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Abstract

Large Language models (LLMs) possess the
capability to engage In-context Learning (ICL)
by leveraging a few demonstrations pertaining
to a new downstream task as conditions. How-
ever, this particular learning paradigm suffers
from high instability stemming from substan-
tial variances induced by factors such as the
input distribution of selected examples, their
ordering, and prompt formats. In this work, we
demonstrate that even when all these factors are
held constant, the random selection of exam-
ples still results in high variance. Consequently,
we aim to explore the informative ability of data
examples by quantifying the Information Gain
(IG) obtained in prediction after observing a
given example candidate. Then we propose
to sample those with maximum IG. Addition-
ally, we identify the presence of template bias,
which can lead to unfair evaluations of IG dur-
ing the sampling process. To mitigate this bias,
we introduce Calibration Before Sampling strat-
egy. The experimental results illustrate that our
proposed method can yield an average relative
improvement of 14.3% across six classification
tasks using three LLMs.

1 Introduction

These days the In-context Learning (ICL) ability
of pre-trained Large Language Models (LLMs) has
garnered significant attention in the community.
ICL represents a new paradigm for few-shot learn-
ing, which entails performing new downstream
tasks based on prompts. These prompts consist
of a few input-output pairs, commonly referred
to as demonstrations. Such prompts serve as ex-
plicit task descriptions for the LLM. LLMs have
showcased the formidable capacity of ICL and
achieved remarkable performances across various
downstream tasks (Brown et al., 2020). In compari-
son to approaches that involve fine-tuning LLMs on
downstream tasks (Devlin et al., 2019; Gao et al.,
2021), ICL obviates the need for parameter updates,
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Figure 1: Four-shot ICL performance on SST-2 using
GPT-2 XL and GPT-J. Each boxplot summarizes the
results of 10 randomly selected prompts for a specific
sample order. For a given sample order, the input dis-
tribution, demonstration ordering, and prompt formats
remain constant. For instance, the sample order [P P
N N] denotes the sequence of two positive examples
followed by two negative ones.

thereby allowing higher efficiency in adapting to
new tasks and easier deployment.

However, ICL tends to suffer from substantial
variance in performance. Existing studies attribute
it to factors including the input distribution of
demonstrations, their ordering, and the prompt for-
mats employed during prompt construction (Zhao
et al., 2021; Lu et al., 2022; Zhang et al., 2022; Min
et al., 2022). Our investigation reveals that even
when the input distribution, the ordering of demon-
strations, and prompt formats remain fixed, the
random selection of different demonstrations still
leads to significant variance, as shown in Figure 1.
This observation indicates that data samples within
the same category can offer distinct information
and contribute differently to the ICL performance.
We refer to the ability of a data sample to provide
valuable information as its informative ability. To
the best of our knowledge, there has been no prior
study exploring this aspect in the existing literature.

In this paper, we examine the informative ability
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of data examples from the perspective of informa-
tion theory and investigate its correlation with the
ICL performance. Specifically, we assess the con-
tribution of individual data samples to the specific
downstream tasks by quantitatively measuring their
informative ability. To accomplish this, we propose
to evaluate the Information Gain (IG) of predic-
tion, which quantifies the amount of information
gained after observing one example candidate in
the context. We construct a prompt for each ex-
ample candidate and utilize the LLM to obtain the
corresponding output distribution, thus enabling
the evaluation of IG. Furthermore, we uncover the
presence of Template Bias, which can lead to bi-
ased evaluations of IG. To address this issue, we
introduce a Calibration Before Sampling strategy
to ensure a fair assessment of IG. Subsequently, we
select the example candidates with maximum IG
and annotate them as demonstrations for enhancing
ICL.

To validate the effectiveness of our method, we
conduct empirical evaluations across six classifica-
tion datasets across three LLMs of varying model
sizes. The experimental results demonstrate an
average relative improvement of 14.3% on one-
shot learning. It is important to emphasize that our
proposed method is orthogonal to existing meth-
ods such as calibration (Zhao et al., 2021) and re-
ordering methods (Lu et al., 2022). Moreover, we
demonstrate that our method can be combined with
these approaches to achieve further improvements.
Additionally, we analyze the relationship between
data informative ability with the correctness of tar-
get labels and find that data examples with high IG
tend to rely more on the accuracy of target labels.

