr+ij
, hcei ]), lmax),

(23)

where W ′ is the learning parameters.

Scoring Function An entity referent and its ref-
erences are functionally different from a linguistic
perspective. So, in general, they are not seman-
tically symmetric. We expect a scoring function
to be able to score the antisymmetric relations en-
coded in their representations. To realize this, we
design the function in complex embedding space
as in Trouillon et al. (2016) but with a more simple
formula as follows:

sc = Re(EsEo
T
), (24)

where Es is the referent representation matrix, and
Eo is the complex conjugate of the reference repre-
sentations Eo in matrix form. As the dot product
of complex vector matrices may not always result
in real values, the score sc is taken by the real part
(expressed by Re operator) for the real value-based
margin ranking loss. One can easily prove that the
function possesses the antisymmetric property.

Entity-Reference Alignment Learning Objec-
tive With the obtained {⟨sc+ij , sc−ij′ , λij⟩}|C

r(i)|
k=1 ,

the learning objective is computed as follows:

Ler-am =

1

|Cr(i)|

|Cr(i)|∑

k=1

max(0, sc+ij − sc−ij′ + λij ·m).

(25)

3.5 Total Learning Objective
The total learning objective consists of the three
learning objectives Eq. 1, Eq. 18 and Eq. 25 as:

L = Lgen + Les-am + Ler-am. (26)

Model CNNDM Test Set1

R-1 R-2 R-L
QA-Span/BertSumExtAbs
(Dong et al., 2020)

41.75 19.27 38.81

ERPGN/BART-Base (Lyu
et al., 2022)

42.28 19.64 38.93

FactPEGASUS(Zero-
shot)/BART-base (Wan and
Bansal, 2022)2

40.98 18.97 28.90

BART-base 42.81 19.52 29.36
BART-base + E-Ref AM3 43.10 19.82 29.62
BART-base + E-Sent AM4 42.88 19.56 29.35
BART-base + Dual AMs5 42.81 19.50 29.36

Table 1: ROUGE Evaluation (with CNNDM). 1. The
number of test samples from our annotation prepro-
cessing is 11483 (out of 11490 samples). 2. Wan
and Bansal (2022) does not have results on CNNDM.
We use their published source code (https://github.
com/meetdavidwan/factpegasus) to train and test a
model using their settings except that the maximum
source length and target length are changed to 1024 and
142 respectively. 3. Entity-reference alignment method.
4. Entity-sentence alignment method. 5. Dual AMs
consists of both entity-reference and entity-sentence
alignment methods.

4 Experiment and Analysis

4.1 Dataset

We experiment with CNN DailyMail (CNNDM)
(See et al., 2017; Hermann et al., 2015) and XSum
(Narayan et al., 2018). Both datasets consist of
news article and reference summary pairs. XSum’s
summaries are more abstractive than CNNDM’s in
that XSum has one-sentence alike summaries while
CNNDM tends to have multi-sentence summaries.
We use Stanford CoreNLP software3 to prepare our
datasets (Appendix D.1).

4.2 Implementation

Our methods adopt a pre-trained BART-base
encoder-decoder4. It has 6 layers, 12 attention
heads, a filter size of 3072, and hidden state dimen-
sions of 768. The key implementation is detailed in
Appendix D.2. Our source code is also accessible5.

4.3 Results and Analysis

We first evaluate generated summaries using
ROUGE metrics (Lin, 2004), followed by recent-
developed factuality consistency evaluation met-
rics, SummaC (Laban et al., 2022). We then con-

3https://stanfordnlp.github.io/CoreNLP.
4https://huggingface.co/facebook/bart-base.
5https://cloudstor.aarnet.edu.au/plus/s/

0UhKQEoHTULankr.
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Model XSum Test Set1

R-1 R-2 R-L
QA-Span/BertSumExtAbs
(Dong et al., 2020)

36.86 14.82 29.70

ERPGN/BART-Base (Lyu
et al., 2022)

39.60 16.90 31.74

FactPEGASUS(Zero-
shot)/BART-base (Wan and
Bansal, 2022)

32.97 11.42 25.41

BART-base 41.80 18.99 33.90
BART-base + E-Ref AM2 41.74 18.84 33.68
BART-base + E-Sent AM3 41.99 19.06 34.00
BART-base + Dual AMs4 41.87 18.91 33.77

Table 2: ROUGE Evaluation (with XSum). 1. The num-
ber of test samples from our annotation preprocessing is
11328 (out of 11334 samples). 2. Entity-reference align-
ment method. 3. Entity-sentence alignment method. 4.
Dual AMs consists of both entity-reference and entity-
sentence alignment methods.

duct our human evaluation of named entity-related
hallucinations (NERHs) and commonly observed
syntactic agreement errors. We also extend our
evaluations as detailed in Appendix E.1.

