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Abstract

Recent approaches to word sense disambigua-
tion (WSD) utilize encodings of the sense gloss
(definition), in addition to the input context, to
improve performance. In this work we demon-
strate that this approach can be adapted for use
in multiword expression (MWE) identification
by training models which use gloss and con-
text information to filter MWE candidates pro-
duced by a rule-based extraction pipeline. Our
approach substantially improves precision, out-
performing the state-of-the-art in MWE iden-
tification on the DiMSUM dataset by up to
1.9 F1 points and achieving competitive results
on the PARSEME 1.1 English dataset. Our
models also retain most of their WSD perfor-
mance, showing that a single model can be used
for both tasks. Finally, building on similar ap-
proaches using Bi-encoders for WSD, we intro-
duce a novel Poly-encoder architecture which
improves MWE identification performance.

1 Introduction

Word sense disambiguation (WSD), the task of pre-
dicting the appropriate sense for a word in context,
and multiword expression (MWE) identification,
the task of identifying MWEs in a body of text,
both deal with determining the meaning of words
in context (Maru et al., 2022; Constant et al., 2017).
They have traditionally been treated as separate
tasks, but this is potentially disadvantageous as
WSD performed on words which are part of unrec-
ognized MWEs cannot produce correct meanings,
and the meanings of polysemous MWEs are am-
biguous even after identification. For example, the
sentence “She inherited a fortune after her grand-
father kicked the bucket” tells us that someone’s
grandfather has died, but we would not expect to
find meanings associated with death in the sense
inventories of either kick or bucket. WSD cannot

*Both authors contributed equally to this work.

capture the meanings of these words in context un-
less the relevant MWE is identified first. However,
like many MWEs, kick the bucket can have a literal,
non-compositional meaning as in “He kicked the
bucket down the hill,” so we also cannot indiscrim-
inately mark all combinations of words in known
MWEs as MWEs. MWEs can also have multiple
possible senses in the same way words can: break
up can refer both to objects physically breaking
apart and romantic relationships ending, so even in
cases where it is correctly identified as a MWE its
meaning is ambiguous without WSD. Identifying
the meanings of all words in a sentence requires
solving these tasks together.

WSD and MWE identification can be used in pre-
processing to improve performance of downstream
tasks such as machine translation or information
extraction (Zaninello and Birch, 2020; Song et al.,
2021; Barba et al., 2021a). They also have more di-
rect applications in helping language learners – for
whom MWEs are particularly challenging (Chris-
tiansen and Arnon, 2017; Pulido, 2022) – under-
stand the meaning of words or MWEs in context.

In this paper, we propose a system that tackles
these tasks together, using a MWE lexicon and rule-
based pipeline to identify MWE candidates and a
trainable model to both perform WSD and filter
MWE candidates. Our model is a modified Poly-
encoder (Humeau et al., 2020), a natural exten-
sion of previous work using Bi-encoders for WSD
(Blevins and Zettlemoyer, 2020; Kohli, 2021). Uti-
lizing gloss information1 allows our model to con-
sider the meaning of MWEs and filter out candi-
dates where the constituents of a MWE are present
but the MWE meaning does not fit the context,
such as the aforementioned literal usage of kick
the bucket. Our method improves precision and
achieves state-of-the-art F1 for MWE identification

1For example, in “The couple broke up amicably”, the
gloss, or definition, of the sense of break up is “discontinue
an association or relation; go different ways.” (Miller, 1995)
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on the DiMSUM dataset (Schneider et al., 2016)
and competitive performance on the PARSEME
1.1 English data (Ramisch et al., 2018). To the
best of our knowledge, this work is the first to use
glosses as a resource for MWE identification. Our
contributions are summarized as follows:

• We present a system which solves MWE iden-
tification and WSD together, achieving state-
of-the-art results for MWE identification on
DiMSUM and only 6% less F1 for WSD than
an equivalent single-task model

• We propose a novel Poly-encoder architecture
which outperforms standard Poly-encoders on
both tasks, and Bi-encoders on PARSEME
MWE identification

• We explore why our system performs well
and where it falls short through ablations and
a detailed error analysis with examples

We make all of our code, models and data public2.

2 Related Work

2.1 Word Sense Disambiguation
Until the last few years, most approaches to WSD
treated senses only as one of many possible labels
in a classification task. This formulation limits
the information available to the model about each
sense to only what is learnable from the training
data, and can lead to poor performance on rare or
unseen senses. To mitigate these problems, recent
approaches have improved performance by incor-
porating sense glosses (Blevins and Zettlemoyer,
2020; Barba et al., 2021a; Zhang et al., 2022).