In summary, our contributions can be summa-
rized as follows:

• We investigate the relationship between data
informative ability and ICL performance.

• We propose the use of Information Gain (IG)
to measure the data informative ability and
select demonstrations with maximum IG to
enhance ICL performance.

• We identify Template Bias and introduce the
Calibration Before Sampling strategy to ad-
dress it.

• Our proposed method yields significant im-
provements, achieving an average relative im-
provement of 14.3% across six classification
tasks using three LLMs.

2 Related Work

2.1 Active Data Sampling for ICL
Active data sampling has been employed in nat-
ural language processing tasks since their early
stage (Settles, 2009). The primary objective is to
achieve comparable or superior performance while
reducing the annotation cost. With the advent of
pre-trained LLMs, recent studies (Ein-Dor et al.,
2020; Yuan et al., 2020; Margatina et al., 2021; Yu
et al., 2022) have successfully introduced active
learning to minimize the amount of data required
for fine-tuning. In the context of the ICL paradigm,
the standard ICL involves the random selection of
training examples as prompts. However, it has been
observed that the performance and stability of ICL
can be enhanced by selecting high-quality exam-
ples, which aligns with the concept of active data
sampling. One common method is to retrieve se-
mantically similar samples for each test query (Ru-
bin et al., 2021; Liu et al., 2021; Hongjin et al.,
2023), thereby enabling the utilization of instance-
level prompts in downstream tasks. Another ap-
proach involves retrieving task-level examples as
prompts for all test samples, eliminating the need
for instance-level retrieval. (Zhang et al., 2022)
introduces reinforcement learning to learn a gener-
alized policy for example selection and (Chang and
Jia, 2022) focuses on carefully choosing training
subsets to improve stability. However, previous
studies either rely on the performances of valida-
tion sets as reward signals or require the training of
additional models to score example candidates. In
contrast, our work centers on retrieving task-level
examples from unlabeled datasets for all test sam-
ples, without the necessity of extra validation sets
or the training of additional models.

2.2 Confidence-based ICL Selection
Confidence-based evaluation is widely used for
in-context examples. Prior works take the con-
fident model outputs as in-context examples (Wan
et al., 2023a) and search confident in-context exam-
ple organizations in a self-adaptive manner (Wu
et al., 2023). In concurrent works, USP (Wan
et al., 2023b) utilizes confidence-based prediction
for pseudo-demos generation and also handles gen-
eration tasks. LENS (Li and Qiu, 2023) proposed
informative examples filtering and diversity-guided
search method. Our work focuses on addressing
the template bias of ICL selection by calibration
before sampling.
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Figure 2: An overview of our proposed method. In Sampling Time, we construct zero-shot prompts, make predictions
of example candidates, estimate Template Bias, perform calibration, and sample examples with maximum IG. In
Test Time, we annotate selected samples and perform few-shot learning for test samples. [Candidate N] denotes
the N-th example in the Dunlab. [Content-free Input] denotes the content-free strings in Dcf .

3 Methodology

3.1 Problem Statement

In this study, we focus on a problem setting that
closely resembles true few-shot learning (Perez
et al., 2021), which is to retrieve prompts from
an unlabeled text dataset, denoted as Dunlab =
{xi}Ni=1, for a specific task. To accomplish it, we
utilize a pre-trained LLM to make predictions on
all candidate examples in Dunlab, resulting in the
corresponding prediction set Y = {yi}Ni=1, where
yi represents the normalized predicted label dis-
tribution given input xi. The goal is to select a
subset {xj}Kj=1 from Dunlab, where K ≪ N , in
order to facilitate few-shot learning, specifically,
K-shot learning. We annotate the chosen K ex-
amples with their respective target labels yt and
construct task-level prompts using the input-label
pairs and task-specific formats (See Appendix A.3
for details). The task-specific prompts are then in-
corporated as the prefix sequences for test samples.

