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Abstract

We present a neuro-symbolic approach to self-
learn rules that serve as interpretable knowl-
edge to perform relation linking in knowledge
base question answering systems. These rules
define natural language text predicates as a
weighted mixture of knowledge base paths.
The weights learned during training effectively
serve the mapping needed to perform relation
linking. We use popular masked training strat-
egy to self-learn the rules. A key distinguishing
aspect of our work is that the masked train-
ing operate over logical forms of the sentence
instead of their natural language text form.
This offers opportunity to extract extended con-
text information from the structured knowledge
source and use that to build robust and hu-
man readable rules. We evaluate accuracy and
usefulness of such learned rules by utilizing
them for prediction of missing kinship relation
in CLUTRR dataset and relation linking in a
KBQA system using SWQ-WD dataset. Re-
sults demonstrate the effectiveness of our ap-
proach - its generalizability, interpretability and
ability to achieve an average performance gain
of 17% on CLUTRR dataset.

1 Introduction

Relation linking is a key step in many Natural Lan-
guage Processing (NLP) tasks including Semantic
Parsing, Triple Extraction, and Knowledge Base
Question Answering (KBQA). Its goal is to ac-
curately map predicate components of a natural
language (NL) text segment onto their correspond-
ing predicate (i.e., relational) elements within a
knowledge base (KB). Such a mapping would en-
able question answering systems to exploit the deep
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Figure 1: Illustration of logical statement of a NL text,
masked logical statement, and the grounding (i.e. link-
ing) of unmasked elements of the statement to a knowl-
edge base (Wikidata).

reasoning capabilities of symbolic systems. For ex-
ample, by accurately mapping predicate component
of the NL text shown in Figure 1, i.e., share-screen,
to its corresponding relational elements within KB,
we should be able to successfully utilize KBQA sys-
tems to answer questions like Whether Kate Winslet
shared screen with Leonardo DiCaprio? and Who
all have shared screen with Kate Winslet?1. How-
ever, learning these mappings is challenging for
various reasons: lexical variations, modeling defi-
ciencies to handle complex linking involving mul-
tiple KB predicates2, and limited training data to
build models in a supervised fashion.

Various approaches have been tried in the past
work, including graph-based approaches (Pan et al.,

1Provided entity mentions in the NL text are also appro-
priately mapped to their corresponding entity elements in the
KB, through entity linking (Wu et al., 2019). For example, in
Figure 1, entity mention Kate Winslet in NL text is mapped to
corresponding KB (Wikidata) entity wd:Q202765.

2On several occasions, there is no single relational ele-
ment but multiple connected relational elements within the
KB that actually correspond to a NL text predicate. These
connected relational elements constitute a path within the KB.
For example, two connected relational elements as in Fig-
ure 3 (i.e., one-hop path involving a reverse KB relation edge
cast-member and a forward KB relation edge cast-member)
correspond to NL text predicate share-screen. Note that a
formal expression of this KB path is given in Figure 2, i.e.,
cast-member−1(x, z) & cast-member(z, y).
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Figure 2: Illustration of human readable rule for the
example shown in Figure 1 and the corresponding ex-
tended knowledge base context shown in Figure 3. Note
that inverse knowledge base predicate (i.e., reverse
knowledge base relation) in the rule is denoted by su-
perscript −1, as described in Section 3.2.

2019; Dubey et al., 2018), linguistic features based
approaches (Sakor et al., 2019a,b; Lin et al., 2020),
and recently neural approaches that achieve state-
of-the-art performance (Rossiello et al., 2021; Mi-
hindukulasooriya et al., 2020; Yu et al., 2017).
However, these approaches have the following
drawbacks: they are (a) data hungry requiring
huge amount of supervised data for training, (b)
non-interpretable by design, and (c) non-trivial to
adapt and generalize to new domains or knowledge
graphs. In this paper, we propose a neuro-symbolic
approach that formulates relation linking as a rule
learning problem in the space of structured knowl-
edge sources. Our approach tries to learn human
readable rules of the form illustrated in Figure 2
and use them to perform relation linking, thus re-
sulting in explainable relation linking model. In
contrast to the existing approaches that build link-
ing models in a supervised fashion, we adopt a
self-supervised learning approach that offer ben-
efits: does not require annotating large amounts
of training data, and offers generalization across
domains.