Our work is inspired by this methodology and
utilizes gloss information to improve MWE iden-
tification. In particular, Blevins and Zettlemoyer
(2020) demonstrate that a simple Bi-encoder model
consisting of two BERT (Devlin et al., 2019) mod-
els can achieve competitive WSD performance,
with Kohli (2021) improving Bi-encoder training
for WSD and Song et al. (2021) achieving further
performance gains through improved sense repre-
sentations. Bi-encoder models are also particularly
efficient at inference time because gloss represen-
tations can be computed in advance and cached.

2.2 Poly-encoders
The Poly-encoder architecture was proposed by
Humeau et al. (2020) as a middle ground between

2Code, data and links to models available at
https://github.com/Mindful/MWEasWSD

Bi-encoders and Cross-encoders (which jointly en-
code all possible input pairs), retaining the speed
advantage of the Bi-encoder, but allowing infor-
mation to flow between the two encoder outputs
like the Cross-encoder. It can be used in place of
a Bi-encoder in tasks such as information retrieval
(Li et al., 2022) text reranking (Kim et al., 2022),
or in our case MWE identification and WSD.

2.3 Multiword Expression Identification

Precisely defining what constitutes a MWE has
proven to be difficult (Maziarz et al., 2015), but
they can be broadly defined as groupings of words
whose meaning is not entirely composed of the
meanings of included words (Sag et al., 2002; Bald-
win and Kim, 2010). This includes idioms such as
a taste of one’s own medicine, verb-particle con-
structions such as break up or run down, compound
nouns such as bus stop, and any other grouping of
words with non-compositional semantics. In fact,
a significant portion of noun MWEs are named
entities (Savary et al., 2019).

The task of MWE identification is locating these
MWEs in a given body of text. Common ap-
proaches to solving MWE identification include
rule-based systems (Foufi et al., 2017; Pasquer
et al., 2020), CRF-based systems (Liu et al., 2021),
and token tagging systems (Rohanian et al., 2019).
Rule-based systems remain competitive with neu-
ral models in this task, and many systems including
ours use MWE lexicons in order to identify MWEs,
which Savary et al. (2019) argue are critical to mak-
ing progress in MWE identification. Kurfalı and
Östling (2020) and Kanclerz and Piasecki (2022)
are similar to our work in that they frame the task
of MWE identification as a classification problem,
although neither use gloss information.

Among all the types of MWEs, verbal MWEs are
particularly difficult to identify due to their surface
variability — constituents can be conjugated or sep-
arated so that they become discontinuous (Pasquer
et al., 2020). Much work on verbal MWE identifi-
cation, especially in languages other than English,
has been done as part of recent iterations of the
PARSEME shared task (Ramisch et al., 2018).

3 Methodology

In this section, we explain how our models perform
MWE identification and WSD, and how our MWE
identification pipeline works.
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Figure 1: Each model scoring the MWE take advantage. “Draw advantage from” is the gloss for one possible sense. The gloss
encoder produces sense representations rs using the [CLS] embedding in all models. The MWE representation rw is an average
of constituents for the Bi-encoder and the combination of attention for each code for the Poly-encoder. The DCA Poly-encoder
learns separate codes for target and non-target tokens, allowing it to attend differently to the MWE and surrounding context.
Scores are the similarity between rs and rw computed as the dot product, and the model predicts the sense with the highest score.

3.1 Bi-encoder

Bi-encoders for WSD, as defined by Blevins and
Zettlemoyer (2020), consist of two BERT (De-
vlin et al., 2019) models: a context encoder Tc

and gloss encoder Tg, which embed the context
and sense glosses into the same embedding space.
Given an input sentence c = (w0, ...wn) containing
the target words to disambiguate, we first tokenize
it and use the context encoder to produce represen-
tations for each token. Because tokenization may
break words or MWEs up into multiple subwords,
word or MWE representations rw are computed as
an average of all included subwords.

Tc(c) = t0, ...tn

rw =
1

|w|
∑

t∈w
t

Then, for each target word or MWE, the gloss en-
coder produces a sense representation rs for each
possible sense by encoding its gloss and taking the
[CLS] token embedding.

rs = Tg(gs)[0]

Scores corresponding to possible senses for each
target word are computed as the dot product sim-
ilarity of the word and sense representations, and
the model predicts the highest scoring sense.