3.2 Information Gain

Information Gain (IG) serves as a metric to quantify
the amount of information obtained about a random
variable through the observation of another random
variable (Ash, 2012). In our context, to measure
the informative ability of data examples, we define

the IG as the information obtained in predicted
label distribution Y when observing one example
candidate X = xob in Dunlab. Specifically,

IG(Y, xob) = H(Y )−H(Y |xob) (1)

where H(Y ) represents the information entropy of
Y and H(Y |xob) denotes the conditional entropy
of Y given the observation xob. However, comput-
ing the exact value of IG(Y, xob) is intractable due
to the unknown H(Y ). Fortunately, H(Y ) remains
constant for a given task, allowing us to reframe
the problem of sampling examples with maximum
IG as selecting those with minimum conditional
entropy H(Y |xob). Specifically, considering the
LLM parameterized by θ,

H(Y |xob) = −
∑

y∈Y
pθ(y|xob) log pθ(y|xob) (2)

However, it is challenging to compute pθ(y|xob)
directly by inputting xob into the LLM. Instead,
we adopt the approach of constructing the zero-
shot prompt. One example is shown in the prompt
construction of Figure 2. We fill in the task tem-
plate with text input only and utilize the LLM to
make predictions. In other words, each example
candidate is taken as a test sample in zero-shot
ICL. As such, pθ(y|xob) is actually approximated
by pθ(y|xob, T ), where T denotes the task tem-
plate.
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3.3 Template Bias
Taking inspiration from (Zhao et al., 2021), we
have observed that the predictive bias also persists
even when solely providing the template as input
to the LLM. In Figure 3, the red line illustrates the
bias associated with the template we employed in
SST-2. Notably, when presented with context-free
input, the LLM exhibits a tendency for a positive
prediction with the possibility over 90%. We re-
fer to this bias as Template Bias 1 (See Appendix
A.4 for more details). Essentially, it characterizes
the inherent bias present in the zero-shot prompt,
whereby the mere utilization of a template prompts
the LLM to generate predictions that favor specific
answers, in the absence of any demonstration.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
p(Positive)

Template Bias

Raw Calibrated

Figure 3: Template Bias on SST-2. The "Raw" point
refers to the one before calibration. The "Calibrated"
point represents the one after calibration. The balanced
line (p=0.5) is bolded.

3.4 Calibration Before Sampling
We have observed that the presence of template
bias may result in an unfair evaluation of the IG
when sampling examples. For instance, the data
example located near the red line in Figure 3, ex-
hibits similar information to content-free input but
demonstrates high IG (low conditional entropy).

To mitigate this template bias, we propose Cali-
bration Before Sampling strategy2. This involves
applying the linear transformation3 (Platt et al.,
1999; Guo et al., 2017) to the output probabilities
p = pθ(y|xob, T ) to obtain calibrated probabilities
q = qθ(y|xob, T ) . That is,

q = σ(Wp+ b) (3)

where σ denotes the normalization function, and
the weight matrix W is constrained to be a diagonal
matrix, known as vector scaling. To estimate W,

1We use the term "Template Bias" to distinguish it from
the Bias discussed in (Zhao et al., 2021).

2We refer to the contextual calibration method in (Zhao
et al., 2021) as post-calibration. Calibration alone in our paper
refers to the one before sampling proposed in our work.

3We apply the transformation to the output probabilities,
although it is typically used for logits. The reason is that
we only have access to the output probabilities of GPT-3 via
OpenAI API. To maintain consistency across different LLMs,
we apply the same transformation for GPT-2 XL and GPT-J.

we leverage the content-free strategy (Zhao et al.,
2021). We construct the zero-shot prompt using
the task-specific template T and a set of content-
free strings Dcf , which includes the empty string,
"N/A" and "[MASK]". By averaging the output
probabilities obtained from each content-free string
as input, followed by normalization σ, we obtain,

pcf = σ(
1

|Dcf |
∑

xcf∈Dcf

pθ(y|xcf , T )) (4)

Consequently, to correct the bias stemming from
the template, we set W = diag(pcf )

−1 and b
to be the zero vector. The calibrated conditional
entropy can be then computed as,

H(Y |xob) = −
∑

y∈Y
qθ(y|xob, T ) log qθ(y|xob, T )

(5)
The example depicted in Figure 3 demonstrates that
after calibration, the data sample located around
the red line shifts to a position near the balanced
line with low IG (high conditional entropy).

The algorithm of our proposed method can be
summarized as follows.