For self-supervision we use masked training, a
popularly used self-supervised training strategy for
large language models. However, in contrast to
the use of NL text as in the large language models
(LLMs), masked training in our approach operates
on logical statements of the sentences. In this work,
we use triples3 extracted from semantically parsed
output of the sentences as the logical statements.
An example sentence in its NL form and its corre-
sponding triple form (logical statement) are shown
in Figure 1. The masking procedure when applied
on a triple may end up masking any of the three el-
ements, i.e., subject, object, or predicate. Figure 1
shows an illustration of the predicate component

3Triple format: predicate(source entity, destination entity),
where source entity and destination entity are also alternatively
referred to as subject and object, respectively.

getting masked. Given that the three elements of
a triple play different semantic roles, the masked
training need to be adapted to suit the role played
by the element being masked. As will be seen later
in the paper, such differences reflect mainly on the
loss computation during training.

The main contributions of our work are:

1. The first self-supervised rule learning ap-
proach that uses an adaptation of masked lan-
guage objective for logical forms extracted
from text. We have applied this to relation
linking, a prominent task for understanding
natural language.

2. The output of our model is completely inter-
pretable; the set of rules obtained to perform
relation linking can explain the predictions of
the model. An example of a learnt rule for the
SWQ dataset is shown in Figure 2.

3. We evaluate our approach on two datasets
CLUTRR and SWQ demonstrating (a) Gener-
alizability over two different knowledge bases
as context on the datasets, (b) Effectiveness
of relation linking where results show signifi-
cant gains (17% gain in average performance)
for CLUTRR across different test sets along
with superior systematic generalization and
competitive results on SWQ, (c) Interpretabil-
ity, by showing qualitative results of the learnt
rules.

2 Related Work

Relation linking has been important for various
NLP tasks such as semantic parsing, knowledge
graph induction (Gardent et al., 2017; Chen et al.,
2021; Rossiello et al., 2022; Lin et al., 2020)
and knowledge base question answering (Rossiello
et al., 2021; Kapanipathi et al., 2020; Neelam et al.,
2022). Prior to the surge of generative models, re-
lation linking was addressed either by graph traver-
sal based (Pan et al., 2019; Dubey et al., 2018) or
by linguistic-features based methodologies (Sakor
et al., 2019a,b; Lin et al., 2020). Several learning
based approaches to relation linking have been pro-
posed (Mihindukulasooriya et al., 2020; Yu et al.,
2017; Bornea et al., 2021). Most recent approaches
to relation linking have focused on generative mod-
els (Rossiello et al., 2021). These approaches are
data hungry and non-interpretable. In contrast, our
work is a self-supervised rule learning based ap-
proach for relation linking. The learnt rules are
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human readable and they can be learnt for different
knowledge bases as context for different domains.

Rule learning, specifically in terms of detect-
ing relations has also been popular for knowledge
base completion (KBC) task. KBC problems are
addressed in two different ways in the literature.
Rule based KBC learns explainable rules that can
be used to predict the missing links in the knowl-
edge base (Sen et al., 2021; Qu et al., 2020; Yang
et al., 2017a; Sadeghian et al., 2019; Purgal et al.,
2022; Rocktäschel and Riedel, 2017). These rules
are learned for predicates in the knowledge base in
terms of other predicates and paths in the knowl-
edge base. Our work uses the rule model and some
of the ideas from the rule based KBC to build self
supervised explainable rules for linking text ele-
ments to knowledge base relations. There have
also been several learning based methods that use
vector embeddings of the entities and relationships
and then use them to predict any missing relation-
ships (Nickel et al., 2015; Yang et al., 2014; Wang
et al., 2014; Lin et al., 2015; Trouillon et al., 2016;
Sun et al., 2018; Zhang et al., 2019); they have
the same drawbacks as neural relation linking ap-
proaches. There are many recent works that use
semi-supervised/unsupervised learning for rules
and knowledge induction (Pryzant et al., 2022; Bha-
gavatula et al., 2023; Lang and Poon, 2021; Zhu
and Li).