ϕ(w, si) = rw · rsi
pred(w) = argmax

si
ϕ(w, si) : si ∈ Sw

3.2 Poly-encoder
Like the Bi-encoder, the Poly-encoder has a con-
text encoder Tc for target word contexts and a
gloss encoder Tg for glosses. There is also a new
set of parameters that Humeau et al. (2020) refer to
as code embeddings, Q. These codes are used as
queries to extract information from context repre-
sentations produced by the context encoder. The
inputs to the Poly-encoder are the same as to the
Bi-encoder, sense representations rs are computed
identically, and predictions are still the highest scor-
ing sense. However, senses are scored differently.

We take the last hidden state of the context en-
coder as the context representation rc = Tc(c),
which we use along with the code embeddings
Q = (q1, ..., qm) in the first dot-product attention
step (code context attention) of the Poly-encoder.
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We use a different set of embeddings for single
words and MWEs. The number of embeddings, m,
is a hyperparameter and their dimensionality is the
same as the encoders’ hidden sizes. The context
representation rc is used as both keys and values in
this dot-product attention module, yielding a code
attended context Yctxt. The representation a code
qi extracts is as follows:

(wqi
0 , ..., w

qi
n ) = softmax(qi · rc1 , ...qi · rcn)

yictxt =
n∑

j=1

wqi
j rcj

Sense representations rs are then used as queries
and the code-attended context representations Yctxt
are used as keys and values in a final dot-product
attention module, yielding a gloss attended code-
context. For a given sense s of a word or MWE:

(w1, ..., wm) = softmax(rs · y1ctxt, ..., rs · ymctxt)

ysfinal =

m∑

i=1

wiy
i
ctxt

We then take the dot product of the gloss at-
tended code-context yfinal and each gloss embed-
ding rs0 , ...rsk , yielding a score for each gloss:
ϕ(w, si) = yfinal · rsi .

3.3 Distinct Codes Attention

Since the Poly-encoder was originally designed to
compute sentence representations, it contains no
mechanism for explicitly focusing on a specific set
of target words/subwords. To address this prob-
lem, we propose a variation of the Poly-encoder
which we call “distinct codes attention” (DCA).
We change the code context attention step of the
Poly-encoder so that it can attend differently to tar-
get words and the surrounding context, using two
sets of code embeddings: one set for target words,
Qt and one set for non-target words Qnt. Since we
also maintain different code embeddings for single
words and MWEs, this gives us a total of four sets
of code embeddings.

In the first attention module, code-context atten-
tion, we construct two key matrices, one to be used
with the target code queries Qt and one to be used
with the nontarget code queries Qnt. First we cre-
ate two masks which pick out target or nontarget
subwords: the target mask Mt, which is 1 at the
indices of target subwords and 0 otherwise, and the
nontarget mask Mnt which is the opposite. We then

multiply each mask by the encoded context rc to
get target and nontarget key matrices Kt = Mtrc
and Knt = Mntrc. Next we compute target and
nontarget query results (QKT ) and add them.

QKT = QtK
T
t +QntK

T
nt

Finally, we softmax and multiply QKT by the en-
coded context rc to yield the code attended context,
Yctxt = softmax(QKT )(rc). The gloss attended
code-context and final scores are then computed
identically to the standard Poly-encoder.

3.4 MWE Identification Pipeline

We use a rule-based pipeline inspired by Kulka-
rni and Finlayson (2011) for MWE identification.
First, we compute initial candidates as all com-
binations of words in a sentence whose lemmas
correspond to a MWE in our lexicon. That is, any
group of words that when lemmatized corresponds
to a known MWE, regardless of order or location
in the sentence, is a candidate. This ensures we
rarely miss known MWEs, but also produces many
false positives, such as: in that in “That was back
in 1954, 55 years ago.”

Next, we filter the candidates by removing
MWEs which are out of order or too gappy (>3
words in between constituents), and optionally by
discarding MWE candidates judged to be incorrect
by our DCA Poly-encoder (or other) model. We
refer to the combination of rule-based extraction
and filters with no model as the rule-based pipeline.
Since the model is applied as a final filter after ex-
traction and the other filters, it can only improve
precision. While the heuristic filters involving or-
der and gappyness exclude some valid MWEs as
well, they empirically improved performance on
development data, and the majority of exclusions
made by these filters are correctly removing false
positives from candidate generation as can be seen
in Table 1. Note that many candidates excluded by
one filter would also be excluded by another filter
later in the pipeline.

PARSEME DiMSUM

TN FN TN FN

OrderedOnly 1005 29 427 23
MaxGappiness 1549 52 655 49

Table 1: Tokens excluded by rule-based filters. True
negatives represent correct exclusions (I.E. false positive
candidates), and false negatives incorrect exclusions.
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In cases of overlap between candidates remaining
after filtering, we use only the candidate judged
to be most likely by our model (or least gappy, in
pipelines without models).

