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Abstract

Graph reasoning contributes to the integration
of discretely-distributed attentive information
(clues) for Multi-party Dialogue Reading Com-
prehension (MDRC). This is attributed primar-
ily to multi-hop reasoning over global con-
versational structures. However, existing ap-
proaches barely apply questions for anti-noise
graph reasoning. More seriously, the local se-
mantic structures in utterances are neglected,
although they are beneficial for bridging across
semantically-related clues. In this paper, we
propose a question-aware global-to-local graph
reasoning approach. It expands the canonical
Interlocutor-Utterance graph by introducing a
question node, enabling comprehensive global
graph reasoning. More importantly, it con-
structs a semantic-role graph for each utterance,
and accordingly performs local graph reasoning
conditioned on the semantic relations. We de-
sign a two-stage encoder network to implement
the progressive reasoning from the global graph
to local. The experiments on the benchmark
datasets Molweni and FriendsQA show that
our approach yields significant improvements,
compared to BERT and ELECTRA baselines.
It achieves 73.6% and 77.2% F1-scores on Mol-
weni and FriendsQA, respectively, outperform-
ing state-of-the-art methods that employ differ-
ent pretrained language models as backbones.

1 Introduction

MDRC is a special Machine Reading Comprehen-
sion (MRC) task. It involves answering questions
conditioned on the utterances of multiple interlocu-
tors (Yang and Choi, 2019; Li et al., 2020). MDRC
presents unique challenges due to two aspects:

• MDRC relies heavily on multi-hop reasoning,
where the necessary clues for reasoning are
discretely distributed across utterances.
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: What sort of device nbx909 asked? 
: What does babo say in addition to

copying the operating system? 

(a)

(b)

  Nbx909: How do I find the address of a usb device? 
  Likwidoxigen: Try taking it out to dinner and do a little wine and

    dine and it should tell you. 
  Likwidoxigen: What sort of device? 
  Babo: Can't I just copy over the os and leave the data files untouched? 
  Nbx909: Only if you do an upgrade. 
  Nuked: Should I just restart x after installing? 
  Likwidoxigen: I'd do a full restart so that it re-loads the modules.

Baseline prediction: Only if you do an upgrade. 
Baseline prediction: Can't I just copy over the os and
leave the data files untouched. 
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leave: V copy: V

you: ARG0 an update: ARG1do: V 

 

 

Figure 1: (a) A dialogue from Molweni (Li et al., 2020). (b)
Two question-answering pairs of the dialogue. The correct
answer to each question is highlighted in the dialogue with
the same color as the question. (c) The QIUG of the dia-
logue, where edges between utterances indicate the discourse
relationship between them (replying and replied-by). (d) The
LSRG subgraph of U4 and U5 in the dialogue.

• Multi-hop reasoning suffers from discontinu-
ous utterances and disordered conversations
(see Figure 1-a,b).

Recently, a variety of graph-based multi-hop rea-
soning (abbr., graph reasoning) approaches have
been proposed to tackle MDRC (Li et al., 2021; Ma
et al., 2021, 2022). Graph reasoning is generally
effective for bridging across the clues hidden in the
discontinuous utterances, with less interference of
redundant and distracting information occurring in
the disordered conversations. The effectiveness is
attributed primarily to the perception of global in-
teractive relations of interlocutor-utterance graphs.

However, existing approaches encounter two bot-
tlenecks. First, the question-disregarded graph con-
struction methods (Li et al., 2021; Ma et al., 2021)
fail to model the bi-directional interactions between
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question and utterances. As a result, it is prone to
involving question-unrelated information during
reasoning. Second, the inner token-level semantic
relations in every utterance are omitted, making it
difficult to perceive the exact and unabridged clues
occurring in the local contexts.

To address the issues, we propose a Global-to-
Local Graph Reasoning approach (GLGR) with
Pre-trained Language Models (PLMs) (Kenton
and Toutanova, 2019; Clark et al., 2020) as back-
bones. It encodes two heterogeneous graphs,
including Question-aware Interlocutor-Utterance
Graph (QIUG) and Local Semantic Role Graph
(LSRG). QIUG connects the question with all ut-
terances in the canonical Interlocutor-Utterance
graph (Figure 1-c). It depicts the global interac-
tive relations. By contrast, LSRG interconnects
fine-grained nodes (tokens, phrases and entities)
in an utterance in terms of their semantic roles,
where semantic role labeling (Shi and Lin, 2019)
is used. It signals the local semantic relations. To
enable connectivity between LSRGs of different
utterances, we employ coreference resolution (Lee
et al., 2018) and synonym identification to identify
shareable nodes (Figure 1-d).