Transformers (Vaswani et al., 2017) have given
rise to a wide range of masked pre-training mod-
els that try to learn latent representation of words.
Masked language modeling has gained popular-
ity in building large pre-trained models that learn
word representations that can easily be adapted to
a variety of tasks. Masked language training has re-
sulted in building various model architectures like
encoder only models which learn a vector repre-
sentation of tokens using masked training (Peters
et al., 2018; Devlin et al., 2019; Liu et al., 2019;
Clark et al., 2020). Several Encode-decoder LLMs
are built using similar training strategy (Song et al.,
2019; Lewis et al., 2019; Soltan et al., 2022; Raffel
et al., 2019). Recently decoder only models built
using similar masked language training are gaining
popularity (Radford and Narasimhan, 2018; Rad-
ford et al., 2019; Brown et al., 2020; Chowdhery
et al., 2022; Zhang et al., 2022; Scao et al., 2022).
In this paper we take inspiration from masked lan-
guage training on text and use the ideas to perform
similar masking on logic statements to learn rules.

3 Our Approach

Our approach to relation linking is a rule-learning
framework where rules learned in a self-supervised
fashion are used to map from ‘NL text segments’
to the ‘elements of structured knowledge’. For
self-supervised rule learning, we use masked train-
ing. A distinctive aspect of the masked training in
our approach is that it is applied over the logical
form of the input text. When logical form is not
readily available, we first convert NL text into its
logical form using a semantic parser, before ap-
plying masked training. In this section, first we
briefly describe the conversion of input text to logi-
cal statements, and then describe the proposed rule
model and its self-supervised training.

3.1 Logical Statements

In this work, we use triples extracted from sen-
tences as their logical form4. Note that logical
forms are expressed as predicate(source entity, des-
tination entity), as illustrated in Figure 1. To extract
such logical forms from NL text, we use the seman-
tic parsing approach described in (Neelam et al.,
2022), which performs an Abstract Meaning Rep-
resentation (AMR) (Banarescu et al., 2013) based
λ-expression extraction. For simple sentences, λ-
expressions can be converted directly into triples5.
Figure 1 shows an illustration of a NL text and its
corresponding logical form. Different elements of
the triple represent distinct segments of the NL text.
Since we use an AMR based approach to derive λ-
expressions, predicate components of the triple are
typically a propbank predicate. Relation linking is
expected to map this predicate component onto the
corresponding knowledge-base elements.

3.2 Rule Model

Towards the goal of relation linking, our rule model
is formulated as a function that maps a weighted
mixture of ‘knowledge base predicates’ onto a
‘predicate component of the NL text’. This enables
interpretable prediction of the set of knowledge
base predicates that the text predicate should get
linked to. Figure 2 gives an illustration of a simple
rule.

Let us assume a triple predi(s, d) extracted from
NL text, where s is the source entity, d is the des-
tination entity and predi is the text predicate. The

4We use triples and logical form interchangeably.
5We also employ heuristics to handle the AMR and λ-

expression computation failures and errors.
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Figure 3: Illustration of a one-hop path between enti-
ties Kate Winslet and Leonardo DiCaprio via entity
Titanic movie in Wikidata (through a reverse relation
edge cast-member connecting Kate Winslet to Titanic
movie and a forward relation edge cast-member con-
necting Titanic movie to Leonardo DiCaprio). This can
also be viewed as an extended context extracted from
knowledge base through the unmasked elements of the
masked logical statement in Figure 1.

goal is to ground predi to its corresponding knowl-
edge base predicates using relation linking model.
Our proposed rule model to achieve this is defined
as:

predi(s, d) = f




N∑

j=1

wi
j pathj(s, d)


 (1)

for i ∈ {1, . . . ,M} where f(·) denotes a function
such as Sigmoid and pathj denotes a path in the
knowledge base that passes through one or more
knowledge base predicate edges. pathj(s, d) can
take values 0 or 1 depending upon presence or
absence of a path pathj connecting source entity
s and destination entity d. Depending upon the
length of the path, i.e., number of predicate edges
and the intermediate entities, paths could be cat-
egorized as k-hop, where k denotes the count of
intermediate entities in the path. An example of a
1-hop path between entities in Wikidata is shown
in Figure 3. If there are L unique knowledge base
predicates, i.e., {pl}, 1 ≤ l ≤ L, the sets of 0, 1
and 2-hop paths are defined as follows:

0-hop paths = {pl(s, d)}, 1 ≤ l ≤ L

1-hop paths = {pl(s, ∗) : pm(∗, d),
1 ≤ l ≤ L, 1 ≤ m ≤ L

2-hop paths = {pl(s, ∗) : pm(∗, ∗) : pn(∗, d)},
1 ≤ l ≤ L, 1 ≤ m ≤ L, 1 ≤ n ≤ L

where ∗ denote any possible entity. Note that paths
always originate from a source entity and end at a
destination entity. Also note that, the constituent
knowledge base predicates in a path could also be
inverse (reverse), denoted by superscript −1. For ex-
ample, path in Figure 3 contains an inverse relation,

Figure 4: Neural model implementing each rule of the
rule model defined in Equation (1).

which is denoted as cast member−1 in the corre-
sponding path expression given in Figure 2. All the
knowledge base paths of various lengths, i.e., from
0-hop paths until k-hop paths put together, consti-
tute the overall set of paths considered in our rule
learning framework. Let us assume there are N
such paths in total. Given that the knowledge base
paths pathj are defined in terms of the knowledge
base predicates, our rule model in (1) effectively
defines a mapping between the ’NL text predicates’
and the ’knowledge base predicates’. During learn-
ing, we want to estimate weights wi

j so that rule
model in (1) can be used for relation linking.

A neural implementation of each rule in (1) is
given in Figure 4. Note that there is one such net-
work each for every rule in (1), and all these net-
works are trained together during learning. Note
that the parameters of our rule model, denoted by
W , is a matrix of learnable weights:

W = {wi
j}, 1 ≤ i ≤ M, 1 ≤ j ≤ N

where each row corresponds to the set of path
weights of a specific rule. In the next section, we
describe masked training used to estimate these
weights in a self-supervised manner.

3.3 Self-Supervised Rule Learning

Masked training in large language model training
involves masking certain parts of the input text
and having the model predict those masked parts
by treating the rest of the (unmasked) text as its
context. The model parameters are adjusted during
training to effectively model the context so it can
act as a proxy for the masked part. In our approach
masked training is performed on the logical form
of the input text as detailed below.
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3.3.1 Masked Training on Logical Forms
Logical statements are composed of distinct ele-
ments playing distinct semantic roles. For example,
triples are composed of a predicate, a source entity
(also called subject) and a destination entity (also
called object). The masking procedure could mask
any of these elements:

1. Predicate masking - predicate component of
the triple is masked

2. Source entity masking - source entity compo-
nent of the triple is masked

3. Destination entity masking - destination entity
element of the triple is masked

Figure 1 gives an illustration of predicate mask-
ing. Similar to the large language model training,
masked training for rule learning also aims to ad-
just the parameters of the rule model so that it can
accurately predict the masked elements from the
unmasked context.

However, the distinctive aspect of our approach
is in the context computation. For the context, in
addition to the unmasked elements of the logical
statement, we also use paths within the knowledge
base that are associated to those unmasked ele-
ments. A set of such associated paths are obtained
by grounding the unmasked elements of the logi-
cal statement to the knowledge base. For example,
given Wikidata as the knowledge base, we first
use entity linking (Wu et al., 2019) to link the un-
masked source and destination entities of the triple
to corresponding Wikidata entities, as illustrated in
Figure 1. Then the Wikidata paths originating from
unmasked source entity and ending at unmasked
destination entity are computed and used as the con-
text. Figure 3 gives an illustration of a Wikidata
path, through entity node corresponding to Titanic
movie, for the unmasked entities of Figure 1. Note
that such use of knowledge base paths as the con-
text help establish the mapping between the NL
text predicates and the knowledge base predicates,
which indeed is the goal of our relation linking
model. Next we describe rule model parameter es-
timation procedure for different masking scenarios.