Algorithm 1 Maximum Information Gain Sam-
pling with Calibration Before Sampling

Input:
unlabeled dataset Dunlab, number of examples
to be sampled K, task-specific template T ,
LLM θ

1: for x in Dunlab do
2: Construct prompt for x using T
3: Calculate pθ(y|x, T ) via LLM
4: Calculate pcf using Eq.4
5: Calculate q via calibrating p using Eq.3
6: Evaluate IG via calculating H(Y|x) using

Eq.5
7: end for
8: Rank all examples in Dunlab based on IG

Output:
Examples {xj}Kj=1 with top K highest IG;

4 Experimental Setup

Evaluation Datasets. We experiment on six
text classification datasets including binary sen-
timent analysis SST-2 (Socher et al., 2013), 6-way
question classification TREC (Voorhees and Tice,
2000), 3-way textual entailment CB (De Marneffe
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LM Method SST-2 AGNews TREC CB RTE DBPedia Avg

GPT-2 1.5B

Random 59.713.2 39.610.3 27.15.9 28.616.1 53.41.1 51.214.1 43.3
MaxEntropy 72.210.4 42.58.1 25.76.5 25.019.8 52.61.4 30.714.1 41.5

MaxIG 52.80.7 44.512.6 29.83.7 39.61.3 54.40.6 56.310.9 46.2
CBS MaxIG 85.82.3 32.912.4 29.75.0 39.61.3 53.91.0 50.818.5 48.8

GPT-J 6B

Random 67.56.6 38.513.8 38.310.7 23.27.4 51.64.1 61.815.0 46.8
MaxEntropy 75.36.8 26.94.4 38.44.5 26.43.3 51.04.8 70.910.8 48.2

MaxIG 65.55.3 35.511.6 34.36.1 31.82.9 55.33.6 64.17.2 47.8
CBS MaxIG 76.89.1 39.112.0 47.88.2 32.54.4 55.33.6 83.75.2 55.9

GPT-3 175B

Random 87.33.7 62.80.8 54.81.8 39.330.4 56.50.5 79.75.7 63.4
MaxEntropy 96.50.5 63.00.0 58.72.0 38.42.7 62.80.7 80.00.7 66.6

MaxIG 92.53.5 72.32.3 62.74.0 41.10.0 59.83.8 81.50.8 68.3
CBS MaxIG 96.20.2 72.71.3 64.32.0 41.10.0 60.33.3 87.30.7 70.3

Table 1: Main results for one-shot learning. The last column shows the average accuracies across all tasks. We
report the mean and standard deviation across different random seeds. The template of each task is fixed. We bold
the best result among all selection methods for each task and each LLM.

.

et al., 2019), RTE (Dagan et al., 2006) from Su-
perGLUE (Wang et al., 2019), 4-way topic classifi-
cation AGNews (Zhang et al., 2015), and 14-way
DBPedia (Zhang et al., 2015). We use a fixed tem-
plate (prompt format) for each dataset as per (Zhao
et al., 2021). Detailed information regarding each
dataset can be found in Appendix A.2.

Models. For our experiments, we employ three
distinct LLMs with different sizes: GPT-2 XL
(1.5B parameters), GPT-J (Wang and Komatsuzaki,
2021) (6B parameters), and GPT-3 davinci (Brown
et al., 2020) (175B parameters). We get access to
GPT-3 by using OpenAI API.

Baselines. In addition to the Random base-
line, which randomly selects demonstration ex-
amples, we also incorporate the widely utilized
uncertainty-based baseline MaxEntropy in active
learning (AL) (Dagan and Engelson, 1995; Set-
tles, 2009). The MaxEntropy baseline greedily
selects the demonstration example with the high-
est conditional entropy. The sampling objective of
MaxEntropy is opposite to that of our proposed
method. We refer to our initial IG-based method
as MaxIG, while the variant that incorporates Cali-
bration Before Sampling (CBS) is denoted as CBS
MaxIG.

Other Details. We use the original ICL, namely
the direct method, for all experiments in our work.
In order to manage the inference cost during sam-
pling, we do not evaluate the entire original train-

ing set. Instead, we first randomly sub-sample
N = 100 examples from the original training set to
form the Dunlab in our experiments. Subsequently,
we evaluate all the examples within Dunlab and
perform sampling from this subset. For each exper-
iment involving GPT-2 XL and GPT-J, we report
the results based on five different random seeds.
For experiments involving GPT-3 davinci, we re-
port results using two different random seeds. For
evaluation, we sub-sample 300 samples of the test
sets for all datasets as per (Zhao et al., 2021; Lu
et al., 2022) due to limited resources.