3.4.1 Model Filter
Because all of our MWE candidates correpond to
words (and consequently subwords) in the input
sentence, we can produce a representation rw for
each MWE candidate, along with scores for each
of their possible senses, the same way we do for
words. However, since no MWE has a sense cor-
responding to the case where that candidate is a
false positive, we define a special sense sn repre-
senting the case where the candidate is not a MWE.
Since sn has no gloss, we cannot use the gloss
encoder to compute a representation for it, and
instead make this representation a learnable param-
eter matrix rsn , with the same dimensionality as
the model’s hidden size. This can then be used in
our model’s scoring functions to compute a score
for the candidate not being a MWE. When using a
model to filter, we exclude any MWE candidates
whose highest scoring sense is the “not a MWE”
sense sn, retaining only candidates for which the
below is true:

∃si ∈ Sw ϕ(w, si) > ϕ(w, sn)

Note that since this filtering process involves com-
puting scores for all possible senses, it also effec-
tively performs WSD on any polysemous MWEs.

4 Experimental Setup

4.1 Lexicon
We use WordNet (Miller, 1995) as our MWE lexi-
con for all experiments, treating every entry includ-
ing the character “_” as a MWE. All sense glosses
are taken from WordNet 3.0.

4.2 Training Data
We train our models on SemCor (Miller et al.,
1993), a WSD dataset containing a total of 226,036
examples annotated with senses from WordNet. In
order to make the data usable for MWE identifica-
tion in addition to WSD, we preprocess it in the fol-
lowing ways. First, we explicitly mark any words
whose lemma includes the character “_” as MWEs
such that during training the possible labels for
these MWEs also include the “not a MWE” sense.
Since some discontiguous MWEs in SemCor are
labeled only on a subset of the included words,

we add stranded constituents to their parent MWE
by attaching nearby words whose lemmas match
constituents missing from the labeled MWE3. Fi-
nally, because SemCor contains no labeled nega-
tive examples of MWEs — instances where the
constituent words of a MWE are all present but
their meaning in context does not match any of
the MWE senses — we add these ourselves. We
generate synthetic negative examples using the rule-
based pipeline with its filters inverted to mark com-
binations of words whose lemmas correspond to a
known MWE but are out of order or very gappy as
negative examples whose gold label is the “not a
MWE” sense. We randomly add negative examples
in this fashion until they account for just over 50%
of the MWE examples in the training data.

To mitigate the risk of the model learning only
the heuristics used to generate these synthetic neg-
atives, we also manually annotate a small number
of examples. We do this by running the rule-based
pipeline (Section 3.4) on the SemCor data and an-
notating output MWEs with their appropriate sense
from WordNet or the “not a MWE”, sense based
on context. Because we exclude words already
marked as MWEs and many MWEs in SemCor
have already been annotated, >50% of the newly
annotated examples are negative.

Pos MWE Neg MWE

SemCor 12409 0
+Annotation 12907 658

+Synthetic Negatives 12907 14688

Table 2: SemCor after each addition of data

Context MWE Type

What effort do you
make to assess ...

make do Synthetic
Negative

..your in plant feeding
operation?

in operation Annotated
Negative

...works full-time on
some other assignment?

work on Annotated
Positive

Table 3: Examples of each annotation type

4.2.1 Fine-tuning Data
After training on SemCor, we fine-tune on the
MWE identification data in DiMSUM/PARSEME.
We use any labeled examples of MWEs which are

3For example, in “Are they encouraged to take full legal
advantage of these benefits?” (ID d000.s015), the verb take is
correctly labeled as the MWE take_advantage, but advantage
is not labeled as being part of any MWE, so we attach it.
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in our lexicon as positive examples, and then run
our full pipeline (rules+model filter) on the data and
take incorrect outputs as negative examples. This
means that all the negative training examples used
in fine-tuning are false positives from the model
itself, allowing the model to learn from its mis-
takes. Because PARSEME and DiMSUM are not
annotated with sense information (only a binary la-
beling of MWE or not), we use the first sense from
WordNet as the gold label for positive examples
when fine-tuning. For both datasets, we use 10%
of the training data as our development set.

