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Abstract
Named entity recognition (NER) is a funda-
mental task in natural language processing. Re-
cently, NER has been formulated as a machine
reading comprehension (MRC) task, in which
manually-crafted queries are used to extract
entities of different types. However, current
MRC-based NER techniques are limited to ex-
tracting a single type of entities at a time and
are largely geared towards resource-rich set-
tings. This renders them inefficient during the
inference phase, while also leaving their po-
tential untapped for utilization in low-resource
settings. We suggest a query-parallel MRC-
based approach to address these issues, which
is capable of extracting multiple entity types
concurrently and is applicable to both resource-
rich and resource-limited settings. Specifically,
we propose a query-parallel encoder which uses
a query-segmented attention mechanism to iso-
late the semantics of queries and model the
query-context interaction with a unidirectional
flow. This allows for easier generalization to
new entity types or transfer to new domains.
After obtaining the query and context repre-
sentations through the encoder, they are fed
into a query-conditioned biaffine predictor to
extract multiple entities at once. The model
is trained with parameter-efficient tuning tech-
nique, making it more data-efficient. We con-
duct extensive experiments and demonstrate
that our model performs competitively against
strong baseline methods in resource-rich set-
tings, and achieves state-of-the-art results in
low-resource settings, including training-from-
scratch, in-domain transfer and cross-domain
transfer tasks.

1 Introduction

Named entity recognition (NER) is a fundamen-
tal task in natural language processing, aiming
at detecting the text spans that refer to entities.
It has been widely used in various downstream
tasks, such as entity linking (Martins et al., 2019;
Tedeschi et al., 2021), relation extraction (Miwa

Context
LOC

Query
PER  
Query

ORG
Query

Model

LOC
Entities

PER
Entities

ORG
Entities

Low-Resource Settings

Knowledge Transfer

Context

Model

LOC Entities

LOC Query

LOC
PER

ORG

(a) BERT-MRC (b) QPMRC-NER

Resource-Rich SettingsResource-Rich Settings

Figure 1: Comparison between machine reading com-
prehension based NER frameworks. (a) The BERT-
MRC method extracts one type of entities at a time
and is primarily employed in standard resource-rich su-
pervised settings. (b) The proposed QPMRC-NER is
capable of recognizing multiple entity types simultane-
ously and is effective in both resource-rich and resource-
limited settings.

and Bansal, 2016; Zhong and Chen, 2021) and in-
formation retrieval (Cheng et al., 2021).

Traditionally, NER has been formalized as a se-
quence labeling task, assigning a single tag class to
each token in a sentence (Chiu and Nichols, 2016;
Ma and Hovy, 2016; Xia et al., 2019; Devlin et al.,
2019; Lin et al., 2020). Recently, several new NER
paradigms have been proposed, which conceptual-
ize NER as span classification (Luan et al., 2019;
Yu et al., 2020; Li et al., 2021; Shen et al., 2021; Fu
et al., 2021a), sequence generation (Straková et al.,
2019; Yan et al., 2021; Tan et al., 2021; Paolini
et al., 2021; Lu et al., 2022) and constituency pars-
ing (Fu et al., 2021b; Lou et al., 2022) tasks. In
spite of achieving promising performance, these ap-
proaches require large amounts of well-annotated
in-domain data (Lison et al., 2020; Ma et al., 2022).
The data annotation usually involves carefully de-
fined guideline and annotators with domain exper-
tise, which could be quite time-consuming and cost-
prohibitive. As a result, the development of NER
systems is a costly endeavor in real-world scenarios
where usually only a small amount of labeled data
is available for new domains (Huang et al., 2021).

Recently, some works reformulate NER as a ma-
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chine reading comprehension (MRC) task (Li et al.,
2020; Mengge et al., 2020). As illustrated in Fig-
ure 1(a), the input sentence is regarded as the con-
text, a collection of queries that have been manu-
ally crafted to represent various entity types can be
viewed as questions, then extracting entities from
the context could be solved by employing ques-
tion answer techniques. Prior MRC-based NER
approaches are limited to extracting one type of en-
tities at a time and have largely been applied to the
standard supervised setting. In this context, they
have exhibited superior performance in comparison
to conventional sequence labeling techniques and
have demonstrated comparable performance with
reduced training data. Nonetheless, the extraction
of a singular entity type at a time is not particu-
larly efficient, and their potential for deployment in
low-resource settings remains largely unexplored.