Methodologically, we develop a two-stage en-
coder network for progressive graph reasoning. It
is conducted by successively encoding QIUG and
LSRG, where attention modeling is used. The atten-
tive information squeezed from QIUG and LSRG
is respectively used to emphasize the global and
local clues for answer prediction. Accordingly, the
representation of the input is updated step-by-step
during the progressive reasoning process. Residual
network is used for information integration.

We carry out GLGR within an extractive MRC
framework, where a pointer network (Vinyals et al.,
2015) is used to extract answers from utterances.
The experiments on Molweni (Li et al., 2020) and
FriendsQA (Yang and Choi, 2019) demonstrate
three contributions of this study, including:

• The separate use of QIUG and LSRG for
graph reasoning yields substantial improve-
ments, compared to PLM-based baselines.

• Global-to-local progressive reasoning on both
graphs (i.e., GLGR) yields further improve-
ments, allowing MDRC performance to reach
73.6% and 77.2% F1-scores, as well as 59.2%
and 59.8% EM-scores.

• GLGR is stable. It obtains general improve-
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Figure 2: The main architecture of the two-stage encoder for
Global-to-Local Graph Reasoning approach (GLGR).

ments when different PLMs are adopted as
backbones (BERT and ELECTRA).

The rest of the paper is organized as follows.
Section 2 presents the details of GLGR. We discuss
the experimental results in Section 3, and overview
the related work in Section 4. We conclude the
paper in Section 5.

2 Approach

The overall architecture of GLGR-based MDRC
model is shown in Figure 2. First of all, we utilize
PLM to initialize the representation of the question,
interlocutors and utterances. On this basis, the first-
stage graph reasoning is conducted over QIUG,
where Graph Attention network (GAT) (Veličković
et al., 2018) is used for encoding. Subsequently,
we carry out the second-stage graph reasoning over
LSRG, where graph transformer layers (Zhu et al.,
2019) are used for encoding. Finally, we concate-
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nate the initial hidden states and their updated ver-
sions obtained by GLGR, and feed them into the
pointer network for answer prediction.

In the following subsections, we detail computa-
tional details after presenting the task definition.

2.1 Task Definition
Formally, the task is defined as follows. Given a
multi-party dialogue D = {U1, U2, ..., Un} with n
utterances and a question Q, MDRC aims to extract
the answer A of Q from D. When the question is
unanswerable, A is assigned a tag “Impossible”.
Note that each utterance Ui comprises the name of
an interlocutor Si who issues the utterance, as well
as the concrete content of the utterance.

2.2 Preliminary Representation
We follow Li and Zhao (2021)’s study to encode
the question Q and dialogue D using PLM, so as to
obtain token-level hidden states H of all tokens in
Q and D. Specifically, we concatenate the question
Q and dialogue D to form the input sequence X ,
and feed X into PLM to compute H:

X = {[CLS], Q,[SEP ], U1, [SEP ], ..., Un, [SEP ]}
H = PLM(X, θ)

(1)

where, [CLS] and [SEP] denote special tokens.
The hidden states H ∈ Rl×d serve as the uni-
versal representation of X , where l is the maxi-
mum length of X , and d is the hidden size. The
symbol θ denotes all the trainable parameters of
PLM. In our experiments, we consider three differ-
ent PLMs as backbones in total, including BERT-
base-uncased (BERTbase), BERT-large-uncased
(BERTlarge) (Kenton and Toutanova, 2019) and
ELECTRA (Clark et al., 2020).

To facilitate understanding, we clearly define
different levels of hidden states as follows:

• H refers to the hidden states of all tokens in
X , i.e., the universal representation of X . h
is the hidden state of a token x (x ∈ X).

• O is the hidden state of a specific node, known
as node representation. Specifically, Oq, Os

and Ou denote the representations of question
node, interlocutor node and utterance node.

2.3 Global-to-Local Graph Reasoning
We carry out Global-to-Local Graph Reasoning
(GLGR) to update the hidden states H of the input
sequence X . GLGR is fulfilled by two-stage pro-
gressive encoding over two heterogeneous graphs,
including QIUG and LSRG.

2.3.1 Global Graph Reasoning on QIUG
QIUG– QIUG is an expanded version of the canon-
ical interlocutor-utterance graph (Li et al., 2021;
Ma et al., 2021) due to the involvement of question-
oriented relations, as shown in Figure 1-(c).

Specifically, QIUG comprises one question node,
Nu utterance nodes and Ns interlocutor nodes. We
connect the nodes using the following scheme:

• Each question node is linked to all utterance
nodes. Bidirectional connection is used, in the
directions of “querying” and “queried-by”.