3.3.2 Rule Model Estimation
Learning procedures for the 3 masking scenar-
ios differ mainly in the way training loss is com-
puted. In all 3 masking scenarios we use rule mod-
els to predict the masked element. As discussed

Figure 5: Illustration of knowledge base paths to be
used as context when predicate in the triple is masked.

above, knowledge base paths associated with the
unmasked elements of the triple are used as the
context for the prediction. However, the set of such
paths differ based on which element is masked and
which elements are unmasked and could be linked
to the knowledge base. Training loss functions are
defined to improve prediction accuracy over the
training iterations, as described below:

a) Predicate Masking: As illustrated in Figure 5,
when the predicate is masked, unmasked source
and destination entities are linked to the correspond-
ing elements in the knowledge base through entity
linking. Then the set of all paths that connect these
linked entities are computed and used as context.
Let j ∈ E denote the set of indices of knowledge
base paths that connect the linked source and desti-
nation entities. These paths when applied to all the
rules in (1), corresponding to all the text predicates
predi(.), 1 ≤ i ≤ M , would result in scores for
each text predicate as below:

si = f


∑

j∈E
wi
j pathj(s, d)


 , 1 ≤ i ≤ M.

For accurate prediction of the masked predicate by
the model, the score should be highest (1.0) for
the text predicate being masked and should be the
lowest (0.0) for all others. Accordingly, let ti, 1 ≤
i ≤ M denote the target scores, where the score
corresponding to the index of the masked predicate
is 1.0 and the rest of the scores are 0.0. We compare
the estimated scores against these target scores, to
compute the training loss that could be used further
to update the model weights through stochastic
gradient descent (SGD). In actual, we use a cross-
entropy training loss computed as below:

loss =
N∑

j=1

ti log(si)
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Figure 6: Illustration of knowledge base paths to be used
as context when source entity in the triple is masked.

b) Source Entity Masking: As illustrated in Fig-
ure 6 when the source entity is masked, unmasked
destination entity is linked to the corresponding ele-
ment in the knowledge base, through entity linking.
Then the set of all paths that end at the linked des-
tination entity are computed for use as the context.
Note that all these paths together have a set of asso-
ciated origination entities that could potentially be
considered as the prediction for the masked source
entity. Let S = {s1, s2, ..., sE} denote the set of all
such candidate source entities. Let Ee correspond
to the set of indices of all paths that originate from
the candidate source entity se and end at the un-
masked linked destination entity. These paths when
applied to a specific rule in (1) that corresponds to
the unmasked text predicate predi, would give a
score for se as below:

se =
∑

j∈Ee

wi
j pathj(se, d), 1 ≤ e ≤ E

A list of such scores are computed for each can-
didate source entity in S. Note that among these
scores the one corresponding to candidate entity
that is same as the masked source entity should
be highest (1.0) and the score for the rest should
be the lowest (0.0). Accordingly, target scores are
te, 1 ≤ e ≤ E, where the score for the index of
the masked entity is set to 1.0 and the rest are set
to 0.0. We then compute training loss by compar-
ing the estimated scores against the target scores.
A cross-entropy training loss computed as below
is used to update the rule model weights through
stochastic gradient descent (SGD):

loss =
∑

e∈S
te log(se)

c) Destination Entity Masking: Destination en-
tity masking is similar to that of the source entity
masking, except that when the destination entity

is masked, unmasked source entity is linked to the
knowledge base and the set of all paths originat-
ing from the linked source entity are computed as
context, resulting in the associated candidate desti-
nation entities. Then scores for all candidate desti-
nation entities are computed in a similar fashion to
further compute the training loss.

3.4 Inference
Note that, once trained, the right hand side of the
rule model in Equation (1) directly gives human
readable information of the relation linking, high-
lighting the interpretability/explainability aspect
of our model. Each rule gives information of the
knowledge base paths (that in turn are composed of
the knowledge base predicates) that the text pred-
icate should get linked to, with path weights de-
noting the linking confidence. During inference,
for example while using our rule model to perform
QA, the information being asked in the NL question
would correspond to the missing element in the cor-
responding logical form. Hence the goal is to esti-
mate candidates for that missing element and score
them using our rule model. The scoring procedure
is similar to that for the masked elements during
masked training as described in Section 3.3.2. Top-
K scoring candidates are chosen as the answers
estimates of the rule model.