4.3 Training
Like Blevins and Zettlemoyer (2020), we train
with cross-entropy loss. The difference is that for
MWEs, there is one additional possible label rep-
resenting the “not a MWE” case. Given a word or
MWE w, its gold sense gs, and |Sw| = j possible
senses in the lexicon, this formalizes to:

L(w, gs) = −ϕ(w, gs) + log
∑

x∈X
exp(ϕ(w, x))

X =

{
{s0, ...sj , n} if MWE
{s0, ...sj} otherwise

We train for 15 epochs on SemCor and three epochs
for fine-tuning, computing F1 on the WSD and
MWE identification dev sets once per epoch and
use the best performing model as our final model.
Batch size and other hyperparameters such as learn-
ing rate were determined by hyperparameter search.
Further implementation and training details can be
found in Appendix A.

4.4 MWE Identification Evaluation
We evaluate our system on the English section of
the PARSEME 1.1 Shared Task (Ramisch et al.,
2018) and the DiMSUM dataset (Schneider et al.,
2016). We do not evaluate on STREUSLE (Schnei-
der et al., 2018) as it requires predicting lexical
categories and supersenses4, while our system pre-
dicts only the presence or absence of MWEs. To
measure WSD performance, we use the evaluation
framework established by Raganato et al. (2017)
and evaluate on the English all-words task.

4.4.1 PARSEME 1.1
The PARSEME data focuses on verbal MWEs,
containing 3471 sentences in the training set and

4The STREUSLE evaluation script rejects input without
appropriate lexical categories/supersenses

3965 in test. Because the data contains only verbal
MWEs, when evaluating on PARSEME we limit
the output of our pipeline to verbal MWEs.

4.4.2 DiMSUM
The DiMSUM data consists of online reviews,
tweets and TED Talks which have been annotated
with MWEs and other information. There are 4799
sentences in the training set, and 1000 in the test
set. Because noun phrases are marked as MWEs
in DiMSUM, when evaluating on DiMSUM our
pipeline also marks consecutive nouns as MWEs.

4.5 WSD Evaluation
Following standard practice, we use the SemEval-
2007 dataset (Pradhan et al., 2007) as our dev set,
holding out the remaining Senseval-02, Senseval-
03, SemEval-2013, and SemEval-2015, as test sets
(Palmer et al., 2001; Snyder and Palmer, 2004;
Navigli et al., 2013; Moro and Navigli, 2015).

5 Results

Table 4 shows MWE identification performance for
the rule-based pipeline (Section 3.4), and the same
pipeline with the DCA Poly-encoder included as a
final filter for various training data. Comparisons
to the Bi-encoder and standard Poly-encoder can
be found in Section 6.1, or in detail in Appendix C.

Our system achieves moderate performance on
PARSEME and competitive performance on the
DiMSUM trained only on the modified SemCor
data. When fine-tuned on both MWE identifica-
tion datasets it further improves, reaching state-of-
the-art performance on DiMSUM. Systems fine-
tuned on either PARSEME or DiMSUM alone per-
form even better on their corresponding test set, but
worse on the other test set, likely due to differences
in domain and MWE type between the datasets.

High precision stands out as a strength of our
approach, but it suffers from low recall — even the
rule-based pipeline with no model filter lags behind
other systems in recall. We attribute this mainly to
the issue of lexicon dependence described in Sec-
tion 8; MWEs missing from our lexicon account
for a majority of our false negatives as we show
in our error analysis (Section 6.2). These findings
echo Savary et al. (2019) on the importance of lexi-
cons for MWE identification, and suggest that there
is room to improve performance by expanding the
lexicon. While it is difficult to pinpoint exactly why
we achieve state-of-the-art F1 on DiMSUM and not
PARSEME, one significant difference is that more
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PARSEME 1.1 DiMSUM

MWE-based Token-based System MWEs
P R F P R F P R F
– – 36.0 – – 40.2 Taslimipoor+ (2019) Kirilin+ (2016) 73.5 48.4 58.4
– – 41.9 – – – Rohanian+ (2019) Williams (2017) 65.4 56.0 60.4

36.1 45.5 40.3 40.2 52.0 45.4 Liu+ (2021) 47.9 52.2 50.0
16.3 39.9 23.1 19.2 43.9 26.7 Rule-based Pipeline 57.7 55.5 56.6
28.2 38.5 32.5±0.4 30.7 39.0 34.3±0.4 Rules + DCA (S) 70.9 53.0 60.6±0.1