ROUGE Evaluation Table 1 shows the ROUGE
scores evaluated with the CNNDM test set. Sepa-
rated by double lines, the top section of the table
lists several recent ATS factuality research using
the same or similar-sized backbone models, fol-
lowed by our experiment section containing the
high ROUGE scores. Our experiments have evalu-
ated the fully configured dual alignment methods
and two ablations – the entity-reference alignment
method and the entity-sentence alignment method.
We have also fine-tuned the baseline BART-base for
comparison. Similarly, Table 2 shows the ROUGE
scores evaluated with the XSum test set.

Compared to prior work, the models trained on
our annotated datasets have outperformed mostly
R-1 and R-2 metrics on CNNDM while bettering
across all metrics on XSum.

Among our experiments, we see that the E-Ref
AM produces better scores with CNNDM while
the E-Sent AM has the edge with XSum. Would
the results also suggest that the alignment methods
individually outperform the combined Dual AMs
in reducing intrinsic NERHs and improving the
overall factuality? Recent ATS factuality evalua-
tion studies (e.g., Kryscinski et al., 2020; Maynez
et al., 2020) have found that n-gram overlap-based
metrics (e.g., ROUGEs) are not sufficient for factu-
ality assessment. To answer the above question, we
first conduct an automatic evaluation of factuality

Model SummaCZS SummaCConv
µ(%) σ µ(%) σ

BART-base 68.3 0.255 62.5 0.230
E-Ref AM 71.6 0.222 65.0 0.206
E-Sent AM 68.4 0.239 64.5 0.201
Dual AMs 71.8 0.231 66.8 0.200
Reference 48.5 0.243 45.6 0.188

Table 3: SummaC score distribution statistics over the
100 randomly sampled generated summaries from the
CNNDM test set.

Model SummaCZS SummaCConv
µ(%) σ µ(%) σ

BART-base 10.2 0.190 23.8 0.036
E-Ref AM 8.9 0.154 23.5 0.026
E-Sent AM 7.0 0.123 23.5 0.029
Dual AMs 9.9 0.185 23.9 0.035
Reference 6.4 0.108 23.3 0.028

Table 4: SummaC score distribution statistics over the
100 randomly sampled generated summaries from the
XSum test set.

consistency as follows.

Automatic Evaluation of Factuality Consistency
We use the SummaC for the evaluation. It has
two metric flavors, SummaCZS and SummaCConv.
SummaCZS is highly sensitive to extrema as
pointed out by the authors. SummaCConv mitigates
the sensitivity by transforming entailment probabil-
ities into a histogram to learn a score function.

We randomly sample 100 generated summaries,
then use the metrics to score each summary con-
cerning its source document, followed by comput-
ing their score distributions (i.e. mean and standard
deviation statistics) as shown in Table 3 and Table 4
for both CNNDM and XSum respectively6.

As seen, the Dual AMs method scores higher
mean values than the alignment ablations with both
CNNDM and XSum even though the Dual AMs
may have had lower ROUGE scores respectively.

Compared to the baseline BART-base, our meth-
ods achieve better scores with CNNDM. But,
with XSum, the baseline has an advantage on
SummaCZS scores while the Dual AMs edges
ahead on the SummaCConv. Along with the stan-
dard deviations, the results for XSum suggest that
the baseline produces some summaries with higher
probabilities while the Dual AMs generates more
summaries in high entailment probability bins.

We also score the reference summaries for anal-
ysis. We see that the reference summaries have the
lowest scores for both datasets. This could indicate

6Appendix E.2 provides statistical significance assessment.
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Error Type Model
Our
Baseline

Dual
AMs

E-Ref
AM

E-Sent
AM

Entity intrinsic 17 7 10 11
Entity extrinsic 8 7 9 6
Subtotal 25 14 19 17
Modifier 0 0 2 0
Event 3 2 4 2
Event-time 5 2 5 1
Location 0 1 0 0
Negation 0 2 0 0
Number 1 5 3 3
Misspelling 2 5 3 1
Subtotal 11 17 17 7
Total 36 31 36 24

Table 5: Human evaluation of factuality on the 100
randomly sampled generated summaries (CNNDM).

Error Type Model
Our
Baseline

Dual
AMs

E-Ref
AM

E-Sent
AM

Entity intrinsic 23 12 16 14
Entity extrinsic 1 1 2 0
Subtotal 24 13 18 14
Modifier 3 3 12 15
Event 19 9 8 7
Event-time 9 8 6 8
Location 10 10 11 13
Negation 2 0 1 1
Number 13 12 18 13
Misspelling 0 0 0 0
Subtotal 56 42 56 57
Total 80 55 74 71

Table 6: Human evaluation of factuality on the 100
randomly sampled generated summaries (XSum).

that the reference summaries contain significant
extrinsic knowledge. The entailment model trained
mainly on intrinsic data might not fit them well.