5 Results

5.1 Main Results
One-shot Learning. Our main experiments are
conducted in the case of one-shot learning to miti-
gate potential confounding factors such as the or-
dering of demonstrations that could influence per-
formance outcomes. By focusing on one-shot learn-
ing, we aim to isolate the impact of data informa-
tive ability on the performance of ICL. The main
results are presented in Table 1. In terms of the aver-
age accuracies, our proposed method, CBS MaxIG,
exhibits superior performances, achieving relative
improvements of 12.7%, 19.4%, 10.9% over the
random baseline for GPT-2 XL, GPT-J, and GPT-3
davinci, respectively. These results underscore the
effectiveness of our proposed CBS MaxIG. Fur-
thermore, when compared to the MaxIG approach,
the Calibration Before Sampling strategy yields im-
provements in performances for GPT-J and GPT-3
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Figure 4: Four-shot performance comparison on SST-2 across different selection methods for different class balances
and permutations. [P P N N] denotes two positive examples followed by two negative examples. We display the
results for a total of 16 distinct types of four-shot demonstrations. Within this set, 6 types are balanced classes
(highlighted in red), while the remaining 10 types are unbalanced classes (highlighted in blue).

davinci, suggesting that this strategy is particularly
beneficial for larger models. Notably, our MaxIG-
based methods consistently outperform the Ran-
dom and MaxEntropy baselines, demonstrating the
effectiveness of sampling examples with maximum
IG and substantiating the validity of employing IG
as a metric for evaluating data informative ability.

Four-shot Learning. To further evaluate our
method for few-shot learning, we extend our exper-
iments to the four-shot learning scenario on SST-2
using GPT-2 XL. We consider all possible combi-
nations of class balances and permutations for the
four-shot case4, which encompass varying label dis-
tributions and orders. For each type, data examples
are selected using Random, MaxEntropy, MaxIG,
and CBS MaxIG methods respectively. This ex-
perimental design allows us to examine the im-
pact of data informative ability, given that the class
balance and order are fixed for one specific type.
The results are presented in Figure 4. We observe
that our proposed CBS MaxIG consistently outper-
forms all baselines in 13 out of 16 cases. For the
remaining cases (PPPP, PPPN, and NNNN), we
conjecture that factors other than data informative
ability, such as the label distribution, may exert a

4To sample data from different classes, we assume we have
access to the target labels of the training set in this experiment.
In our initial problem setting, we do not need the target labels
during the sampling process.

stronger influence on the performance. We leave
comparing the impact of these different factors as
future work. Overall, our experimental findings
underscore the significance of the data informative
ability and demonstrate the efficacy of our method
in selecting the most informative data to enhance
performance in scenarios involving more than one
demonstration.

5.2 Integration with Existing Methods

In order to demonstrate that our method is or-
thogonal to prevailing techniques such as the post-
calibration method and the order probing method,
and illustrate their collaborative potential with our
approach, we conduct experiments on two datasets,
namely SST-2 (binary classification) and DBPedia
(14-classification), for a comparative analysis.

Integration with Post-Calibration. To assess
the performance of our method in conjunction
with post-calibration, we compare the outcomes
of Random and CBS MaxIG approaches on one-
shot learning across three LLMs. The results, pre-
sented in Table 2, reveal that by employing post-
calibration on the selected examples using CBS
MaxIG, superior performance is achieved com-
pared to random selection, across different model
sizes. Furthermore, it is observed that our method
without post-calibration achieves comparable or
even superior results to the post-calibration coun-
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SST-2 DBPedia
GPT-2 1.5B

Random (C) 76.71.8 68.38.7
CBS MaxIG 85.82.3 50.818.5
CBS MaxIG (C) 74.55.9 73.510.5

GPT-J 6B
Random (C) 88.61.6 76.93.4
CBS MaxIG 76.89.1 83.75.2
CBS MaxIG (C) 94.50.6 86.70.8

GPT-3 175B
Random (C) 95.80.8 83.53.5
CBS MaxIG 96.20.2 87.30.7
CBS MaxIG (C) 96.20.2 86.50.8

Table 2: One-shot performance using post calibration.
C denotes the sampling method using post-calibration.

terpart specifically for GPT-3 davinci, thereby af-
firming the effectiveness of our proposed approach.
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Figure 5: Four-shot performance comparison of four-
shot learning on SST-2 using GPT-J. "Initial" represents
the original one. "Reorder" denotes the order probing
method, and "Post Cal" indicates the post-calibration
method. "Reorder + Post Cal" represents the combina-
tion of order probing followed by post-calibration.