35.7 39.3 37.4±0.6 37.7 38.6 38.1±0.4 Rules + DCA (S/D) 78.2 51.8 62.3±0.1

47.1 33.8 39.4±0.3 48.3 32.1 38.6±0.2 Rules + DCA (S/P ) 75.7 49.4 59.8±0.1

45.4 33.2 38.3±0.1 46.9 31.9 38.0±0.2 Rules + DCA (S/P/D) 80.4 49.5 61.3±0.4

Table 4: Test set results on PARSEME 1.1 English and DiMSUM for MWE identification. All DCA poly-encoder
models function as a final filter after the rule-based pipeline. Training data is listed in parenthesis: S=SemCor,
P=PARSEME, D=DiMSUM. For trainable models we report the mean (± standard deviation for the F1 score) of
three runs with random seeds. Because our system uses gold POS tags/lemmas to look up sense glosses, we compare
against systems using gold information where available, such as for Liu et al. (2021) and Kirilin et al. (2016).

than 40% of the DiMSUM test set MWEs are noun
phrases, most of which we can detect without rely-
ing on a lexicon (as described in Section 4.4.2). For
PARSEME, we must always rely on our lexicon.

5.1 WSD Performance

We compare performance on the English WSD all-
words task to Blevins and Zettlemoyer (2020), a
similar Bi-encoder system trained only for WSD.
Recent work in WSD has achieved higher scores
(Barba et al., 2021b), but our goal is to understand
how the addition of the MWE identification task
affects WSD performance.

System F1 System F1
Blevins+ 79.0 PolyEnc (S) 73.8±0.2

DCA (S) 77.2±0.1 BiEnc (S) 77.4±0.6

DCA (S/P/D) 74.4±0.6 BiEnc (S/P/D) 74.2±1.0

Table 5: English WSD all-words task F1.

Our system retains most but not all of its WSD
performance: F1 is 2% lower when trained on our
modified SemCor data and 6% lower when fine-
tuned on PARSEME+DiMSUM. We attribute this
drop in F1 from fine-tuning to potentially confus-
ing labels in the fine-tuning data: the gold label of
positive examples is always the MWE’s first sense,
which may be incorrect for polysemous MWEs,
and as we show in Section 6.2, many negative ex-
ample MWEs actually have senses appropriate for
the context they are in. Consequently, the model
cannot rely entirely on matching sense glosses to
input contexts for this data and may forget some

knowledge useful for WSD.
Comparing models, the DCA Poly-encoder out-

performs the standard Poly-encoder on WSD, but
its performance does not significantly differ from
the Bi-encoder. We leave Poly-encoder architec-
tures better suited for WSD to future work.

6 Analysis

6.1 MWE Identification Ablations

System PARSEME ∆ DiMSUM ∆

Rules+DCA 38.3 – 61.3 –
-SemCor Data 26.0 -12.3 56.8 -4.5
-Rule Filters 35.5 -2.8 61.8 +0.5
Rules+BiEnc 36.5 -1.8 61.3 –
Rules+PolyEnc 34.0 -4.3 60.3 -1

Rules 23.1 – 56.6 –
-Filters 14.4 -8.7 47.75 -8.9

Table 7: MWE identification F1 for ablations. Aside
from the ablation removing SemCor data, all models are
trained on SemCor+PARSEME+DiMSUM.

Pretraining using the modified SemCor data is im-
portant; training only on the MWE identification
datasets substantially reduces performance. Intu-
itively, this can be thought of as the model needing
to learn how to encode context words and sense
glosses before learning to apply that knowledge to
MWE identification.

5Output for the rule-based pipeline with no filters was
invalid according to the DiMSUM grader and had to be ap-
proximated, so it may be off by 1-2 F1 points.
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Dataset Type Sentence Note

PARSEME FP ...were propped up on a foot-warmer, ... prop up never marked as MWE in dataset
PARSEME FN Never mind, Mrs. Bray will join you later. never mind missing from lexicon
PARSEME FP ...his mind drifted off to the accounts... drift off sense “fall asleep” does not apply
PARSEME TN textit...as we sat side by side... sit by sense “be inactive” does not apply
DiMSUM FP Aww, thank you. thank you marked as MWE in 4 other sentences
DiMSUM FN All our dreams can come true,... come true missing from lexicon
DiMSUM FN ...this was a breathe of fresh air. Present in lexicon; model filter false negative
DiMSUM TN ...impact my wardrobe has on the environment. have on sense “dress in“ does not apply

Table 6: Representative errors (FP/FN) and incorrect MWEs successfully excluded by the model filter (TN)

We also see that while removing rule-based fil-
ters from the DCA pipeline lowers PARSEME F1,
it slightly raises DiMSUM F1, suggesting that the
necessity of these filters depends on the data. How-
ever, removing the rule-based filters only works
because the DCA Poly-encoder can accurately ex-
clude false positives: removing the same filters
from the purely rule-based pipeline results in a
very low F1. Finally, the DCA Poly-encoder sub-
stantially outperforms the standard Poly-encoder
(PolyEnc) on both datasets and surpasses the Bi-
encoder on PARSEME, demonstrating that our
DCA Poly-encoder model can improve MWE iden-
tification performance.