To alleviate these issues, this paper presents
a query-parallel machine reading comprehension
framework for named entity recognition (QPMRC-
NER). It is suitable for both resource-rich and
resource-limited settings, and is characterized by
enhanced efficiency, as illustrated in Figure 1(b). It
consists of two key components: the query-parallel
encoder and the query-conditioned biaffine predic-
tor. The query-parallel encoder takes the combina-
tion of the context sentence and the queries with
shared continuous prompt as input, and utilizes
a query-segmented attention mechanism to sepa-
rate the queries from one another and model the
query-context interaction with a unidirectional flow,
thus facilitating easier generalization to new entity
types and domain transfer. After obtaining the con-
textualized representations from the query-parallel
encoder, we feed them to the query-conditioned
biaffine predictor to extract entities of multiple
types simultaneously. The model is trained with
parameter-efficient techniques for data-efficiency
(Li and Liang, 2021; Pan et al., 2022). We con-
duct extensive experiments, and in most cases, our
model outperforms the present SOTA methods.

The main contributions of this paper are sum-
marized as follows: (1) We introduce a novel
query-parallel machine reading comprehension
framework QPMRC-NER that is capable of han-
dling low-resource NER tasks effectively and effi-
ciently. (2) Our MRC-based architecture facilitates
simultaneous extraction of entities belonging to
multiple categories, resulting in faster inference
speed. (3) We conduct extensive evaluations of

QPMRC-NER across a diverse range of NER tasks.
Our model exhibits competitive performance in
resource-rich settings and achieves state-of-the-art
results in low-resource settings, including training-
from-scratch, in-domain transfer, and cross-domain
transfer tasks.

2 Method

This section presents the task formulation in Sec-
tion 2.1, then introduces the proposed method
QPMRC-NER, illustrated in Figure 2. QPMRC-
NER consists of two components: the query-
parallel encoder and the query-conditioned biaffine
predictor, explained in Section 2.2 and Section 2.3
respectively.

2.1 Task Formulation

Given an input sentence S = {w1, w2, ..., wn}
with sequence length n, the goal is to extract all
entities L = {< Istarti , Iendi , T tag

i >}mi=0 from it.
Here, Istarti and Iendi indicate the start and end
positions of the i-th entity span, T tag

i denotes the
type of the i-th entity which belongs to a finite set
of entity types E . Our method utilizes a query Q
for each entity type to extract entities from the in-
put sequence. Thus, the task can be formulated as
extracting all entities L from S based on queries
{Q1, Q2, ..., Q|E|}.

2.2 Query-Parallel Encoder

In order to extract different types of entities simul-
taneously with the machine reading comprehension
framework, we concatenate the input sentence and
queries and feed them into a transformer-based
encoder, from which we obtain the context word
representations and entity type representations that
are used for entity prediction.

Query Generation and Model Inputs Conven-
tional MRC-based NER methods rely on manually-
crafted queries to represent each entity type, which
often requires domain expertise and laboriously
tuning of query words, rendering it non-reusable
for new entity types.

Rather than relying on manually tuning, we con-
struct queries using a shared prompt prefix that is
composed of a set of learnable vectors. This ap-
proach renders the prompt more suitable for NER
task and facilitates generalization when dealing
with new entity types. So the query for the i-th
entity type is Qi = {p0, p1, ..., pm, ei,1, ..., ei,n},
where p0, p1, ..., pm represent the shared learnable
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Figure 2: The overall architecture of the QPMRC-NER

vectors and ei,1, ..., ei,n represent tokens of the i-th
entity type name.

The model inputs are illustrated in Figure 2.
We use the concatenation of context sentence and
queries as the token inputs and assign the two parts
with different segment ids, namely ua and ub. We
use the absolute position of tokens within each
query or context sentence as the position ids, which
guarantees the continuous prompt share the same
position ids across queries. This precludes the oc-
currence of position confliction, as the queries are
isolated from each other by virtue of the query-
segmented attention mechanism proposed below.

Query-Context Interaction via Query-
Segmented Attention The attention mechanism
plays a critical role in modeling interactions
between tokens in the transformer-based backbone.
With self-attention, tokens in different queries
could interact with each other. While modeling the
dependencies between multiple entity types may
be beneficial in some occasions, it adds difficulty
for generalizing to new entity types in low resource
setting.

Figure 3: An illustration of Query-Segmented Attention

In order to address this issue, we propose the
query-segmented attention, which is employed as
a substitute for the self-attention component in the
transformer architecture. The query-segmented at-
tention segregates queries from one another and
models the query-context interaction with a unidi-
rectional flow as depicted in Figure 3. This mecha-
nism enables context tokens to only attend to other
context tokens, while query tokens can attend to
tokens within the same query and to tokens in the
context, allowing them to recognize the most per-
tinent parts of the context according to the entity
type.