• Each interlocutor node is connected to all the
utterance nodes she/he issued. Bidirectional
connection is used, in the directions of “issu-
ing” and “issued-by”.

• Utterance nodes are connected to each other
in terms of Conversational Discourse Struc-
tures (CDS) (Liu and Chen, 2021; Yu et al.,
2022). CDS is publicly available in Mol-
weni (Li et al., 2020), though undisclosed in
FriendsQA (Yang and Choi, 2019). Therefore,
we apply Liu and Chen (2021)’s open-source
CDS parser to tread with FriendsQA. Bidirec-
tional connection is used, i.e., in the directions
of “replying” and “replied-by”.

Consequently, QIUG contains six types of inter-
active relations T={querying, queried-by, issuing,
issued-by, replying, replied-by}. Each directed
edge in QIUG solely signals one type of relation.

Node Representation– For an interlocutor node
Si, we consider the tokens of her/his name and look
up their hidden states in the universal representa-
tion H . We aggregate the hidden states by mean
pooling (Gholamalinezhad and Khosravi, 2020).
The resultant embedding Os

i ∈ R1×d is used as the
node representation of Si.

For an utterance node Ui, we aggregate the hid-
den states of all tokens in Ui. Attention pooling
(Santos et al., 2016) is used for aggregation. The re-
sultant embedding Ou

i ∈ R1×d is used as the node
representation of Ui. We obtain the representation
Oq of the question node Q in a similar way.

Multi-hop Reasoning– Multi-hop reasoning is
used to discover and package co-attentive informa-
tion across nodes and along edges. Methodologi-
cally, it updates the hidden states of all tokens in a
node using the attentive information O̊ in the neigh-
boring nodes. Formally, the hidden state of each
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token is updated by: h̊=[h;O̊], i.e., concatenating
h ∈ R1×d and O̊ ∈ R1×d.

We utilize L1-layer GAT (Veličković et al., 2018)
networks to compute O̊, where attention-weighted
information fusion is used:

O̊
(l+1)
i =

∑
Oj∈Ei

α
(l)
i,jW̊

(l)O
(l)
j (2)

where, Ei comprises a set of neighboring nodes of
the i-th node Oi. W̊ is a trainable scalar parameter,
and the superscript (l) signals the computation at
the l-the layer of GAT. Besides, αi,j is a node-
level attention score of Oi (Oi /∈ Ei) relative to Oj

(Oj ∈ Ei). The resultant O̊L1
i is used to update the

hidden states of all tokens in the i-th node.
Divide-and-conquer Attention Modeling– Dif-

ferent interactive relations have distinctive impacts
on attention modeling. For example, the “queried-
by” relation (i.e., an edge directed from utterance to
question) most likely portends the payment of more
attention to the possible answer in the utterance.
By contrast, the “replying” and “replied-by” rela-
tions (i.e., edges between utterance nodes) induce
the payment of more attention to the complemen-
tary clues in the utterances. In order to distinguish
between the impacts, we separately compute node-
level attention scores α for different types of edges
in QIUG. Given two nodes Oi and Oj with a t-type
edge, the attention score αi,j is computed as:

α
(l)
i,j =

exp (f([O
(l)
i ;O

(l)
j ], Ẇ (l)))

∑
Ok∈Ei,t

exp (f([O
(l)
i ;O

(l)
k ], Ẇ (l)))

(3)

where [; ] is the concatenation operation, while f (·)
denotes the LeakyRelu (Maas et al., 2013) activa-
tion function. Ei,t is the set of all neighboring
nodes that are connected to Oi with a t-type edge.
Ẇ

(l)
t ∈ R2d×1 is a trainable parameter.
Prediction and Training– Using multi-hop rea-

soning, we reproduce the universal representation:
H̊=[H;O̊L1

all ]. We feed H̊ into a two-layer pointer
network to predict the answer, determining the start
and end positions of the answer in X . Note that the
hidden state of [CLS] in H̊ is used to predict the
“Impossible” tag, i.e., a tag signaling unanswerable
question. During training, we use the cross-entropy
loss function to optimize the model.

2.3.2 Local Graph Reasoning on LSRG
Global graph reasoning is grounded on the global
relations among question, interlocutor and utter-
ance nodes, as well as their indecomposable node
representations. It barely uses the inner token-level
semantic relations in every utterance for multi-hop

reasoning. However, such local semantic correla-
tions actually contribute to the reasoning process,
such as the predicate-time and predicate-negation
relations, as well as coreferential relations. There-
fore, we construct the semantic-role graph LSRG,
and use it to strengthen local graph reasoning.