3.5 Scaling
The number of paths N is exponential in the num-
ber of predicates L that exist in the knowledge
base. As a result, solving problem (1) becomes pro-
hibitive with large N and hence we explore meth-
ods for reducing the search space of paths. In other
words, we learn a set of paths P with |P| << N
that contains the optimal paths, allowing us to re-
place the summation in problem in Equation (1)
to a summation over P , and thereby reducing the
computation required to find the solution.

We make use of a Chain of Mixtures (CoM)
model, also known as Neural Logic Programming
(Yang et al., 2017b) or edge-based rules (Sen et al.,
2022), to learn P . In CoM, a rule is represented
by a conjunction of mixtures of predicates. Specifi-
cally, rather than define a weight per path, for each
of M predicates we define a weight per predicate
per hop to get rules of the form:

predCoM
i (s, d) = g

(
f
(∑M

j=1w
i
j,0pj(s, r1)

)
,

(2)
f
(∑M

j=1w
i
j,1pj(r1, r2)

)
,
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f
(∑M

j=1w
i
j,2pj(r2, d)

))

for i ∈ {1, . . . ,M} where now wi
j,k is a weight

for rule i (i.e., for the ith predicate) for predicate j
on the hop k of the rule being learned, and g(. . .)
is a function approximating a conjunction such as
a product. Equation (2) is an example 2-hop rule
where r1 and r2 can take the values of any entities
in the knowledge base. The number of weights
learned in a CoM rule is M(K+1) where K is the
number of hops in the rule, which greatly reduces
the number of weights learned in problem (1).

While CoM requires learning much fewer
parameters than our rule model (1), it is less
interpretable because it is not known which paths
are actually relevant to the rule. CoM rules
suggest that any path that can be obtained from
predicates with positive weights in the hops
is possible. For example, suppose there are 8
predicates in the knowledge base and the set of
strictly positive weights in a rule of the form (2)
is {wi

0,1, w
i
0,3, w

i
0,4, w

i
1,1, w

i
1,2, w

i
2,2, w

i
2,4, w

i
2,8}.

Then such a chain rule only allows rules of the
form pj(s, r1) ∧ pk(r1, r2) ∧ pl(r2, e) where
j ∈ {1, 3, 4}, k ∈ {1, 2}, l ∈ {2, 4, 8}. with 8
predicates, there are a total of 8 × 8 × 8 = 512
possible paths, but the CoM reduces this to
3 × 2 × 3 = 18 possible paths. Given these
possible paths, a more interpretable rule of the
form Equation (1) can be learned more efficiently
since the summation can be taken over 18 paths
instead of N = 512 paths.

4 Experimental Setup

4.1 Datasets

We evaluate our approach on two datasets as de-
scribed below that involve utilization of two distinct
types of knowledge sources.

a) CLUTRR (Sinha et al., 2019) is a benchmark
dataset for evaluating the reasoning capabilities of
a Natural Language Understanding (NLU) system,
where the goal is to infer kinship relations between
source and target entities based on short stories.
It contains both graph and textual representations
of these stories. Each story consists of clauses
(chains of relations) of length ranging from 2 to
10. The benchmark tests the model’s ability for: i)
Systematic Generalization which tests how well the
model generalizes beyond the combination of rules
seen during training. The test set consists of clauses

of length up to 10, while the train set has clauses of
length up to 4. ii) Model robustness which tests how
well model performs in the presence of noisy facts.
It consists of three kinds of noise: a) Supporting
facts: It adds alternative equivalent paths between
source and target entities. b) Irrelevant facts: It
adds a path which originates on the path between
the source and target entity but ends at an entity
not in that path. c) Disconnected facts: It adds a
path which is completely disconnected from the
path between the source and target entity.