It is noticeable that the scores for CNNDM are
much higher than those for XSum. As studied by
Lu et al. (2020), XSum reference summaries have
35.76% and 83.45% novel unigrams and bigrams
respectively compared to CNNDM’s 17.00% and
53.91%. The semantic disparity of XSum between
source documents and reference summaries might
expose the data imbalance in training SummaC for
evaluating summaries that tend to be extrinsic. This
rationale agrees with the reasoning behind the low
reference summary scores.

Human Evaluation We further assess various
aspects of factuality issues that may give rise to
automatic metric scores. We evaluate how well
our methods reduce the NERHs of interest. We
also assess a range of commonly observed syntac-
tic agreement errors that are often the causes of

hallucinations, covering event, event time, location,
number, modifier, and negation. Misspelling errors
are also included. Appendix F details the defining
rules for counting the hallucinations and errors.

The same 100 sampled summaries evaluated by
SummaC are used. The erroneous occurrences are
shown in Table 5 and Table 6 for both CNNDM
and XSum respectively. Separated by double lines,
each table contains the statistics of the NERHs,
the syntactic agreement issues and misspellings,
followed by the sums of all counts.

As shown, our alignment methods consistently
reduce the intrinsic NERHs compared to the base-
line for both CNNDM and XSum: the Dual AMs
method reduces them considerably. Noticed that
the models trained with XSum result in much fewer
extrinsic entity hallucinations than those trained
with CNNDM. We think that the one-sentence con-
ciseness of XSum summarization might have lim-
ited exposure to the extrinsic entity hallucinations.

Meanwhile, Table 5 shows that the Dual AMs
and E-Ref AM methods introduce more syntactic
agreement and misspelling errors than the base-
line while the E-Sent AM method can reduce them.
The Dual AMs method has more errors on loca-
tion, negation, numbers, and misspellings while
the baseline results in more errors on event and
event time. In Table 6, the Dual AMs method re-
sults in the least syntactic agreement errors while
the baseline has much higher error counts on events.
This error-type divergence might occur because the
models attend to the respective features more often.

Additionally, the models trained with XSum in-
cur much more syntactic agreement errors than
those trained with CNNDM. It is worth noting that
the sampled summaries from all models have few
other factual errors outside our categories. So, we
believe that the abstractive and extrinsic nature of
XSum summaries could have contributed to more
errors in events, event time, locations, and num-
bers.

5 Conclusion

This paper proposes an adaptive margin ranking
loss function. We utilize the loss function to facil-
itate two entity alignment methods to mitigate in-
trinsic named entity-related hallucinations of ATS.
Our experiment results and analysis show that our
methods improve the adopted baseline model on
automatic evaluation scores and reduce the intrinsic
named entity-related hallucinations.
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Limitations

Our research in this paper is confined to news ar-
ticle documents. Given the data feature used, our
methods are limited to exploring the mitigation of
intrinsic named entity-related hallucinations. We
have properly chosen the syntactic categories for
our human evaluation, and have assessed the gener-
ated summaries with due diligence and as objective
as possible, but assessment inaccuracy can still oc-
cur, considered as low-bound by Bayes error. We
hope that the combination of ROUGE scores, Sum-
maC metrics, and human evaluation in the paper
has strengthened our overall analysis.
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Notation Description
| · | The total number of items or samples.
{·} An ordered set of items or samples.
{·}|·|k=1 An ordered set indexed by an indexing vari-

able k up to the total number | · |.
⟨·, ·⟩/⟨·, ·, ·⟩ A pair/triplet notation.
⟨·, ..., ·⟩ A sequence notation.
[·, ·] A dimensional concatenation operator of

latent representations.
⟨tp, tq⟩ A sentence bounding (i.e. beginning and

ending) token indices concerning a docu-
ment.

ei An entity i.
sij (or s+ij) A sentence j in a document where an entity

i appears and/or is referenced (as a positive
sentence sample).

s−ij′ A negative sentence sample related to an
entity i, that is, a sentence j′ in a document
where an entity i does not appear or is ref-
erenced.

rij (or r+ij) A reference j in the reference cluster of an
entity i (as a positive reference sample).

r−ij′ A negative reference sample linked to an
entity i, that is, a reference j′ refers to a
different entity from the entity i.

λij A margin scaling variable for the sample j
of the entity i.