Thus, the query-segmented attention can be for-
mulated as:

Q = H l−1WQ
l , K = H l−1WK

l (1)

Mij =

{
0, allow to attend
−∞, prevent from attending

(2)

Al = softmax

(
QK⊤
√
dk

+M

)
(H l−1W V

l ) (3)

where parameters WQ
l ,WK

l ,W V
l ∈ Rdh×da

project the previous layer’s output H l−1 ∈ Rdx×dh

to queries, keys and values respectively. The mask
matrix M ∈ {0,−inf}dx×dx controls whether two
tokens can attend to each other by setting its values
to 0 or −inf . Al ∈ Rdx×da represents the output
of the query-segmented attention.

After the transformer encoding, the outputs of
the last-layer are used to acquire the query and

2054



context representations. For each query Qi, the
representation of its first token in the prompt is
employed as the query representation hqi . For each
context word wj , its representation hcj is obtained
by aggregating the corresponding word-piece token
representations through mean pooling.

Parameter-Efficient Tuning The query-parallel
encoder is initialized with the weights of a pre-
trained BERT model (Devlin et al., 2019). Rather
than fine-tuning the BERT encoder directly, we
adopt a parameter-efficient tuning strategy that
enables effective tuning of a pretrained language
model by updating only a small number of extra
parameters while keeping most of the pretrained
parameters frozen, thereby making the tuning pro-
cess more data-efficient (Li and Liang, 2021; Pan
et al., 2022). Specifically, our approach employs
UNIPELT (Mao et al., 2022) as the parameter-
efficient tuning method, which integrates several
existing parameter-efficient tuning techniques as
sub-modules and controls them via gating mecha-
nism. Further details are in Appendix C.

2.3 Query-Conditioned Biaffine Predictor
After obtaining the context and query representa-
tions from the query-parallel encoder, we feed them
to an entity predictor to generate the entity predic-
tions. The biaffine classifier (Yu et al., 2020) has
been demonstrated to be an effective approach for
entity prediction in prior studies, which jointly pre-
dicts the start and end positions of an entity span as
well as the entity types. However, the prior biaffine
approaches are employed in the span prediction
paradigm without leveraging the the semantics of
entity type names, which limits its ability to gener-
alize to new entity types.

In this work, we propose a query-conditioned
biaffine predictor for entity prediction, which inte-
grates the biaffine predictor into the query-parallel
machine reading comprehension framework and
could utilizing the semantic meaning of entity type
names. For each query Qi, we first obtain two
query-conditioned representations hsi and hei cor-
responding to the start and end positions of entity
spans through feed-forward neural networks:

hsij = gelu((hqi ⊕ hcj)Ws + bs) (4)

heij = gelu((hqi ⊕ hcj)We + be) (5)

where gelu is an activation function (Hendrycks
and Gimpel, 2016), Ws,We ∈ R2dh×dp , bs, be ∈
Rdp are learnable parameters.

Then we predict whether a span starting from po-
sition j and ending at position k belongs to certain
entity type i by:

rij,k =hsij
⊤Umheij

+ (hsij ⊕ heij ⊕ lk−j)Wm + bm (6)

yij,k = sigmoid(rij,k) (7)

where lk−j ∈ Rdp represents the (k − j)-th width
embedding from a learnable look-up table, Um ∈
Rdp×1×dp , Wm ∈ R(2dp+dl)×1 and bm ∈ R1 are
learnable parameters. Different from traditional bi-
affine predictor, the probabilities of an entity span
belong to each entity type are predicted indepen-
dently without inter-type competition, thus allow-
ing for the sharing of predictor parameters across
different entity types, which is beneficial for entity
type expanding. To avoid conflict predictions in
flat NER tasks during inference, we only keep the
span with the highest prediction probability for any
overlapping entity spans.

Besides the span-level prediction, we suggest a
token-level auxiliary task to enhance the quality of
the context and query representations. This task
predicts whether a token is associated with a par-
ticular entity type through a feed-forward neural
network as follows:

htij = gelu((hqi ⊕ hcj)Wt + bt) (8)

yij
′ = sigmoid(htij W

′
t + b

′
t) (9)

For both the span and token level tasks, we use
the binary cross entropy function as the loss metric:

Ls =−
∑

0≤j≤k≤n

∑

i∈E
1[ŷij,k = 1] log yij,k

+ 1[ŷij,k = 0] log(1− yij,k) (10)

Lt =−
∑

0≤j≤n

∑

i∈E
1[ŷij = 1] log yij

+ 1[ŷij = 0] log(1− yij) (11)

where Ls and Lt are span level and token level
losses, ŷij,k and ŷij are the corresponding labels.
Then the final loss L on training set D is:

L =
∑

D

Ls + λLt (12)

where λ is a coefficient.
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3 Experiments

3.1 Setups

Evaluation Tasks To verify the effectiveness of
the proposed method, we conduct extensive exper-
iments in both resource-rich and resource-limited
NER settings:

• Standard supervised NER setting: This task
evaluates the efficacy of a model when ade-
quate labeled data is available for training.