We considered graph stories with only clause
length 2 for training rule models in a self-
supervised fashion. This results in multiple one-
hop rules along with their confidence scores. These
rules can be used to handle stories of clause length
2 at the time of inference. For stories with clause
length greater than 2, we combine relations within
the path from source to target entity using Algo-
rithm 1 to compute the path scores. A n-length
path R1, ..., Rn from source entity to target entity
can be reduced by invoking infer(1, n). It utilises
two sub-modules predict(Ri, Rj) and score(Ri, Rj)
which returns prediction and confidence scores for
merging Ri and Rj using one-hop rule model.

Algorithm 1: Inference procedure using
one-hop rule model

Output :Rij : Prediction for path Ri ...Rj ,
Sij : Prediction score for path Ri ...Rj

Function infer(i, j):
if i == j then

return Ri, 1
else

Rij ← null, Sij ← 0
for k ← i+ 1 to j by 1 do

Rik−1, Sik−1← infer(i, k − 1)
Rkj , Skj ← infer(k, j)
S′
ij ← Sik−1* Skj*score(Rik−1, Rkj)

R′
ij ← predict(Rik−1, Rkj)

if S′
ij > Sij then

Rij ← R′
ij , Sij ← S′

ij

end
return Rij , Sij

end

b) SWQ-WD (Diefenbach et al., 2017) is a Ques-
tion Answering (QA) dataset with simple questions
built to evaluate the QA accuracy of KBQA sys-
tems that use Wikidata as the knowledge source.
This dataset fits our relation linking evaluation goal
because it consists of simple questions with single
text predicates, hence it is possible to perform a
focused evaluation of the relation linking task, re-
ducing the impact of uncertainties of other compo-
nents of KBQA systems such as semantic parsing
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Figure 7: Sample learned rules for both CLUTRR and SWQ-WD datasets. Note that each rule is represented by
a set of tuples, with each tuple containing a knowledge base path and its weight value. These corresponds to the
knowledge base paths and the corresponding weights in rule model (1). Note that inverse knowledge base predicate
(i.e., reverse knowledge base relations) in the rules are denoted by superscript −1, as described in Section 3.2.

Figure 8: Sample learned rules for CLUTRR using Chain of Mixtures.

and entity linking. SWQ-WD has 13894 train set
questions and 5622 test set questions. We use train
set to self-learn rules and report relation linking
accuracy on the test set. Answer prediction using
our rule model is described in Section 3.4.

4.2 Baselines and Metrics

For both the datasets, we compared our method
against the best available baseline as per our
knowledge. For CLUTRR, we compared against
GAT (Veličković et al., 2017), a neural graph rep-
resentation framework that learns representations
through self-attention over the neighbourhood. For
SWQ, we compared against SYGMA (Neelam
et al., 2022), a modular and generalizable pipeline
based approach consisting of KB-specific and KB-
agnostic modules for KBQA.

For CLUTRR experiments, where relation
linking performance is directly evaluated, we
use a simple accuracy metric of accuracy =
success_count/total_count. For SWQ experi-
ments, where the relation linking performance is
not directly evaluated but through its influence on
the question answering (QA) accuracy, we use the
metric of Recall which is a fraction of correct an-
swers that the system is able to estimate.

4.3 Code Release

The code and the experimental setup used to
train and evaluate our self-supervised rule learn-
ing based approach for relation linking is avail-
able at https://github.com/IBM/self-supervised-
rule-learning.

5 Results

a) CLUTRR: Figure 7 shows (in upper part) sam-
ple 1-hop rules learned from CLUTRR dataset.
Note that these rules are of form as in Equation (1).
For CLUTRR, there were 22 predicates and so each
1-hop rule was learned over N = 22 × 22 = 484
possible paths. Figure 8 shows corresponding CoM
rules for the CLUTRR dataset. For example, the
CoM rule for son implies possible 1-hop rules
that start with either son, husband, daughter, or
wife and end with either son or brother, offering
4 × 2 = 8 possible rules for son. Rules of the
form (1) could thus be rather learned over only
these 8 possible rules and capture the same two
interpretable rules for son seen in the CLUTRR
part of Figure 7. Overall, rules for the 22 different
relations search over 484 paths each (10648 total
possible rules); CoM reduced that search to 118 to-
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tal possible rules with perfect coverage (i.e., CoM
results include all optimal rules as a subset) for all
but 2 relations.