Cs(i) A cluster of sentences where an entity i
appears and/or is referenced.

Cs A set of all entity-sentence clusters.
Cr(i) A cluster of references to an entity i.
Cr A set of all entity-reference clusters.
|S| The total number of sentences in a docu-

ment.
h· A (latent) representation of an item or sam-

ple.
hc
ei An entity i’s (latent) context representa-

tion.
sc+i· /sc

−
i· Margin ranking scoring function of posi-

tive/negative sample with respect to an an-
chor entity i.

L· A learning objective or loss notation.

Table 7: Key notation summary. We use · in place of
item (or sample) identities for simplicity without loss of
generality.

A Key Notation Summary

Table 7 summarizes the key used notations for their
mathematical meanings and functions in our meth-
ods.

B M3 Convolutional Neural Network

Convolutional neural networks with multi-filters
and multi-kernels are computationally more eco-
nomic than Transformer-based models for rela-

tively short sequences while still capturing salient
features well. They have been used to encode a
representation of short text sequences (e.g. Kim,
2014; Chen and Bansal, 2018) with a single-scale
max-over-time pooling. We adopt a convolutional
neural network (CNN) for encoding a representa-
tion of multi-sentential entity context. We think the
choice of CNN is sensible because the inputs to the
CNN are the latent states from the BART encoder-
decoder. The lengths of our multi-sentential con-
texts are somewhat in-between full-length docu-
ments and the short-text sequences seen in the
aforementioned prior work. So, we extend single-
scale pooling to multi-scale pooling by borrowing
the idea from deep learning in computer vision.
Given a padded text sequence x to the pre-defined
max length and a down-sampling scale factor, we
can compute the number of down-sampling scales.
We can also compute input and output size along
the sequence length dimension at each scale. So,
each convolutional block consists of a 1D convo-
lution, a ReLU, and an adaptive 1D max-pool. A
fully-connected linear layer is applied to the output
of the last down-sampling scale.

C Super Token Representation Learning

The BART adopts a word-segmentation-based to-
ken encoding method (Sennrich et al., 2016) to deal
with oversized vocabulary issues. But the NLP
parsing tools produce coreference resolution on
words7. Researchers have applied the word-level
structures either to the leading tokens of words
(e.g., Heinzerling and Strube, 2019) or to the aggre-
gated token representations (e.g., Ek and Bernardy,
2020). We take the latter approach and apply a
GNN-based super token representation learning,
detailed as follows.

Given the tokens of a word, we construct a
token graph G = (V, E ,D). V = {v0, ..., vm}
is the token node set. E = {(v0, vj)|j ∈
[0, ...,m]; ⟨v0, ..., vm⟩} is the edge set between
the leading token v0 and each following tokens.
D = {0, ...,m} is the distance set of the subse-
quent tokens to the leading token. Note that we
add a self-loop edge to the leading token to deal
with a single-token word case. Similar to BART’s
positional embeddings, we build the distance em-
beddings of vocabulary size |D| but use them as

7NLP parsing tools (e.g., Stanford CoreNLP) may use
word segmentation methods (e.g., Penn Treebank tokeniza-
tion) to produce words for annotation.
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Dataset Size
Train 149634
Validation 7782
Test 11483

Table 8: Preprocessed CNNDM dataset sizes.

edge features.
We adopt a generic GNN model proposed by

You et al. (2020) for learning the representations.
Given the designed graph, a single-layer GNN is
sufficient to learn super token representations. In a
simple form, the message passing is defined as:

h′Vu = (WV
g hVu + bVg ) + (WD

g hDu + bDg ),

u ∈ N (v0)
(27)

where {WV
g ,bVg } and {WD

g , bDg } are the linear
transformation parameters of the token embedding
hVu and the distance embedding hDu respectively.
The message aggregation is followed as:

hV{u} =
∑

u∈N (v0)

h′Vu . (28)

The update is then computed as:

h′Vv0 = hVv0 + hV{u}. (29)

D Experiment Setup

D.1 Data Preparation
We use Stanford CoreNLP to annotate coreference
resolution (CR) for the training dataset. Stanford
CoreNLP uses Penn Treebank tokenization (a word
segmentation method) to produce words for an-
notation. So, the annotated training dataset has a
slightly different data distribution from the original
data. To maintain validation and test with the same
data distribution as the annotated training data, we
also use the same process to annotate the validation
and test datasets without CR.