• Training-from-scratch low-resource NER set-
ting: This task assess models’ effectiveness
under conditions of limited training data.

• In-domain low-resource NER setting: In this
task, models are trained on a domain where
some entity types have a sufficient number of
labeled data while others have only a limited
amount of labeled data, reflecting a common
scenario where new entity types emerge in
existing text domain. This could demonstrate
the model’s capacity for in-domain transfer.

• Cross-domain low-resource NER setting:
This task involves training models on a
resource-rich source domain, followed by fine-
tuning on a target domain with different entity
types and a limited amount of labeled data,
demonstrating the model’s capacity for cross-
domain transfer.

Datasets For standard supervised NER set-
ting, we conduct experiments on three datasets:
CoNLL03 (Tjong Kim Sang and De Meulder,
2003), MSRA (Levow, 2006) and GENIA (Ohta
et al., 2002), which are English flat NER dataset,
Chinese flat NER dataset and English nested NER
dataset respectively. For training-from-scratch low-
resource setting, we use the MIT Restaurant Re-
view (Liu et al., 2013), MIT Movie Review (Liu
et al., 2013), and Airline Travel Information Sys-
tems (ATIS) (Hakkani-Tür et al., 2016) datasets.
For the in-domain low-resource setting, we use
the CoNLL03 (Tjong Kim Sang and De Meulder,
2003). For cross-domain low-resource setting, we
use the CrossNER dataset (Liu et al., 2021) which
contains five diverse domains, including politics,
natural science, music, literature and artificial intel-
ligence.

Baselines We conduct a comprehensive compar-
ison of QPMRC-NER with several representative

Method
English CoNLL03

Pre. Rec. F1

BERT-Tagger 91.93 91.54 91.73
TemplateNER 90.51 93.34 91.90
PIQN 93.29 92.46 92.87
BERT-MRC† 92.47 93.27 92.87
LightNER 92.39 93.48 92.93
BS-NER 93.61 93.68 93.65

QPMRC-NER 93.29 92.78 93.03

Method
Chinese MSRA

Pre. Rec. F1

BARTNER 93.21 91.97 92.58
PIQN 93.61 93.35 93.48
BERT-MRC† 96.18 95.12 95.75
BS-NER 96.37 96.15 96.26

QPMRC-NER 96.49 95.12 95.80

Method
GENIA

Pre. Rec. F1

BERT-MRC† 81.25 76.36 78.72
BARTNER 78.87 79.60 79.23
Pyramid 80.31 78.33 79.31
PIQN 83.24 80.35 81.77

QPMRC-NER 78.87 80.87 79.86

Table 1: Results for standard supervised NER. † means
the result produced by (Yan et al., 2021)

methods as well as state-of-the-art approaches, in-
cluding the classic BiLSTM-CRF (Ma and Hovy,
2016) and BERT-Tagger (Devlin et al., 2019), sin-
gle query machine reading comprehension method
BERT-MRC (Li et al., 2020), parameter-efficient
tuning method LightNER (Chen et al., 2022),
template-based low-resource NER method Tem-
plateNER (Cui et al., 2021), cross-domain special-
ized method DoSEA (Tang et al., 2022), and sev-
eral recently proposed supervised methods includ-
ing Pyramid (Wang et al., 2020), BARTNER (Yan
et al., 2021), PIQN (Shen et al., 2022), and Bound-
ary Smoothing NER (BS-NER) (Zhu and Li, 2022).
See Appendix B for a detailed introduction of those
models.