Figure 9 compares the Systematic general-
ization performance of our approach against
GAT (Veličković et al., 2017) on CLUTRR dataset
with test set clause length ranging from 2 to 10. The
results suggest that the proposed approach trained
with stories of clause length k = 2 generalizes better
in comparison to GAT trained with stories of clause
length k = 2, 3 and stories of clause length k = 2,
3, 4. Table 1 compares the model robustness of our
approach against GAT on CLUTRR dataset for dif-
fering noise scenarios during training and inference.
The results suggest that the proposed approach out-
performs GAT for most scenarios, achieving an
average absolute accuracy improvement of 17%.

Figure 9: Systematic generalization on CLUTRR.

b) SWQ-WD: Figure 7 shows (in lower part) sam-
ple 0/1-hop rules learned from SWQ dataset, of
form as in Equation (1). Interestingly, for text pred-
icate film-language it is able to learn rules that
associate it with the language spoken/written by
the director or screen writer or cast members of
the film. Table 2 compares QA accuracy of our ap-
proach against SYGMA (Neelam et al., 2022). Our
approach achieves comparable QA performance
(as given in the first two lines), in spite of SYGMA
using supervised training for its relation linking
module - whereas our approach is a self-supervised
approach (not using any labelled data for training).
Note that rule learning is prone to inaccurate en-
tity linking6. Thus, when ground truth entities are

6Note that inaccuracies both in AMR parsing and entity
linking could lead to erroneous logical statements. However,
SWQ sentences are simple and hence their AMR parsing is
straight forward, with SMATCH score of 83.0% (Neelam
et al., 2022). Thus, incorrect logical statements for SWQ are
largely due to entity linking errors. In case of CLUTRR, GAT
baseline used the readily available ground truth logical forms
of the sentences that we also used for fair comparison.

Training Testing GAT Our
approach

Clean Clean 1.0 1.0
Supporting 0.24 1.0
Irrelevant 0.51 1.0
Disconnected 0.8 1.0

Supporting Clean 0.92 0.89
Supporting 0.98 0.97
Irrelevant 0.5 0.94
Disconnected 0.92 0.91

Irrelevant Clean 0.92 0.94
Supporting 0.77 0.94
Irrelevant 0.93 0.96
Disconnected 0.85 0.88

Disconnected Clean 0.75 0.91
Supporting 0.78 0.93
Irrelevant 0.56 0.91
Disconnected 0.96 0.93

Average 0.77 0.94

Table 1: Model robustness on CLUTRR - Accuracies
for various training and inference noise conditions.

Method Recall
SYGMA 55.0
Our approach 53.7
SYGMA (with GT entities) 68.0
Our approach (with GT entities) 70.1

Table 2: QA performance on SWQ.

used, our approach performs marginally better than
SYGMA (as shown in the last two rows). Note
that when ground truth entities are used, QA per-
formance is more reflective of the relation linking
performance, thus asserting the effectiveness of our
relation linking model.

6 Conclusions

In this paper, we presented a novel masked train-
ing based self rule learning approach for relation
linking. The proposed approach takes inspiration
from the masked training of large language models
and rule learning in knowledge base completion
to create a rule learning model that results in a
relation linking model that is interpretable and gen-
eralizable to any knowledge base and domain. Our
evaluation on two datasets CLUTRR (rule learning
for kinship relations) and SWQ (relation linking
for Wikidata) shows that our model is able to pro-
duce high quality rules for relation linking that
generalize across domains. Our next steps are to
scale to learn from large amount of data, extend the
framework beyond triples. We see a lot of potential
for our rule learning framework beyond relation
linking, like general knowledge acquisition.
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7 Limitations

Proposed approach is an initial attempt at tak-
ing masked training to logic statements and using
knowledge graph as context. Current approach
described is only taking single triple to learn re-
lationship linking problem for KBQA, but overall
approach has potential to extend to larger logic
statements. Extending the work to handle logic
statements with more than one triple is a future
direction that we are looking into. In the current
approach we assumed semantic parses to be per-
fect and available, but in reality they can be noisy
resulting in noisy rule model. Handling noise com-
ing from the parsing is another main extension we
would like to look into as part of our future work.
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