6.2 Error Analysis

We perform an error analysis on the output of our
SemCor trained and fine-tuned models on both test
sets, taking 50 false positives and 50 false negatives
from each combination of model and dataset (for
a total of 400 examples). Select examples can be
seen in Table 6, and detailed statistics about the out-
come of our analysis can be found in Appendix B.

We find that for >80%6 of false positives a sense
from our lexicon was appropriate for the given
context, but the target words were not marked
as a MWE in the data. Many of these MWEs
were present in our lexicon but nowhere in the test
set, suggesting discrepancies between the scope
of what WordNet and these datasets respectively
define as MWEs. However, there were also a num-
ber of false positives that are marked as MWEs in
other places in the dataset. This could happen if
these combinations of words were only marked as
MWEs when they had specific meanings or partic-
ularly non-compositional semantics, but this was
not the case for the examples we examined. These
results speak to the difficult and potentially subjec-
tive nature of annotating MWEs, and we hope to

6Computed excluding false-positives from the DiMSUM
noun phrase detector, which does not use the lexicon

see work exploring this area in the future.
For false negatives, >85% were cases where

the target MWE was missing from the lexicon, con-
firming that the bottleneck for recall is our system’s
lexicon. For the majority of the remaining false neg-
atives, an appropriate sense for the given context
was present in our lexicon, meaning that these were
failures of our MWE identification system and not
the lexicon. However, the fact that errors in match-
ing meaning to context account for <20% of false
positives and <15% of false negatives shows that
our model has successfully learned how to judge
whether a group of words constitutes a MWE with
a given meaning. See Table 6 true negatives for
examples of MWEs excluded based on meaning.

7 Conclusion

In this work, we present an approach to MWE
identification using rule-based candidate extraction
with a model filter, achieving strong results on the
PARSEME 1.1 English data and state-of-the-art
results for MWE identification on the DiMSUM
dataset. Our system performs both MWE identifica-
tion and WSD with the same model, demonstrating
that these tasks can be tackled together. We also in-
troduce a modified Poly-encoder architecture better
suited to MWE identification.

Our system’s strength is its high precision for
MWE identification. We show its low recall to be
a function of lexicon size, and in future work we
intend to expand the lexicon by mining MWEs and
generating glosses for them, which has the potential
to substantially increase recall for lexicon-based
systems. Improved approaches for multitask train-
ing of MWE identification/WSD models could also
be valuable; the ideal pipeline would be competi-
tive with state-of-the-art systems in both tasks, and
not just MWE identification.

Ideal applications of our system include MWE
identification when a lexicon of target MWEs is
available, or cases where quickly performing both
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MWE identification and WSD is valuable, such as
in language learning and assisted reading tools.

8 Limitations

While our system performs well, the output of our
MWE pipeline is limited to MWEs that are present
in our lexicon or detectable with simple rules. Fur-
thermore, because our model uses gloss text as
input, we cannot effectively filter MWE candidates
without sense glosses. Consequently, our approach
to MWE identification depends on the presence of a
high-quality lexicon which includes MWE lemmas
and sense glosses, making it ill-suited for scenarios
where data like this may not be available yet, such
as in low resource languages. However, we are opti-
mistic that work in MWE discovery (Ramisch et al.,
2010) and gloss/definition generation (Bevilacqua
et al., 2020) will help to mitigate this problem by
automating parts of the data creation process.
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A Implementation Details

Bi-encoder and Poly-encoder models are imple-
mented and trained with Pytorch Lightning (Falcon
and The PyTorch Lightning team, 2019), using
pretrained BERT models from the Transformers
library (Wolf et al., 2020). In particular, we use
bert-base-uncased as the base model for both en-
coders. We define batch size by the number of
training examples (words or MWEs to be labeled)
in each batch, and keep this number constant by ad-
justing the number of sentences and/or masking out
examples to save them for the next batch. Our ef-
fective batch size is 32. All models were trained on
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a single GeForce GTX TITAN X GPU, with hyper-
parameters tuned using Weights & Biases (Biewald,
2020) to run random sweeps and track performance.
Separate sweeps were run for the Bi-encider and
Poly-encoder, each having a maximum of 20 runs
and using early stopping to terminate runs with
poor performance. Our total compute time was ap-
proximately 160 days, though this would have been
significantly lower using a newer model of GPU.
Our models have 220M parameters, and fully train-
ing for 15 epochs on the modified SemCor data
takes approximately 1.2× 1017 FLOPS. We used
Prodigy (Montani and Honnibal) as our annotation
tool. Further detail, including all training hyperpa-
rameters and instructions for reproduction, can be
found in our published code.