LSRG– LSRG is an undirected graph which
comprises semantic-role subgraphs of all utterances
in D. To obtain the subgraph of an utterance, we
leverage Allennlp-SRL parser (Shi and Lin, 2019)
to extract the predicate-argument structures in the
utterance, and regard predicates and arguments as
the fine-grained nodes. Each predicate node is con-
nected to the associated argument nodes with undi-
rected role-specific edges (e.g., “ARG1-V”). Both
the directly-associated arguments and indirectly-
associated are considered for constructing the sub-
graph, as shown in Figure 1-(d).

Given the semantic-role subgraphs of all utter-
ances, we form LSRG using the following scheme:

• We combine the subgraphs containing similar
fine-grained nodes. It is fulfilled by connect-
ing the similar nodes. A pair of nodes is deter-
mined to be similar if their inner tokens have
an overlap rate more than 0.5.

• Interlocutor name is regarded as a special
fine-grained node. We connect it to the fine-
grained nodes in the utterances she/he issued.

• We combine subgraphs containing coreferen-
tial nodes. Lee et al. (2018)’s coreference
resolution toolkit1 is used.

Fine-grained Node Representation– The fine-
grained nodes generally contain a varied number
of tokens (e.g., “can not” and “the data files”). To
obtain identically-sized representations of them,
we aggregate the hidden states of all tokens in each
fine-grained node. Attention pooling (Santos et al.,
2016) is used for aggregation.

In our experiments, there are two kinds of token-
level hidden states considered for fine-grained node
representation and reasoning on LSRG, including
the initial case h obtained by PLM, as well as the
refined case h̊ (̊h ∈ H̊) by global graph reasoning.
When h is used, we perform local graph reasoning
independently, without the collaboration of global
graph reasoning. It is carried out for MDRC in
an ablation study. When h̊ is used, we perform
global-to-local graph reasoning. It is conducted in

1https://demo.allennlp.org/coreference-resolution
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the comparison test. We concentrate on h̊ in the
following discussion.

Multi-hop Reasoning on LSRG– It updates hid-
den states of all tokens in each fine-grained node
Oi, where the attentive information Ǒ of its neigh-
boring nodes in LSRG is used for updating. For-
mally, the hidden state of each token is updated
by: ȟ=[̊h;Ǒ]. We use a L2-layer graph transformer
(Zhu et al., 2019) to compute Ǒ ∈ R1×d as follows:

Ǒ
(l+1)
i =

∑
Oj∈Ei

β
(l)
ij

(
O

(l)
j W̌

(l)
o + r

(l)
ij W̌

(l)
r

)
(4)

where, Ei is a set of neighboring fine-grained nodes
of the i-th node Oi in LSRG. W̌o ∈ Rd×d and
W̌r ∈ Rd×d are trainable parameters. In addition,
ri,j ∈ R1×d is the learnable embedding of the role-
specific edge between Oi and its j-th neighboring
node Oj . Before training, the edges holding the
same semantic-role relation are uniformly assigned
a randomly-initialized embedding. Besides, βi,j is
a scalar, denoting the attention score between Oi

and Oj . It is computed as follows:

β
(l)
ij =

exp
(
e
(l)
ij

)

∑M
i=1 exp

(
e
(l)
ik

) (5)

e
(l)
ij = O

(l)
i Ẇ (l)

e

(
O

(l)
j Ẇ (l)

o + r
(l)
ij Ẇ

(l)
r

)T

/
√
d (6)

where, Ẇ (l)
e , Ẇ (l)

o and Ẇ
(l)
r are trainable parame-

ters of dimensions Rd×d. M denotes the number
of neighboring fine-grained nodes in Ei.

Question-aware Reasoning– Obviously, the
LSRG-based attentive information Ǒi is indepen-
dent of the question. To fulfill question-aware rea-
soning, we impose the question-oriented attention
upon Ǒi. Formally, it is updated by: Ǒi ⇐ γi · Ǒi,
where the attention score γi is computed as follows:

γi = Sigmoid (OqWqOi/
√
d) (7)

where, Oq is the representation of the question
node, and Wq ∈ Rd×d is a trainable parameter.

Prediction and Training– To fulfill global-to-
local reasoning (GLGR), we reproduce the uni-
versal representation: Ȟ=[H̊;ǑL2

all ]. It is actually
equivalent to the operation of concatenating the
initial representation H , QIUG-based co-attentive
information O̊L1

all and LSRG-based co-attentive in-
formation ǑL2

all , i.e., Ȟ=[H;O̊L1
all ;Ǒ

L2
all ].

In the scenario of independent local graph rea-
soning, the QIUG-based co-attentive information
is omitted. Accordingly, the universal representa-
tion is calculated as: Ȟ=[H;ǑL2

all ], where ǑL2
all is

computed using h instead of h̊.