Annotated CNNDM Datasets We download
CNNDM datasets (train, validation, and test) using
Hugging Face’s datasets Python package. We use
the Stanford CoreNLP parsing software to acquire
coreference resolution (CR) annotations. We de-
velop a tool to transform the CR annotations into
our training dataset format of entity referents, ref-
erences, and their attributes. The attributes include
animacy (e.g., ANIMATE and INANIMATE), gen-
der (e.g., MALE and FEMALE), number (e.g., SIN-
GULAR and PLURAL), and type (e.g., PROPER

Dataset Size1 Size2

Train 186873 65698
Validation3 10391 10391
Test3 11328 11328

Table 9: Preprocessed XSum dataset sizes. 1. Without
CR annotations. 2. With CR annotations. 3. We do
not annotate CRs for validation and test datasets for
inference. So, they remain the same for the two-stage
fine-tunings.

and PRONOMINAL). We build the vocabularies of
these CR attributes respectively. It is worth noting
that CR entities and references are also annotated
with their positions concerning their sentences and
the associated sentence number. So, our process
computes each sentence’s length and the total num-
ber of sentences. These are word-level annotations.

We preprocess the encodings8 of the built docu-
ments using the model tokenizer9. The number of
encoded output tokens may exceed the length limit
of the model. Truncation of the exceeded tokens
would break the application of the CR annotations.
We therefore exclude these samples. While build-
ing the token document, we have also created a
word-token map (graph). The word-token map en-
ables runtime mapping between word indices and
token indices. The preprocessed encodings also
save the model’s token encoding time during train-
ing runs. Table 8 lists the final preprocessed dataset
sizes.

Annotated XSum Datasets Similar to CNNDM
preprocessing, we download XSum datasets us-
ing Hugging Face’s datasets package and annotate
them using the Stanford CoreNLP parsing software.
We then preprocess the annotated data to create our
final train, validation, and test datasets. Noticed
that a small set of reference summaries in XSum
has annotated CRs. It is insufficient to fine-tune
the pre-trained BART-base model directly with the
CR-annotated dataset. So, we create two training
sets for two-stage fine-tunings, one without CR an-
notations and the other with CR annotations. Note
that we only conduct test evaluations on the fine-
tuned model in the second stage after the model is
fine-tuned with our proposed methods with the CR-
derived data. We list the dataset sizes in Table 9.

8The tokenization uses the byte-pair encoding method.
9https://huggingface.co/facebook/bart-base.
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D.2 Key Implementation

D.2.1 Super Token Representation Learning
The GNN model discussed in Appendix C is im-
plemented by Pytorch Geometric package10. We
adopt the model implementation from the package
and configure it with our settings.

D.2.2 Adaptive Margin Scaling Variables and
Base Margin

To determine a base margin, we are interested in
the dynamics of the margin scaling variables. So,
we add trace logic in the source code to log the
maximum and minimum values of the scaling vari-
ables per epoch during training. From our trial
runs, we find that the value range starts from about
[2.25, 2.99] and converges towards the range about
[1.99, 2.24] when runs are finished on an early stop
criterion. Based on the observation, we set our base
margin at 25.

D.2.3 Alignment Methods
Referents and references may consist of multiple
words. To simplify the learning methods without
loss of representational discriminative power, we
take a super node representation learning approach
similar to Appendix C. In short, we center on the
keyword of an entity or its reference, and apply a
GNN to aggregate its neighboring (up to) n-gram
words at each side of the keyword if applicable11.
We set n-gram to 2 in this paper based on our ob-
servation of the annotated CR data.

Our alignment methods refactor several func-
tions from the knowledge graph learning package
PyKeen12. The changes are related to the com-
plex vector based model for the entity-reference
alignment method, including both interaction and
margin ranking loss functions. We also add a simi-
larity interaction interface for the entity-sentence
alignment method.

D.2.4 Entity Span Classification in
Entity-Sentence AM

The classification in Eq. 12 includes sentence fea-
ture hsij . Given the entity context vector hcei encap-
sulates the possible salient feature of the sentence,
we thus simplify the equation by omitting the sen-

10https://pytorch-geometric.readthedocs.io.
11Imposing n-gram constraint is because entity annotations

can occasionally include the restrictive clause (e.g., which
clause) as a whole.

12https://github.com/pykeen/pykeen/tree/master/
src/pykeen.

tence feature in the concatenated feature vector as
[hei , h

c
ei ].

D.2.5 Boost Coreference Expressiveness by
Annotated CR Attributes

As discussed in Appendix D.1, the CR annotation
expresses the relations between an entity referent
and its reference by several coreference attributes.
We implement them as attribute embeddings and
combine them with the coreference representations
to boost representation expressiveness.

D.2.6 Index Mapping from Word-Level
Structure to Token

The model-encoded tokens and the word-level CRs
are not aligned by their sequential position indices.
That is, their corresponding indices are not the
same. To apply the CR-derived data to the super
tokens, we have developed source codes for index
mapping by utilizing the word-token map created
in Appendix D.1.