Integration with Order Probing. To assess the
performance of Random and CBS MaxIG meth-
ods in conjunction with order probing and post-
calibration for four-shot learning using GPT-J, we
first sample four examples using Random and CBS
MaxIG methods5, respectively. Subsequently, we
perform ordering probing and sample the permu-
tation with maximum global entropy on the prob-
ing set6. The results, depicted in Figure 5, reveal
that ordering probing improves the performance for
both sampling methods. Furthermore, it is discov-
ered that order probing and post-calibration con-

5Note that we naively sample the examples with the top-
four highest IG without considering label distribution

6We utilize the global entropy metric due to its superior
performance in the original paper (Lu et al., 2022).

SST-2 DBPedia
GPT-2 1.5B

MaxEntropy 72.210.4 30.714.1
CBS MaxEntropy 53.11.7 32.013.0

GPT-J 6B
MaxEntropy 75.36.8 70.910.8
CBS MaxEntropy 73.54.6 54.914.2

GPT-3 175B
MaxEntropy 96.50.5 80.00.7
CBS MaxEntropy 88.23.8 78.23.8

Table 3: Ablation on Calibration Before Sampling for
MaxEntropy in one-shot learning.

tribute more significantly to enhancing the perfor-
mance of the Random baseline compared to our
CBS MaxIG approach, thereby suggesting that our
proposed method is more robust to order and bias
factors in comparison to the Random baseline.

5.3 Ablation on Calibration Before Sampling

Although the results in Table 1 demonstrate the
effectiveness of our Calibration Before Sampling
strategy, it should be noted that the evaluation of
the MaxEntropy method may also be subject to
bias introduced by the template utilized, as the cal-
culation of conditional entropy relies on the output
distribution of the LLM. To ensure a fair assess-
ment, we apply the same Calibration Before Sam-
pling strategy to the MaxEntropy method, named
CBS MaxEntropy, and report the corresponding
one-shot outcomes of SST-2 and DBPedia in Table
3. Notably, a significant decline in performance is
observed across all three LLMs, with the exception
of DBPedia when employing GPT-2 XL. The per-
formance degradation can be attributed to the fact
that examples selected by MaxEntropy may not
have the highest entropy. Instead, these examples
could correspond to the ones with high IG after
calibration. Conversely, examples located near the
Template Bias line in Figure 3 are the ones with
high entropy after calibration, and CBS MaxEn-
tropy selects those examples. We emphasize this
observation as it further reinforces the superiority
of our proposed MaxIG-based sampling methods
over the MaxEntropy-based approaches. This in-
sight highlights that the MaxEntropy method from
conventional active learning, which relies on pa-
rameter updates, is not perfectly suitable for ICL
where parameters remain static. In such cases, cer-
tain examples with high IG contribute more sig-
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Method Gold Random Drop(%)
SST-2

Random 67.66.6 66.78.5 1.2%
CBS MaxIG 76.89.1 67.45.3 12.2%

DBPedia
Random 61.815.0 50.38.1 18.6%
CBS MaxIG 83.75.2 36.311.6 56.6%

Table 4: One-shot performance using demonstrations
with gold and random labels. The last column shows
the percentage of performance drop.

nificantly to ICL compared to uncertain examples
with high entropy. The distinction between ICL
and traditional active learning settings, and how
this distinction influences the choice of sampling
strategy, warrants further investigation in future
work.

6 Analysis

6.1 Gold Labels vs. Random Labels
Since our sampling process from the unlabeled
training set involves no utilization of target labels,
it is pertinent to examine whether the highly infor-
mative data derived from it can benefit from the
gold labels, as inspired by (Min et al., 2022). In this
experiment, we compare the performance of using
demonstrations selected by the Random baseline
and our CBS MaxIG approach in one-shot learning
using GPT-J. For each demonstration, we replace
the gold label with a random label from a small
discrete set of possible labels, and evaluate the per-
formance accordingly. The results are presented in
Table 4.

We observe a substantial decrease in perfor-
mance when the gold labels are substituted with
random labels for demonstrations selected by CBS
MaxIG, whereas the drop is comparatively smaller
for those randomly selected. This observation sug-
gests that highly informative data heavily rely on
the presence of accurate labels. We posit that pro-
viding incorrect labels for highly informative data
may lead to confusion within the LLM and subse-
quently result in diminished information gain.