Datasets Molweni FriendsQA
Train Dev Test Train Dev Test

Questions 24,682 2,513 2,871 8,535 1,010 1,065
Utterances 77,374 7,823 2,513 21,607 2,847 2,336
Dialogues 8,771 883 100 977 122 123

Table 1: Statistics in Molweni and FriendsQA.

We feed Ȟ into the two-layer pointer network
for predicting answers. Cross-entropy loss is used
to optimize the model during training.

3 Experimentation

3.1 Datasets and Evaluation

We experiment on two benchmark datasets, includ-
ing Molweni (Li et al., 2020) and FriendsQA (Yang
and Choi, 2019). Molweni is an MDRC dataset
manufactured using Ubuntu Chat Corpus (Lowe
et al., 2015). The dialogues in Molweni are accom-
panied with ground-truth CDS, as well as either
answerable or unanswerable questions. Friend-
sQA is another MDRC dataset whose dialogues
are excerpted from the TV show Friends. It is
characterized by colloquial conversations. CDS is
undisclosed in FriendsQA. We use Liu and Chen
(2021)’s CDS parser to pretreat the dataset.

We follow the common practice (Li et al., 2020;
Yang and Choi, 2019) to split Molweni and Friend-
sQA into the training, validation and test sets. The
data statistics about the sets are shown in Table 1.
We use F1-score and EM-score (Li and Zhao, 2021;
Ma et al., 2021) as the evaluation metrics.

3.2 Backbone and Hyperparameter Settings

To verify the stability of GLGR, we construct three
GLGR-based models using different PLMs as back-
bones, including BERT-base-uncased (BERTbase),
BERT-large-uncased (BERTlarge) (Kenton and
Toutanova, 2019) and ELECTRA (Clark et al.,
2020). The hyperparameters are set as follows.

All the models are implemented using Trans-
formers Library (Li and Choi, 2020). AdamW op-
timizer (Loshchilov and Hutter, 2018) is used for
training. Towards the experiments on Molweni, we
set the batch size to 16 for BERT and 12 for ELEC-
TRA. The learning rates are set to 1.8e-5, 5.2e-
5 and 1e-5 for BERTbase, BERTlarge and ELEC-
TRA, respectively. For FriendsQA, we set the batch
sizes to 16, 8 and 12 for BERTbase, BERTlarge

and ELECTRA, respectively. The learning rates
are set to 1.8e-5 for BERTbase and 1e-5 for both
BERTlarge and ELECTRA backbone. In addition,
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Model Molweni FriendsQA
EM F1 EM F1

BERT base (Kenton and Toutanova, 2019)
Baseline 47.6 61.6 42.7 60.0
DADgraph (Li et al., 2021) 46.5 61.5 - -
ULM-UOP (Li and Choi, 2020) - - 46.8 63.1
BiDeN (Li et al., 2022) 48.1 63.2 - -
SKIDB (Li and Zhao, 2021) 49.2 64.0 46.9 63.9
ESA (Ma et al., 2021) 49.7 64.4 47.0 63.0
GLGR† (Ours) 48.2 64.4 47.0 64.3

BERT large (Kenton and Toutanova, 2019)
Baseline 50.4 65.8 46.0 63.3
ESA (Ma et al., 2021) 52.9 66.9 49.0 64.0
GLGR† (Ours) 53.7 67.5 49.8 67.1

ELECTRA (Clark et al., 2020)
Baseline 56.8 70.6 57.0 74.8
SKIDB (Li and Zhao, 2021) 58.0 72.9 55.8 72.3
ESA (Ma et al., 2021) 58.6 72.2 58.7 75.4
GLGR† (Ours) 59.2 73.6 59.8 77.2

Table 2: Results on the test sets of Molweni and FriendsQA.
The superscript † denotes a statistically significant improve-
ment of F1-score (p < 0.05) compared to the baseline.

The numbers of network layers of GAT and graph
transformer are set in the same way: L1=L2=2.

3.3 Compared MDRC Models
Following Ma et al. (2021)’s study, we consider
the standard span-based MRC model (Kenton and
Toutanova, 2019) as the baseline. We compare with
a variety of state-of-the-art MDRC models:

• DADgraph (Li et al., 2021) constructs a CDS-
based dialogue graph. It enables the graph
reasoning over conversational dependency fea-
tures and interlocutor nodes. Graph Convolu-
tional Network (GCN) is used for reasoning.

• ULM-UOP (Li and Choi, 2020) fine-tunes
BERT on a larger number of FriendsQA tran-
scripts (known as Character Mining dataset
(Yang and Choi, 2019)) before task-specific
training for MDRC. Two self-supervised tasks
are used for fine-tuning, including utterance-
oriented masked language modeling and ut-
terance order prediction. In addition, BERT
is trained to predict both answers and sources
(i.e., IDs of utterances containing answers).