Implementation Details We use pretrained
BERT (Devlin et al., 2019) to initialize our en-
coder. For a fair comparison, we use BERT-
large on CoNLL03, MIT Restaurant Review, MIT
Movie Review and ATIS, BERT-base on Cross-
NER, BioBERT-large (Chiu et al., 2016) on GE-
NIA and Chinese-BERT-WWM (Cui et al., 2020)
on Chinese MSRA. We utilize the AdamW Opti-
mizer (Loshchilov and Hutter, 2019) with a cosine
annealed warm restart schedule (Loshchilov and
Hutter, 2017) to train our model. In order to as-
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Method
MIT Movie MIT Restaurant ATIS

10 20 50 100 200 500 10 20 50 100 200 500 10 20 50
BERT-Tagger 25.2 42.2 49.6 50.7 59.3 74.4 21.8 39.4 52.7 53.5 57.4 61.3 44.1 76.7 90.7
TemplateNER 37.3 48.5 52.2 56.3 62.0 74.9 46.0 57.1 58.7 60.1 62.8 65.0 71.7 79.4 92.6
BERT-MRC 18.7 48.3 55.5 62.5 80.2 82.1 12.3 37.1 53.5 63.9 65.5 70.4 35.3 63.2 90.2
LightNER 41.7 57.8 73.1 78.0 80.6 84.8 48.5 58.0 62.0 70.8 75.5 80.2 76.3 85.3 92.8
QPMRC-NER 61.8 76.3 80.2 82.7 84.5 86.2 51.1 58.9 70.3 73.2 76.4 79.0 91.9 94.4 94.8

Table 2: Results for training-from-scratch low-resource NER

sess the model performance, we utilize span-based
evaluation metrics, where an entity is only consid-
ered accurate if both the entity boundary and entity
type are correct. The F1-score is used as the metric
for evaluation. See Appendix A for more detailed
hyper-parameter settings.

3.2 Standard Supervised NER

We first evaluate our method under the standard
supervised NER settings on the CoNLL03, MSRA
and GENIA datasets. For the CoNLL03, we follow
(Lample et al., 2016; Yu et al., 2020; Yan et al.,
2021) to train the model with the combined data
from the training and development sets. A compar-
ison with the state-of-the-art methods are listed in
Table 1. It is evident that QPMRC-NER, which has
been designed for low-resource NER, surpasses
several recently proposed strong baseline models
in rich-resource settings and performs comparable
with the state-of-the-art methods, suggesting that
QPMRC-NER is also suitable for NER tasks with
abundant training data.

3.3 Training-from-scratch Low-resource NER

We analyze the efficacy of our method under the
training-from-scratch low-resource NER settings
where only K samples of each entity type are avail-
able for training. Following (Cui et al., 2021), we
employ the MIT Restaurant Review, MIT Movie
Review and ATIS datasets for model evaluation
by randomly sampling a fixed number of training
instances per entity type (K=10, 20, 50, 100, 200,
500 for MIT Movie and MIT restaurant, and K=10,
20, 50 for ATIS).

The experimental results shown in Table 2
demonstrates that our method achieves significant
performance boosts over baseline approaches and
can more effectively utilize low-resource data. Sep-
cifically, when compared to the traditional machine
reading comprehension based method BERT-MRC,

Method PER ORG LOC* MISC* Avg

BERT-Tagger 75.71 77.59 60.72 60.39 69.62
TemplateNER 84.49 72.61 71.98 73.37 75.59
BERT-MRC 91.14 72.71 66.24 65.04 75.77
QPMRC-NER 95.65 85.52 84.10 74.17 86.68

Table 3: Results for in-domain low-resource NER. The

Avg represents micro-average F1-score of all entity

types and * represents entity types with a limited amount

of labeled data.

our method surpasses it significantly especially in
cases where K is small. For instance, the F1 score
of our model in a 10-shot setting is either higher
or comparable to the F1 score of BERT-MRC in a
50-shot setting across all three datasets, suggesting
that our method is more suitable for low-resource
NER setting, particularly in the machine reading
comprehension NER paradigm.

3.4 In-domain Low-resource NER

We conduct experiments for in-domain low-
resource settings on the CoNLL03 dataset, where
only a limited amount of labeled data is available
for some entity types. Following (Cui et al., 2021),
we downsample 4,001 training instances, including
3,763 "ORG", 2,496 "PER", 50 "LOC", and 50
"MISC".

The evaluation results are presented in Table
3. We observe significant performance boosts on
resource-rich entity type "PER" and "ORG", as
well as resource-limited entity type "LOC". The
performance gain on the entity type "MISC" is rel-
atively smaller, which may due to the fact that the
entity type name "miscellaneous entity" is more
semantic ambiguous and difficult to be represented
by the query compared to other entity types. Our
method achieves +10.91% F1-score improvement
on average compared to baseline methods, which
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Method Pol. Sci. Mus. Lite. AI. Avg

BiLSTM-CRF 53.89 49.12 43.65 41.87 43.18 46.34
BERT-Tagger 66.56 63.73 66.59 59.95 50.37 61.44
TemplateNER 65.41 62.93 64.67 64.55 57.64 63.04
LightNER 71.63 65.55 71.62 65.8 57.46 66.41
BERT-MRC 70.23 67.25 70.64 62.53 62.77 66.68
DoSEA 75.52 71.69 73.10 68.59 66.03 70.99
QPMRC-NER 77.06 76.90 78.34 69.40 66.33 73.61

Table 4: Results for cross-domain low-resource NER. The Avg represents macro-average F1-score of all domains.