6.2 Consistency of Examples with High IG
In order to assess the consistency of performance
across other examples with high IG, we individu-
ally select the examples with the top-K highest IG
values and utilize them as demonstrations in one-
shot learning. The results for each selected example
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Figure 6: One-shot performance of examples with the
Top-K highest IG on SST-2 and DBPedia using GPT-J.

are presented in Figure 6, together with Random
baseline depicted with dashed lines. The experi-
mental findings demonstrate that demonstrations
with high IG consistently outperform the Random
baseline, thereby reinforcing the significance of em-
ploying MaxIG-based sampling. Notably, it is ob-
served that the demonstration with the third-highest
IG outperforms the one with the second-highest IG.
We attribute this discrepancy to potential errors in
estimating the IG, which may arise from the utiliza-
tion of the content-free strategy.

7 Conclusion

In this study, we have highlighted the significance
of the data informative ability in ICL. We have
demonstrated that data samples with varying infor-
mative abilities, even when subjected to the same
input distribution, order and prompt formats, make
distinct contributions to the overall performance
of ICL. To address this, we draw inspiration from
information theory and proposed to quantify the
informative ability by evaluating the information
gain of data samples. Moreover, we identify the
presence of template bias, which could introduce
unfairness in the evaluation of IG. To mitigate this
bias, we introduce the Calibration Before Sampling
strategy. Through extensive experiments, we have
validated the effectiveness of the proposed maxi-
mum information gain sampling strategy and cal-
ibration before sampling strategy. This validation
underscores the reliability of measuring informa-
tive ability based on information gain. Furthermore,
our experimental findings illustrate that our method
is orthogonal to existing approaches and can syner-
gistically collaborate with them to achieve further
performance improvements. We hope that our work
can provide valuable guidance for the development
of data-efficient methods and facilitate the explo-
ration of enhanced data-centric approaches for ICL
in the future.
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Limitations

There are several limitations to consider in our
work. Firstly, we focus solely on text classifica-
tion tasks where the information gain can be well-
defined based on the prediction distribution and
tractable conditional entropy. Future research could
extend our experiments to generation tasks. How-
ever, this extension poses challenges as it requires
a tractable definition of information gain for out-
put distributions that contain open words and have
variable lengths.

Additionally, our sampling process does not ex-
plicitly consider the diversity of examples. Instead,
we prioritize the data informative ability and con-
duct experiments in one-shot and four-shot scenar-
ios where diversity is not as significant as in other
cases with the goal of sampling many samples. Ex-
ploring methods to incorporate diversity during the
sampling process is of importance for future work.

Another limitation lies in the model-aware eval-
uation of information gain, which relies on the
specific LLM used. This implies that the evalua-
tion results cannot be directly applied to different
models. When using a new model, the informa-
tion gain for each example needs to be recomputed,
which incurs additional computational cost. More-
over, the computational cost depends on the size of
the training data pool, as each candidate example
in the pool needs to be evaluated. Although the
parameters of LLMs do not need to be updated,
the repeated inferences still consume substantial
computational resources, particularly when dealing
with extremely large LMs.
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A Appendix

A.1 Implementation Details
We use Pytorch and Huggingface Transformers in
our implementation. We run all our evaluations
on a single NVIDIA A40 GPU (48G). Our exper-
iments should be also run on one single GPU of
24G. We access GPT-3 via the OpenAI API7.

For experiments of GPT-2 XL in Table 1, we re-
run the Random baseline due to differences in the
training set mentioned in the repository8. Neverthe-
less, our reimplemented results are similar to those
reported in (Zhao et al., 2021). Therefore, we re-
port the reimplemented ones for a fair comparison
with our proposed method.

A.2 Dataset Details
We show the statistics of datasets in Table 5. For
SST-2 (Socher et al., 2013), AGNews (Zhang et al.,
2015), TREC (Voorhees and Tice, 2000), and DB-
Pedia (Zhang et al., 2015), we use their official test
sets. For CB (De Marneffe et al., 2019), RTE (Da-
gan et al., 2006), MNLI (Williams et al., 2018),
SNLI (Bowman et al., 2015), and BoolQ (Clark
et al., 2019), we use their original validation sets
as test sets.