• SKIDB (Li and Zhao, 2021) uses a multi-task
learning strategy to enhance MDRC model.
Self-supervised interlocutor prediction and
key-utterance prediction tasks are used within
the multi-task framework.

• ESA (Ma et al., 2021) uses GCN to encode
the interlocutor graph and CDS-based utter-
ance graph. In addition, it is equipped with

a speaker masking module, which is able to
highlight co-attentive information within ut-
terances of the same interlocutor, as well as
that among different interlocutors.

• BiDeN (Li et al., 2022) incorporates latent in-
formation of utterances using different tempo-
ral structures (e.g., future-to-current, current-
to-current and past-to-current interactions).

3.4 Main Results

Table 2 shows the test results of our GLGR models
and the compared models, where different back-
bones (BERTbase, BERTlarge and ELECTRA) are
considered for the general comparison purpose.

It can be observed that our GLGR model yields
significant improvements, compared to the PLM
baselines. The most significant performance gains
are 4.3% F1-score and 4.3% EM-score, which
are obtained on FriendsQA compared to the lite
BERTbase (110M parameters). When compared
to the larger BERTlarge (340M parameters) and
ELECTRA (335M parameters), GLGR is able to
achieve the improvements of no less than 1.7%
F1-score and 2.4% EM-score. In addition, GLGR
outperforms most of the state-of-the-art MDRC
models. The only exception is that GLGR ob-
tains a comparable performance relative to ESA
when BERTbase is used as the backbone. By con-
trast, GLGR substantially outperforms ESA when
BERTlarge and ELECTRA are used.

The test results reveal distinctive advantages of
the state-of-the-art MDRC models. DADgraph is
a vest-pocket model due to the involvement of a
sole interlocutor-aware CDS-based graph. It of-
fers the basic performance of graph reasoning for
MDRC. ESA is grounded on multiple graphs, and
it separately analyzes co-attentive information for
subdivided groups of utterances. Multi-graph rea-
soning and coarse-to-fine attention perception al-
low ESA to be a competitive MDRC model. By
contrast, ULM-UOP doesn’t rely heavily on con-
versational structures. Instead, it leverages larger
dataset and diverse tasks for fine-tuning, and thus
enhances the ability of BERT in understanding
domain-specific languages at the level of semantics.
It can be observed that ULM-UOP achieves similar
performance compared to ESA. SKIDB success-
fully leverages multi-task learning, and it applies
interesting and effective self-supervised learning
tasks. Similarly, it enhances PLMs in encoding
domain-specific languages, which is not limited to
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Model Molweni FriendsQA
EM F1 EM F1

GLGR 59.2 73.6 59.8 77.2
w/o QIUG 58.1 72.3 58.3 76.4
w/o LSRG 57.7 72.6 58.9 76.0
w/o QIUG& LSRG (baseline) 56.8 70.6 57.0 74.8

Table 3: Graph ablation study, where ELECTRA (Clark et al.,
2020) is considered as the backbone in this study.

Model Molweni FriendsQA
EM F1 EM F1

QIUG 57.7 72.6 58.9 76.0
w/o interloctuor 57.0 71.3 57.7 75.6
w/o question 57.2 71.0 57.5 75.6
w/o utterance structure 57.3 71.1 57.8 75.2

LSRG 58.1 72.3 58.3 76.4
w/o coreference 57.2 71.5 57.8 75.6
w/o semantic role relation 56.6 71.5 57.8 75.3
w/o question-aware reasoning 56.8 71.8 58.1 75.4

Table 4: Relation ablation study, whre ELECTRA (Clark
et al., 2020) is considered as the backbone in this study.

BERT. It can be found that SKIDB obtains compa-
rable performance on Molweni compared to ESA.

Our GLGR model combines the above advan-
tages by external conversational structure analysis
and internal semantic role analysis. On this basis,
GLGR integrates global co-attentive information
with local for graph reasoning. It can be observed
that GLGR shows superior performance, although
it is trained without using additional data.

3.5 Ablation Study

We conduct the ablation study from two aspects.
First of all, we progressively ablate global and local
graph reasoning, where QIUG and LSRG are omit-
ted accordingly. Second, we respectively ablate
different classes of edges from the two graphs, i.e.,
disabling the structural factors during multi-hop
reasoning. We refer the former to “Graph ablation”
while the latter the “Relation ablation”.