Method
Music (Source: None) Music (Source: CoNLL03)

Prec. Rec. F1 Prec. Rec. F1
QPMRC-NER 81.50 70.40 75.55 83.58 73.72 78.34

w/o continuous prompt 82.16 66.52 73.51 82.52 71.18 76.43
w/o qs-attention1 78.45 61.70 69.08 83.21 73.83 78.24
w/o qs-attention2 81.11 61.70 70.09 80.25 61.59 69.69
w/o query-parallel biaffine 81.36 66.49 73.18 82.14 72.29 76.90
w/o auxiliary task 84.16 68.64 75.00 83.60 73.24 78.07

Table 5: Results of ablation studies. The experiment is conducted on the CrossNER music domain dataset with

training-from-scratch and cross-domain low-resource settings. The "qs-attention1" and "qs-attention2" denote two

variation models in query-segmented attention ablation study described in 3.7.

demonstrates it is more suitable for in-domain trans-
fer and handling new emerging entities.

3.5 Cross-domain Low-resource NER

We explore the cross-domain low-resource NER
settings in which models are initially trained in a
resource-rich source domain and then fine-tuned
and evaluated in a target domain with limited la-
beled data. In order to evaluate the models on dif-
ferent target domains with domain specific entity
types, the CrossNER dataset is used as it is specifi-
cally designed for this task. It uses the CoNLL03
as the source domain and covers five distinct target
domains, namely music, literature, artificial intel-
ligence, politics, and natural science. There are
100 training instances for the first three domains
and 200 instances for the last two domains. The
empirical results in Table 4 indicate our approach
surpasses existing state-of-the-art methods in all
target domains, suggesting that our model is more
suitable for cross-domain knowledge transfer.

3.6 Inference Speed

Table 6 presents the results of our method’s infer-
ence speedup in comparison to BERT-MRC on the
MIT Movie and ATIS datasets, demonstrating a

Datasets # Entity Type BERT-MRC QPMRC-NER

MIT Movie 12 1.00× 1.32×
ATIS 79 1.00× 2.16×

Table 6: Results for inference speedup. Experiments are

conducted on NVIDIA Tesla V100 Graphics Card with

32GB graphical memory.

respective speedup of 1.32× and 2.16×. The ob-
served acceleration in inference speed is attributed
to the query parallel setting employed by QPMRC-
NER, which enables a single forward pass for all
entities, as opposed to BERT-MRC’s requirement
of a separate forward pass for each entity. The de-
gree of runtime improvement is contingent upon
the number of entity types present in the dataset,
with datasets featuring a greater number of entity
types exhibiting a greater potential for leveraging
the query parallel setting.

3.7 Ablation Studies
We conduct ablation studies to analyze the effects
of different components of our model and validate
the design decisions. Specifically, four settings
are evaluated in the ablation studies: (1) Shared
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Prompt: In our model, a query representing an en-
tity type is composed by combining the shared con-
tinuous prompt with the entity type name. We ab-
late the shared continuous prompt to testify whether
it is helpful for entity type representation and
knowledge transfer across domains. (2) Query-
Segmented Attention: The query-segmented at-
tention used in the query-parallel encoder isolates
the queries from each other and allows queries to at-
tend to the context but not vice versa. We verify the
effectiveness of query-segmented attention through
two variations by relaxing the constraints. The first
variation permits the context tokens to attend to the
queries, thereby enabling the semantics of queries
to interact indirectly through the context. The sec-
ond one applies vanilla self-attention directly, and
the first token of each entity type name is utilized to
represent the queries. (3) Query-Conditioned Bi-
affine Predictor: To evaluate the effectiveness of
the query-conditioned biaffine predictor utilized in
our model, we conduct an experimental analysis by
removing it and only employing word-level classifi-
cation for named entity recognition. (4) Auxiliary
Task: We access the effectiveness of the word level
classification auxiliary task by removing it and only
use Ls as training object.