7https://openai.com/
8https://github.com/tonyzhaozh/few-shot-learning

Dataset # Classes # Train # Eval
SST-2 2 6920 1821
AGNews 4 120k 7.6k
TREC 6 5452 500
CB 3 250 56
RTE 2 2490 277
DBPedia 14 420k 70k
MNLI 3 392k 9815
SNLI 3 549k 9842
BoolQ 2 9247 3270

Table 5: Statistics of evaluation datasets.

A.3 Template details for different tasks
We show the templates used and corresponding
label mappings for different tasks in Table 7.

A.4 Template Bias for different tasks across
three LLMs

We plot the Template Bias of templates used for
all tasks across three LLMs in Figure 7 and Fig-
ure 8. It is observed that the template bias persists
across different tasks and across LLMs with vary-
ing model sizes.

A.5 More experiments
We consider broader NLI and commonsense rea-
soning tasks. Specifically, we conducted addi-
tional one-shot experiments on 3-way classification
MNLI, 3-way classification SNLI, and 2-way clas-
sification BoolQ using GPT-J 6B. We evaluate them
with the same setting in the main experiments. Ta-
ble 6 shows the performance comparison between
our method and baselines. It is observed that ICL
without additional reasoning techniques performs
poorly on MNLI, SNLI, and BoolQ, which aligns
with prior work (Chang and Jia, 2022; Hongjin
et al., 2023). Nevertheless, our proposed method
still outperforms other baselines on all three tasks.

Method MNLI SNLI BoolQ
Random 35.97.1 33.70.0 58.35.5
MaxEntropy 35.15.2 37.51.3 61.12.7
MaxIG 36.15.3 37.12.5 56.64.1
CBS MaxIG 38.35.5 40.73.2 61.12.7

Table 6: One-shot performance on MNLI, SNLI, and
BoolQ using GPT-J.
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Dataset Prompt Template Label Mapping

SST-2

Review: The movie is a desperate miscalculation.
Sentiment: Negative

Review: I hate this movie.
Sentiment:

Positive, Negative

AGNews

Article: Toronto Raptors Team Report - November 20,(Sports Network) - The Toronto
Raptors found themselves on the wrong end of a 101-94 decision against the red-hot
Seattle SuperSonics on Friday at the Air Canada Centre.
Answer: Sports

Article: Pioneer replaces plasma TV power supplies, Certain Pioneer TVs have a faulty
power supply. An upgrade is available.
Answer:

World, Sports, Business, Technology

TREC

Classify the questions based on whether their answer type is a Number, Location, Person,
Description, Entity, or Abbreviation.

Question: Where is South Bend ?
Answer Type: Location

Question: How many colors are there in the spectrum ?
Answer Type:

Number, Location, Person, Description,
Entity, Abbreviation

DBPedia

Classify the documents based on whether they are about a Company, School, Artist, Athlete,
Politician, Transportation, Building, Nature, Village, Animal, Plant, Album, Film, or Book.

Article: Al Gamil is a privately held company based in Djibouti City Djibouti.
Answer: Company

Article: Imperial Botanical Beach Hotel is a hotel in Entebbe Uganda.
Answer:

Company, School, Artist, Athlete, Politician,
Transportation, Building, Nature, Village,
Animal, Plant, Album, Film, Book

CB

Richard Breeden hadn’t noticed that his new desk had just four telephone lines and one phone.
question: Richard Breeden’s new desk had just four telephone lines and one phone. True,
False, or Neither?
answer: True

"I know the one. Yes, it was good though I say it myself." But that doesn’t mean I have to
be involved in this kind of nauseous business.
question: she has to be involved in this kind of nauseous business. True, False, or Neither?
answer:

True, False, Neither

RTE

IKEA offers fantastic and affordable solutions for your home furnishing needs.
question: Ikea is a home. True or False?
answer: False

I will take a brief vacation with some priest friends after Christmas and then I will go on
retreat at a monastery, Law, reading from a brief statement, told reporters.
question: Law said he plans to take a brief vacation after Christmas and later retreat to a
monastery. True or False?
answer:

True, False

Table 7: Prompt template and label mapping for different tasks.
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Figure 7
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(b) Template Bias of RTE. Label Dictionary 1: True, 2: False
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(c) Template Bias of DBPedia. Label Dictionary 1: Company, 2: School, 3: Artist, 4: Athlete, 5: Politician, 6: Transportation,
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Figure 8
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