Graph ablation– The negative effects of graph
ablation is shown in Table 3. It can be easily found
that similar performance degradation occurs when
QIUG and LSRG are independently pruned. This
implies that local reasoning on LSRG is effectively
equivalent to global reasoning on QIUG, to some
extent. When graph reasoning is thoroughly dis-
abled (i.e., pruning both QIUG and LSRG), the
performance degrades severely.

Relation ablation– The negative effects of rela-
tion ablation is shown in Table 4. For QIUG, we
condense the graph structure by respectively dis-
abling interlocutor, question and utterance nodes. It

Figure 3: Performance of GLGR (ELECTRA) and baseline
on the FriendsQA with different utterance numbers.

can be found that the performance degradation rates
in the three ablation scenarios are similar. This
demonstrates that all the conversational structural
factors are crucial for multi-hop reasoning. For
LSRG, we implement relation ablation by unbind-
ing the co-referential fine-grained nodes, omitting
semantic-role relations, and removing question-
aware reasoning, respectively. The way to omit
semantic-role relations is accomplished by full con-
nection. It can be observed that ablating semantic-
role relations causes relatively larger performance
degradation rates.

3.6 The Impact of Utterance Number
We follow the common practice (Li and Zhao,
2021; Li et al., 2022) to verify the impacts of ut-
terance numbers. The FriendsQA test set is used
in the experiments. It is divided into four subsets,
including the subsets of dialogues containing 1) no
more than 9 utterances, 2) 10∼19 utterances, 3)
20∼29 utterances and 4) no less than 30 utterances.
The GLGR is re-evaluated over the subsets. We
illustrate the performance in Figure 3.

It can be found that the performance decreases
for the dialogues containing a larger number of ut-
terances, no matter whether the baseline or GLGR
is used. In other words, both the models are dis-
tracted by plenty of noises in these cases. Nev-
ertheless, we observe that GLGR is able to stem
the tide of performance degradation to some extent.
Therefore, we suggest that GLGR contributes to
the anti-noise multi-hop reasoning, although it fails
to solve the problem completely.

3.7 Reliability of Two-stage Reasoning
There are two alternative versions of GLGR: one
changes the reason sequence of QIUG and LSRG
(local-to-global graph reasoning). The other per-
forms the single-phase reasoning over a holistic
graph that interconnects QIUG and LSRG. In this
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Model Molweni FriendsQA
EM F1 EM F1

GLGR (Two-stage) 59.2 73.6 59.8 77.2
GLGR (Two-stage rev.) 58.3 72.7 59.1 76.2
GLGR (Single-phase) 58.0 72.0 58.5 75.4

Table 5: Comparing single-phase GLGR and two two-stage
GLGRs, here “rev.” indicates the local-to-global reasoning
version.

  Qkslvrwolf: How do I get FILEPATH manager
to use a different icon for all say, folders?

  _jason: Probably need to edit the icon theme.
  C-O-L-T: Help me in installing tovid cause I

can not. 
  C-O-L-T: I am following the directions but I

still can not. 
... 

  C-O-L-T: Should I try the other program? 
  _jason: It's a dependency anyway so sure. 
 C-O-L-T: I can not get mplayer in synaptic.

 
 
 
 
 
  
  
  
  
  

: How does Qkslvrwolf use the different icon ? 
Baseline: unanswerable. 
GLGR: edit the icon theme.

gold answer

Qkslvrwolf
How 
I
get 
FILEPATH manager 
use

_jason 
Probably
need
to edit the icon theme 

_jason
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a dependency
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Figure 4: A case study for the ELECTRA-based GLGR

subsection, we intend to compare them to the
global-to-local two-stage GLGR.

For the single-phase reasoning version, we com-
bine QIUG with LSRG by two steps, including 1)
connecting noun phrases in the question node to
the similar fine-grained nodes in utterances, and
2) connecting utterance nodes to the entities occur-
ring in them. On this basis, we encode the resul-
tant holistic graph using GAT, which serves as the
single-phase GLGR. It is equipped with ELECTRA
and the pointer network.

The comparison results (single-phase GLGR ver-
sus two two-stage GLGRs) are shown in Table 5,
where ELECTRA is used as the backbone. It is
evident that the single-stage GLGR obtains infe-
rior performance. It is most probably because that
the perception of co-attentive information among
fine-grained nodes in LSRG suffers from the inter-
ference of irrelevant coarse-grained nodes in QIUG.
This drawback raises a problem of combining het-
erogeneous graphs for multi-hop reasoning. Be-
sides, we observe that the global-to-local reasoning
method exhibits better performance compared to
local-to-global graph reasoning. We attribute it
to the initial local graph reasoning in the local-to-
global reasoning, which ineffectively integrates the
distant and important context information while
focusing on local semantic information. This leads
to suboptimal multi-hop reasoning and highlights
the importance of the graph reasoning order in han-
dling complex information dependencies.