This experiment is conducted in both training-
from-scratch and cross-domain low-resource set-
tings to assess the models’ capacity to utilize small
amounts of data and transfer knowledge across do-
mains. The CrossNER music domain data is em-
ployed for evaluation. The experimental results,
as presented in Table 5, demonstrate that the pro-
posed model exhibits superior performance in the
cross-domain settings as compared to the training-
from-scratch setting, suggesting its ability to trans-
fer knowledge from the source domain to the target
domain, thereby enhancing its overall performance.
Notably, QPMRC-NER outperforms its ablation
variations in both settings. The experimental re-
sults indicate that shared continuous prompting is
beneficial in improving query representation qual-
ity. Furthermore, the query-segmented attention
mechanism is found to be more efficient than other
attention mechanisms in our query-parallel MRC-
based framework. This may be attributed to its
ability to leverage the shared query prompt while
avoiding modeling entity type interaction with low-
resource data, which can have negative effects, par-
ticularly in the cross-domain setting. As evidenced
by the experimental results, the query-segmented

attention mechanism outperforms the vanilla self-
attention mechanism by a significant margin of
8.65% in the cross-domain setting. Additionally,
the query-conditioned biaffine predictor, designed
for the query parallel NER framework, achieves su-
perior performance compared to using word-level
classification directly. Also, incorporating word-
level classification as an auxiliary task can further
enhance the model’s performance.

4 Related Work

Although NER is usually formalized as a sequence
labeling task (Chiu and Nichols, 2016; Ma and
Hovy, 2016; Xia et al., 2019; Devlin et al., 2019),
several new NER paradigms have been proposed
recently, conceptualizing NER as span classifica-
tion (Luan et al., 2019; Yu et al., 2020; Li et al.,
2021; Shen et al., 2021; Fu et al., 2021a), sequence
generation (Straková et al., 2019; Yan et al., 2021;
Tan et al., 2021; Lu et al., 2022), constituency pars-
ing (Fu et al., 2021b; Lou et al., 2022) and machine
reading comprehension (Li et al., 2020; Mengge
et al., 2020) tasks and achieving impressive results.
However, these approaches are mainly focus on
standard supervised setting, which is not suitable
for low-resource scenarios. Another line of re-
search sought to address the low-resource NER task
using techniques such as prototype-based learning
(Fritzler et al., 2019; Yang and Katiyar, 2020; Hen-
derson and Vulić, 2021), template-based learning
(Cui et al., 2021) and contrastive learning (Das
et al., 2022). But they often fail to fully exploit the
potential of pretrained language models (PLMs)
and perform inferior to standard sequence labeling
NER methods in resource-rich settings. To bridge
the gap, we propose a machine reading compre-
hension based method, which is effective in both
resource-rich and resource-limited NER settings.

5 Conclusion

In this paper, we propose a query-parallel machine
reading comprehension framework, which predicts
all entities simultaneously and is applicable to
both resource-rich and resource-limited settings.
Specifically, we introduce the query-parallel en-
coder, which leverages the query-segmented atten-
tion mechanism to facilitate more straightforward
generalization to new entity types. Additionally, we
propose the query-conditioned biaffine predictor,
which enables parallel prediction of entities. The
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model is trained with parameter-efficient technique
for data-efficiency. Extensive experimentation has
shown that our approach attains a faster inference
speed, exhibits competitive performance against
strong baselines in resource-rich setting, and yields
state-of-the-art outcomes in low-resource contexts,
including training-from-scratch, in-domain trans-
fer, and cross-domain transfer tasks.

Limitations

In this work, we propose a query-parallel machine
reading comprehension framework for NER task,
which extracts multiple entity types simultaneously
and achieve promising results for both resource-
rich and resource-limited settings. In this approach,
each query is semantically isolated, responsible
for giving semantic signals to the pretrained lan-
guage model and extracting entities of its type. The
method is effective in low-resource settings when
the entity type name is semantically unambiguous,
but encounters difficulties otherwise, such as facing
the miscellaneous other-class words. Thus, further
research is needed to determine how to address
these entity types and improve the performance of
the model. Moreover, in QPMRC-NER, the input
length restriction imposed by pretrained language
models limits the number of parallel processed
queries. To handle fine-grained entity extraction
with a large number of entity types, segmentation
of queries into multiple groups and separate encod-
ing becomes necessary. Another potential approach
is using a lightweight model to filter out irrelevant
entity types for each sentence, thereby retaining
only a small subset of entity type candidates. This
avenue of investigation is left for future research.
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A Hyper-parameters

The detailed hyper-parameters used in our model
are listed in Table 7. For the parameter-efficient
tuning module UNIPELT (Mao et al., 2022), we
adopt the original hyper-parameter settings.