D.2.7 Early Stop Training Criterion
We use an early-stop training approach up to the
configured maximum epoch. The criterion is the
ROUGE metric-based evaluation of the validation
dataset. The same ROUGE metrics for test time
inference evaluation are used. The training stops
when the ROUGE scores remain the same for a
predefined number of consecutive times. We set
the early stop criterion to 4 and the max epoch is
50.

D.2.8 Training on Multi-GPUs
We develop a multi-GPU running procedure based
on the reference runtime script13. We train mod-
els on two-GPU parallelism. Our GPU cards are
NVIDIA A100/80GB each14. A configuration of
Dual AMs has a model size of 581.460MB. A fine-
tuning session of the Dual AMs with CNNDM on
an early-stop setting takes about 94 hours. For
XSum, we first fine-tune the model without CR-
derived data (i.e., without using our alignment
methods). It takes roughly 26 hours on an early-
stop setting. We then further fine-tune the model
using the alignment methods with the CR-derived
data on the same early-stop setting for about 3
hours.

13https://github.com/huggingface/transformers/
blob/master/examples/pytorch/summarization/run_
summarization_no_trainer.py.

14As the used GPUs are shared resources, we are con-
strained to fully utilize them for larger pre-trained models.
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Setting CNNDM XSum
Maximum Length 142 62
Minimum Length 56 11
Beam No. 4 6
Length Penalty 2.0 1.0

Table 10: Inference settings.

D.2.9 Training Setting Summary
We use AdamW optimizer. The learning rate is
5e−5 with a linear decay. The weight decay is
1e−6.

D.2.10 Inference Setting
We extract the inference settings from the pre-
trained BART-base configuration as shown in Ta-
ble 10.

D.2.11 Automatic Evaluation Metrics
ROUGE Metrics The ROUGE automatic met-
rics (R-1, R-2, and R-L) are commonly used for
ATS. We use ROUGE metrics implemented by Lin
(2004) via a wrapper API from Hugging Face’s
datasets Python package. The implementation pro-
duces low, medium, and high scores for each metric.
We take the high scores in our experiment evalua-
tions.

SummaC Metrics We adopt SummaC source
code15 to produce our formatted outputs.

E Extended Factuality Assessment

E.1 Comparison to FactPEGASUS

We extend our factuality assessment to compare
with FactPEGASUS/Zero-shot by both automatic
metric evaluations and manual assessment16. The
extended assessment leads us to some interesting
findings and conclusions. We detail them in the
section as follows.

E.1.1 Automatic Metric Evaluation
We use SummaC to evaluate the generated
summaries by the FactPEGASUS on the
same 100 random samples as the ones used

15https://github.com/tingofurro/summac.
16It is worth noting that FactPEGASUS/Zero-shot uses

FactCC to score important pseudo-summary sentence selec-
tion for masked pre-training and FactCC was trained with
CNNDM-derived data. As we use the authors’ published
source code and dataset to fine-tune and evaluate FactPEGA-
SUS zero-shot on CNNDM, the zero-shot requirement is thus
relaxed.

Error
Type

CNNDM XSum
Fact

PEGASUS Dual AMs Fact
PEGASUS Dual AMs

Entity
intrinsic

13 7 21 12

Entity
extrinsic

0 7 0 1

Subtotal 13 14 21 13
Modifier 2 0 14 3
Event 0 2 5 9
Event-time 0 2 2 8
Location 0 1 7 10
Negation 0 2 1 0
Number 0 5 4 12
Misspelling 0 5 0 0
Broken
sentence

44 0 2 0

Subtotal 46 17 35 42
Total 59 31 56 55

Table 11: Human evaluation of FactPEGASUS factual-
ity on the 100 random samples (CNNDM and XSum).

in the main script. The FactPEGASUS re-
sults in SummaCzs(µ-85.0%, σ-0.199) and
SummaCConv(µ-75.9%, σ-0.193) on CNNDM
while producing SummaCzs(µ-18.9%, σ-0.309)
and SummaCConv(µ-27.4%, σ-0.150) on
XSum. The FactPEGASUS has better SummaC
scores than ours while, on the other hand, our
models present better ROUGE scores as listed
in the main script. To better understand what
underlies such a disconnected correlation between
the ROUGE and SummaC scores, we also further
conduct our human evaluation on the same 100
summaries as follows.