3.8 Case Study
GLGR is characterized as the exploration of both
global and local clues for reasoning. It is imple-
mented by highlighting co-attentive information in
coarse-grained and fine-grained nodes.

Figure 4 shows a case study for GLGR-based
MDRC, where the heat maps exhibit the attention
distribution on both utterance nodes and token-
level nodes. There are three noteworthy phenom-
ena occurring in the heat maps. First, GLGR as-
signs higher attention scores to two utterance nodes,
which contain the answer and closely-related clues,
respectively. Second, both the answer and clues are
assigned higher attention scores, compared to other
token-level nodes. Finally, the answer and clues
emerge from different utterance nodes.

This is not an isolated case, and the phenomena
stand for the crucial impacts of GLGR on MDRC.

4 Related Work

4.1 Multi-party Dialogue Reading
Comprehension

A variety of graph-based approaches have been
studied for MDRC. They successfully incorporate
conversational structural features into the dialogue
modeling process.

Ma et al. (2021) construct a provenance-aware
graph to enhance the co-attention encoding of dis-
continuous utterances of the same interlocutor. Li
et al. (2021) and Ma et al. (2022) apply CDS to
bring the mutual dependency features of utterances
into the graph reasoning process, where GCN (Kipf
and Welling, 2017) is used for encoding. Recently,
Li et al. (2022) propose a back-and-forth compre-
hension strategy. It decouples the past and future
dialogues, and models interactive relations in terms
of conversational temporality. Li et al. (2023) add
the coreference-aware attention modeling in PLM
to strengthen the multi-hop reasoning ability.

Another research branch focuses on the study
of language understanding for dialogues, where
self-supervised learning is used for the general-to-
specific modeling and transfer of the pretrained
models. Li and Choi (2020) transfer BERT to the
task-specific data, where two self-supervised tasks
are used for fine-tuning, including Utterance-level
Masked Language Modeling (ULM) and Utterance-
Order Prediction (UOP). During the transfer, the
larger-sized dataset of FriendsQA transcripts is
used. Similarly, Li and Zhao (2021) transfer PLMs
to dialogues using a multi-task learning framework,
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including the tasks of interlocutor prediction and
key utterance prediction.

4.2 Semantic Role Labeling

In this study, we use Semantic Role Labeling (SRL)
to build LSRG for local graph reasoning. To fa-
cilitate the understanding of SRL, we present the
related work as follows.

SRL is a shallow semantic parsing task that
aims to recognize the predicate-argument struc-
ture of each sentence. Recently, advances in SRL
have been largely driven by the development of
neural networks, especially the Pre-trained Lan-
guage Models (PLMs) such as BERT (Kenton and
Toutanova, 2019). Shi and Lin (2019) propose a
BERT-based model that incorporates syntactic in-
formation for SRL. Larionov et al. (2019) design
the first pipeline model for SRL of Russian texts.

It has been proven that SRL is beneficial for
MRC by providing rich semantic information
for answer understanding and matching. Zheng
and Kordjamshidi (2020) introduce an SRL-based
graph reasoning network to the task of multi-hop
question answering. They demonstrate that the fine-
grained semantics of an SRL graph contribute to
the discovery of an interpretable reasoning path for
answer prediction.

5 Conclusion

We propose a global-to-local graph reasoning ap-
proach towards MDRC. It explores attentive clues
for reasoning in both coarse-grained graph QIUG
and fine-grained graph LSRG. Experimental re-
sults show that the proposed approach outperforms
the PLMs baselines and state-of-the-art models.
The codes are available at https://github.com/
YanLingLi-AI/GLGR.

The main contribution of this study is to jointly
use global conversational structures and local se-
mantic structures during encoding. However, it can
be only implemented by two-stage reasoning due to
the bottleneck of in-coordinate interaction between
heterogeneous graphs. To overcome the issue, we
will use the pretrained Heterogeneous Graph Trans-
formers (HGT) for encoding in the future. Besides,
the graph-structure based pretraining tasks will be
designed for task-specific transfer learning.

Limitations

While GLGR demonstrates several strengths, it also
has limitations that should be considered. First,

GLGR relies on annotated conversation structures,
co-reference, and SRL information. This depen-
dency necessitates a complex data preprocessing
process and makes the model susceptible to the
quality and accuracy of the annotations. Therefore,
it is important to ensure the accuracy and robust-
ness of the annotations used in the model train-
ing and evaluation process. Second, GLGR may
encounter challenges in handling longer dialogue
contexts. The performance may exhibit instability
when confronted with extended and more intricate
conversations. Addressing this limitation requires
further investigation of the stability and consistency
in a real application scenario.
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