Hyper-parameter Value

General
predictor hidden size 300
prefix length 10
adapter bottleneck size 48
LoRA rank 8
prompt length 10
learing rate [8e-5, 1e-4, 1.2e-4]
batch size 32
auxiliary task coefficent [0.1, 1]
warmup ratio 0.01

Resource-limited Setting
max steps [10000, 20000]
restart steps [2000, 3000]

Resource-rich Setting
epochs 100
restart epoch 1

Table 7: Hyper-parameters for our model

B Baselines

We use the following methods as baselines:
BiLSTM-CRF (Ma and Hovy, 2016) treats

NER as a sequence labeling task utilizing BiLSTM
and CRF.

BERT-Tagger (Devlin et al., 2019) treats NER
as a sequence labeling task utilizing BERT.

BERT-MRC (Li et al., 2020) formulates NER as
a machine reading comprehension task. It extracts
entities from the context based on manually-crafted
queries representing different entity types.

Pyramid (Wang et al., 2020) a layered neural
model for nested entity recognition, which permits
each decoding layer to consider the global informa-
tion from both the upper and lower layers.

BARTNER (Yan et al., 2021) formulates NER
as an entity span generation task utilizing a
sequence-to-sequence model with pointer mech-
anism.

TemplateNER (Cui et al., 2021) is a template-
based method which treats NER as a language
model ranking problem within a sequence-to-
sequence framework and is designed for low-
resource NER.

LightNER (Chen et al., 2022) formulates NER
as an entity span sequence generation task. It
adopts a sequence-to-sequence model with pointer
and pluggable prompting mechanism to tackle low-
resource NER task.

PIQN (Shen et al., 2022) treats NER as a span
prediction problem by setting up learnable instance
queries to extract entities from a sentence simulta-
neously.

DoSEA (Tang et al., 2022) treats NER as a ma-
chine reading comprehension based framework and
is designed for cross-domain NER task. It is able to
recognize distinctions that are domain-specific and
mitigate the subtype conflicts between domains.

Boundary Smoothing NER (BS-NER) (Zhu
and Li, 2022) treats NER as a span prediction prob-
lem and proposes the boundary smoothing regu-
larization technique to boosting the model perfor-
mance.

C Parameter-Efficient Tuning with
UNIPELT

The UNIPELT (Mao et al., 2022) is utilized in our
model as the parameter-efficient transfer learning
component as illustrated in Figure 4, as it is able to
adapt to the data or task setup dynamically. It in-
corporates three existing parameter-efficient tuning
methods including Adapter (Houlsby et al., 2019) ,
Prefix-tuning (Li and Liang, 2021) and LoRA (Guo
et al., 2021; Hu et al., 2021) as sub-modules and
controls them via gating mechanism.

Add & Norm

Adapter

Add & Norm

FeedForward

Add & Norm

Unidirectional Multi-head Attention

Prefix Tuning

LoRA Gate

Gate

Gate

Figure 4: Illustration of the UNIPELT-enhanced trans-

former layer used in the query-parallel encoder
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Adapter (Houlsby et al., 2019) augments the
Transformer layer of the pretrained language model
with a trainable bottleneck layer. This layer con-
sists of a pair of down+up projections which reduce
and then recover the size of the token hidden states.
Mathematically, it could be denoted as:

HA = W⊤
upϕ(W

⊤
downHF ) (13)

Prefix-tuning (Li and Liang, 2021) enhances
the multi-head self-attention in each Transformer
layer by adding of a number of trainable vectors to
the input, allowing the original tokens to attend to
virtual tokens as if they are real.

LoRA (Guo et al., 2021; Hu et al., 2021) intro-
duces trainable low-rank matrices and utilizes them
to update the Query Q and Value V in multi-head
self-attention in each Transformer layer, which can
be formulated as:

Q = (W⊤
Q + αqW

q⊤
up W q⊤

down)Hin (14)

V = (W⊤
V + αvW

v⊤
up W v⊤

down)Hin (15)

Gating Mechanism The UNIPELT adds a
trainable gate Gmi for each sub-module mi ∈
{Adapter, PrefixTuning, LoRA} in the Trans-
former layer to achieve fine-grained control over
these sub-modules. The gate output would be
higher if its corresponding sub-module is more
useful for the task.

Specifically, for adapter, we feed its direct input
HF to a feedforward network to get the gating
estimation GA ∈ (0, 1). Then the output of adapter
with gating mechanism HAG would be:

HAG = GAHA +HF (16)

Similarly, for prefix-tuning, gating function GP

is applied to the prefix vectors PK and PV . As for
LoRA, the hyper-parameter α is substituted by the
gating function GL.
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