E.1.2 Human Evaluation
During our evaluation, we notice that the
FactPEGASUS-generated summaries from CN-
NDM contain many broken sentences. That is, the
sentences are suddenly clipped in a way that they
finish with words such as prepositions, pronouns,
or determiners dangling at the end with missing
information. We think that considering the phe-
nomenon is important because the endings could
otherwise avert various hallucination occurrences
but can also miss out on important facts and leave
the summaries in an incomplete and less compre-
hensible state. We thus include the assessment of
the phenomenon. The results are shown in Table 11
where we compare the FactPEGASUS with the
Dual AMs.

Compared to the FactPEGASUS on CNNDM,
the Dual AMs method performs better on the intrin-
sic named entity-related hallucinations (NERHs)
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while the FactPEGASUS has much fewer extrin-
sic entity hallucinations and syntactic agreement
and misspelling errors. But the FactPEGASUS has
a significant number of broken sentences. This
could explain its lower ROUGE scores but higher
SummaC’s factuality consistency scores in that the
clipping sentence phenomenon may degenerate the
n-gram overlap matches. On the other hand, it
could benefit the factual entailment assessment in
latent semantic space because of less noise and
fewer outliers, even though it might lose many facts
at the same time. This can also partially explain its
few extrinsic entity hallucinations.

Comparing the models on XSum, we see that the
Dual AMs also performs much better on the reduc-
tion of intrinsic NERHs than the FactPEGASUS
while the FactPEGASUS results in fewer syntac-
tic agreement errors. Meanwhile, the FactPEGA-
SUS has much higher errors in the modifier cate-
gory. Given XSum has much shorter summaries
discussed in the main script, the FactPEGASUS
creates far fewer broken sentences than happens on
CNNDM. Overall, the Dual AMs method shows
outperformance on factuality consistency.

E.1.3 Discussion

The analysis of the ROUGE results, SummaC
scores, and human evaluation in main script has
indicated that there is a correlational disparity be-
tween ROUGE scores and factuality consistency
results. The assessment in Appendix E.1 provides
us further insights into how various factual and
syntactic errors might underpin the ROUGE and
SummaC scores. We see how the generated sum-
maries with the clipping phenomenon can result in
low n-gram overlap-based metric scores but high
factual entailment metric results. It indicates to
us that the automatic metrics can be a ‘bias’ in
the model’s generative capacity by not knowing
the underlying conditions and phenomena of the
generated summaries. We believe that the ATS
factuality research going forward needs a systemic
approach to understand the correlations of various
quantitative metric scores concerning a wide range
of factual and syntactic phenomena. Gaining such
a holistic understanding of the correlations is go-
ing to open us up to new approaches to factuality
modeling and evaluation metric development.

Model SummaCZS SummaCConv
µ(%) σ µ(%) σ

BART-base 72.5 0.233 68.8 0.214
Dual AMs 73.1 0.231 69.3 0.210

Table 12: SummaC score distribution statistics over the
full CNNDM test set (11488 samples).

Model SummaCZS SummaCConv
µ(%) σ µ(%) σ

BART-base 9.6 0.177 23.7 0.048
Dual AMs 9.8 0.178 23.7 0.048

Table 13: SummaC score distribution statistics over the
full XSum test set (11328 samples).

Model CNNDM
SummaCZS SummaCConv

BART-base vs BART-
base/Dual AMs

0.007 (<0.05) 0.003 (<0.05)

Table 14: Statistic significance (paired t-test) on Sum-
maC scores resulted from the full test set (CNNDM).

Model XSum
SummaCZS SummaCConv

BART-base vs BART-
base/Dual AMs

0.304 (>0.05) 0.912 (>0.05)

Table 15: Statistic significance (paired t-test) on Sum-
maC scores resulted from the full test set (XSum).

E.2 Factuality Evaluation Statistical
Significance Assessment

As devised to reduce intrinsic entity hallucinations,
our methods have different objectives from n-gram
matching seen in pre-training language modeling.
So, we expect that our methods improve scores
slightly on n-gram overlapping-based metrics (e.g.
ROUGEs) by matching the de-hallucinated entities
and references in summaries. Given entities and
references are sparse and small sets in long doc-
uments, we also expect that the improvement in
overall automatic factuality scores would be small.
But we would nonetheless like to evaluate Sum-
maC on the full test sets and examine the statistical
significance of SummaC scores between the BART-
base backbone (trained with the Dual AMs) and the
BART-base baseline. We first compute SummaC
scores on the full test sets. Their score distributions
are shown in Table 12 on CNNDM and Table 13 on
XSum respectively. We then, using paired t-test17,
compute statistical significance on the SummaC
scores between the BART-base backbone and the
BART-base baseline, as shown in Table 14 on CN-
NDM and Table 15 on XSum respectively. Our null

17We use ttest_rel API from Python’s scipy.stats package.
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hypothesis is that there is no significant difference
between scores on the generated summaries from
the two models. We set the significance level at
0.05 as standard.