B Error Analysis Details

This appendix contain details about the frequency
with which we found various types of false posi-
tives or false negatives in our error analysis.

B.1 PARSEME

In the table below, Def? represents the % of false
positives where a sense appropriate for the pre-
dicted MWE was present in our lexicon. MWE?
represents the % of false positives where the MWE
was present in other sentences in the dataset, and
the % of false negatives where it was present in our
lexicon, respectively.

False Positives False Negatives
Model Def? MWE? MWE?

SemCor 90% 16% 6%
fine-tuned 90% 34% 16%

Table 8: PARSEME Error Analysis

B.2 DiMSUM

Our results on DiMSUM are similar to those of
PARSEME, except that for the system using the
SemCor model 22% of the false positives were
from the rule-based consecutive noun tagger, with
that number increasing to 56% for the fine-tuned
model (the false positive rate drops substantially
after fine-tuning the filtering model as can be seen
in Table 4, which leads to these errors account-
ing for a higher percentage of total false positives).
The Def? and MWE? percentages for false pos-
itives in the below table are computed excluding
consecutive noun tagger false positives.

False Positives False Negatives
Model Def? MWE? MWE?

SemCor 92% 56% 4%
fine-tuned 81% 63% 12%

Table 9: DiMSUM Error Analysis

C Detailed Performance

Table 10 below contains full scores for systems
omitted from the main paper for brevity.
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System PARSEME 1.1 DiMSUM WSD
MWE-Based Token-based MWEs

P R F1 P R F1 P R F1 F1
Rules (no filters) 8.8 38.9 14.4 12.0 49.9 19.3 40.5∗ 58.0∗ 47.7∗ –
Rules (both filters) 16.3 39.9 23.1 19.2 43.9 26.7 57.7 55.5 56.6 -
BiEnc (S) 27.5 38.8 32.2±0.8 30.0 39.43 34.1±0.3 70.7 52.57 60.0±0.4 77.4±0.6

BiEnc (S/P/D) 44.5 31.0 36.5±0.9 46.4 30.5 36.2±0.8 80.9 49.3 61.3±0.4 74.2±1.0

PolyEnc (S) 27.1 36.1 30.9±0.3 29.8 37.1 33.0±0.2 69.7 51.7 59.3±0.2 73.8±0.2

PolyEnc (S/P/D) 37.7 31.0 34.0 ±0.7 40.7 31.2 35.3±0.4 78.0 49.1 60.3±0.2 66.0±0.2

DCA (S) 28.2 38.5 32.5±0.4 30.7 39.0 34.3±0.4 70.9 53.0 60.6±0.1 77.2±0.1

DCA (S/D) 35.7 39.3 37.4±0.6 37.7 38.6 38.1±0.4 78.2 51.8 62.3±0.1 75.6±0.1

DCA (S/P ) 47.1 33.8 39.4±0.3 48.3 32.1 38.6±0.2 75.7 49.4 59.8±0.1 76.4±0.1

DCA (S/P/D) 45.4 33.2 38.3±0.1 46.9 31.9 38.0±0.2 80.4 49.5 61.3±0.4 74.4±0.6

DCA (S/P/D, no filters) 40.2 31.8 35.5±0.9 42.7 31,4 26.2±0.5 80.0 50.4 61.8±0.5 74.4±0.6

DCA (P/D) 25.4 26.8 26.0 28.5 27.9 28.2 74.7 45.7 56.8 39.5

Table 10: Test set results on PARSEME 1.1 English and DiMSUM for MWE identification, and the English
all-words WSD task. For MWE identification, all Bi-encoder (BiEnc) and and Poly-encoders (PolyEnc/DCA)
function as a final filter in the rule-based pipeline. Letters after system entries indicate training data, where S =
SemCor, P = PARSEME and D = DiMSUM. For example, (S/P/D) means trained on SemCor and finetuned
on PARSEME and DiMSUM. Scores marked with the asterisk ∗ come from pipeline configurations that did not
produce valid output according to the DiMSUM scorer and had to be approximated, so they may be off by 1–2 F1
points.
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