By rejecting the null hypothesis, Table 14 indi-
cates that the scores on the generated summaries
from the Dual AMs-trained backbone are signifi-
cantly different from those from the baseline on
CNNDM. Given Table 12 have shown that the
backbone achieves better factuality scores than the
baseline, this confirms our confidence that the sum-
maries generated from the Dual AMs-trained back-
bone achieve significantly better SummaC scores
than those from the baseline. On the other hand,
Table 15 on XSum accepts the null hypothesis, and
indicates that there is no significant difference in
scores on the generated summaries between the
Dual AMs-trained backbone and the baseline. We
think that the results on XSum may be partly due
to the one-sentence conciseness of XSum’s sum-
maries. Nonetheless, it agrees with the results in
Table 13.

F Defining Rules for Entity-Related
Hallucination Analysis

Named entity-related hallucinations (NERHs) can
have various forms. Therefore, it is necessary to
define rules to identify those hallucinations for our
statistical analysis. Although the focus of this paper
is the intrinsic NERHs, the identifying rules also
cover the extrinsic NERHs. So, we categorize our
assessment rules for a NERH as follows,

1. It is an intrinsic NERH if a named entity is
mistaken for the other named entity within the
context of the source document.

2. It is an intrinsic NERH if a named entity is
mistaken concerning the context of the source
document where there may not be any other
named entity present in the source document.

3. A named entity has its name incorrect, for
example, surname and given name. If the full
name is wrong, we categorize it as an extrinsic
NERH. If the partial name (either surname or
given name) is wrong, we categorize it as an
intrinsic NERH. However, if there are one or
two wrong characters in a partial name, we
categorize it as a misspelling instead.

4. It is an intrinsic NERH if a named entity’s
coreference is mistaken for another entity’s

Package Version
Python 3.8.10
Pytorch 1.11.0+cu113
Hugging Face
(Transformers)

4.9.0

Pytorch Geometric (PyG) 2.0.4
PyKeen 1.9.0
Rouge Metrics 0.0.4
Stanford CoreNLP 4.4.0

Table 16: Key package versions.

coreference, for example, mistaking ’she’ for
’he’.

5. It is an intrinsic NERH if a named entity is
missing altogether when it is necessary in its
place. For example, no named entity is present
when a coreference (e.g., he or she) is men-
tioned.

We do not mark hallucinations for entity aggre-
gations if their logical containment relation with
the aggregated named entity is correct given their
context.

As the pre-trained BART model has encoded a
large amount of prior knowledge of general infor-
mation, there are considerable amounts of extrinsic
hallucinations that may be factual. Thus, we do
not consider the cases as hallucinations or errors if
we can verify them using external knowledge bases
such as Wikipedia, online news, and/or Google
Maps even though they cannot be deduced from the
source document. We do not mark cases as errors
if they can be reasonably deduced from the source
documents. We extend the negation category to
cover different forms of meaning contradiction at
the phrasal level.

G Versions and Licenses

G.1 Key Packages

G.1.1 Versions
We summarize the versions of key third-party pack-
ages used in our work in Table 16.

G.1.2 Licenses
The licenses related to these package versions are
described as follows.

Python Python license is accessible here18.
18https://docs.python.org/3.8/license.html.
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Dataset Version
CNNDM 3.0.0
XSum 1.0.0

Table 17: Dataset versions.

Pytorch Pytorch uses a collective license19.

Hugging Face Hugging Face20 uses Apache-2.0
License, and covers its packages including Trans-
former derived models (e.g., BART), pre-trained
BART-base tokenizer, datasets package (incl. CN-
NDM and XSum), and Accelerate package.

PyG Pytorch Geometric21 is a graph neural net-
work modeling package and uses MIT License.

PyKeen PyKeen22 is a knowledge graph learning
package and uses MIT License.

Rouge Metrics Rouge Metrics uses Apache-2.0
License.

Stanford CoreNLP CoreNLP23 uses GNU Gen-
eral Public License v3.0.

FactPEGASUS FactPEGASUS24 uses MIT Li-
cense.

SummaC SummaC25 uses Apache-2.0 License.

G.2 Datasets
Table 17 lists version information of both CNNDM
and XSum datasets used in our work.

19https://github.com/pytorch/pytorch/blob/
master/LICENSE.

20https://github.com/huggingface.
21https://github.com/pyg-team/pytorch_

geometric.
22https://github.com/pykeen/pykeen.
23https://github.com/stanfordnlp/CoreNLP/tree/

v4.4.0.
24https://github.com/meetdavidwan/factpegasus.
25https://github.com/tingofurro/summac.
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