
Findings of the Association for Computational Linguistics: EMNLP 2023, pages 2312–2333
December 6-10, 2023 ©2023 Association for Computational Linguistics

Generative Calibration for In-context Learning

Zhongtao Jiang1,2, Yuanzhe Zhang1,2, Cao Liu3, Jun Zhao1,2, Kang Liu1,2,4

1The Laboratory of Cognition and Decision Intelligence for Complex Systems,
Institute of Automation, Chinese Academy of Sciences

2School of Artificial Intelligence, University of Chinese Academy of Sciences
3Meituan, and 4Shanghai Artificial Intelligence Laboratory

{zhongtao.jiang, yzzhang, jzhao, kliu}@nlpr.ia.ac.cn, liucao@meituan.com

Abstract
As one of the most exciting features of large
language models (LLMs), in-context learning
is a mixed blessing. While it allows users to
fast-prototype a task solver with only a few
training examples, the performance is gener-
ally sensitive to various configurations of the
prompt such as the choice or order of the train-
ing examples. In this paper, we for the first
time theoretically and empirically identify that
such a paradox is mainly due to the label shift
of the in-context model to the data distribution,
in which LLMs shift the label marginal p(y)
while having a good label conditional p(x|y).
With this understanding, we can simply cali-
brate the in-context predictive distribution by
adjusting the label marginal, which is estimated
via Monte-Carlo sampling over the in-context
model, i.e., generation of LLMs. We call our
approach as generative calibration. We con-
duct exhaustive experiments with 12 text classi-
fication tasks and 12 LLMs scaling from 774M
to 33B, generally find that the proposed method
greatly and consistently outperforms the ICL
as well as state-of-the-art calibration methods,
by up to 27% absolute in macro-F1. Mean-
while, the proposed method is also stable under
different prompt configurations. 1

1 Introduction

The learning paradigm has revolutionized in the era
of large language models (LLMs), in which one
of the most exciting is in-context learning (ICL)
(Brown et al., 2020). Compared to regular su-
pervised learning, LLMs can learn implicitly by
prompting a few training examples as demonstra-
tions, i.e., in context. This paradigm allows users
including amateurs to fast-prototype a task solver
with much less annotated data, while sometimes
also gaining remarkable performances.

There are plenty of studies empirically analyz-
ing ICL (Zhao et al., 2021; Lu et al., 2021; Min

1Code implementation is available at https://github.
com/changmenseng/generative_calibration.

et al., 2022; Kim et al., 2022; Wei et al., 2023).
Notably, ICL is found to be pathogenically sensi-
tive to the prompt configuration, e.g., the template,
choice, and even the order permutation of the train-
ing examples can cause the performance to vary
from nearly chance to state-of-the-art (Gao et al.,
2020; Zhao et al., 2021; Lu et al., 2021). This in-
stability motivates lots of efforts on searching for a
better prompt in terms of better few-shot training
examples (Rubin et al., 2021; Liu et al., 2021; Su
et al., 2022; Wu et al., 2022; Wang et al., 2023),
better order permutation of those examples (Lu
et al., 2021; Wu et al., 2022), and slot position
in the template (Holtzman et al., 2021; Min et al.,
2021). Another promising direction is calibration
(Zhao et al., 2021; Han et al., 2022; Fei et al., 2023)
that adjusts the ICL predictive distribution via an
estimated bias. Compared with prompt optimiza-
tion methods, such a stream is usually much more
lightweight and gains substantial and consistency
improvement, while also reducing the instability.
However, many of those ideas are based on heuris-
tic intuitions, and there are few principled investi-
gations characterizing how the prompt affects the
predictive distribution.

This paper fills this gap. In specific, we focus on
the text classification task. We study the in-context
model p(x, y), i.e., the joint distribution of the in-
put x and label y given a prompt consisting of a
few training examples, while the true data distribu-
tion is denoted as q(x, y). Specifically, we identify
that the in-context model p(x, y) poses label shift
(Saerens et al., 2002) to the data distribution q(x, y)
both theoretically and empirically. Our theoretical
analysis (Section 3.1) is based on the Bayesian in-
terpretation of ICL (Xie et al., 2021; Wang et al.,
2023), showing that the in-context model p(x, y) is
not ensured to be a valid estimate of the true data
distribution q(x, y), due to the prior preference of
LLMs and the limited amount of training examples.
Next, we empirically find that the in-context label
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conditional p(x|y) is a good approximation of the
data label conditional q(x|y), while the in-context
label marginal p(y) generally deviates from the
true one q(y), which provides persuasive evidence
of label shift in the in-context model (Section 3.2).
Then, with this understanding, we can calibrate the
in-context classifier p(y|x) by simply adjusting the
label marginal p(y), which is naturally obtained by
marginalizing out the input x and can be effectively
estimated via Monte-Carlo sampling, i.e., generat-
ing new instances from the in-context model. We
call our approach generative calibration (GC).

Actually, most previous state-of-the-art calibra-
tion approaches (Zhao et al., 2021; Han et al., 2022;
Fei et al., 2023) implicitly assume that the ICL pre-
dictive distribution has a shift on label marginal.
However, none of them validate the soundness of
that assumption, while we for the first time verify
this systematically. What’s more, their estimates
of the label marginal are too heuristic to be solid,
while our Monte-Carlo estimate is an unbiased one
to the in-context label marginal p(y).

We conduct exhaustive experiments on 12 text
classification tasks and 12 LLMs scaling from
774M to 33B. The results show that the proposed
GC greatly and consistently improves the perfor-
mance of ICL (by up to 27% absolute in macro-F1)
and outperforms previous state-of-the-art calibra-
tion methods (by up to 9% absolute in macro-F1)
for all LLM scales. Meanwhile, GC is also stable
towards changes of the choice and order of training
examples in the prompt, and exceeds or be compet-
itive to prompt optimization methods, even though
some of which are not in the true few-shot learn-
ing setting (Perez et al., 2021). Overall, GC is a
lightweight and effective approach making LLMs
better few-shot learners and saves the effort of cum-
bersome prompt engineering.

2 Background

In the ICL paradigm, we have a few training ex-
amples Dt = {ei}Ki=1, where each one is inde-
pendently and identically sampled from the data
distribution, which we denote as q(e). Prompting
a language model LM with those examples, the
continuation distribution is a generative model:

p(e|Dπ
t ) = pLM(T (e)|D(Dπ

t ))

D(Dπ
t ) = ⊕K

i=1T (eπ(i))
(1)

where π represents a specific order permutation, ⊕
denotes the text concatenation operation, T (·) uses

a template to format the example to be a demonstra-
tion. We call this distribution the in-context model
and use p(e) as its shorthand: p(e) := p(e|Dπ

t ).
In this work, ICL is utilized for classification

tasks. Then, each training example ei is a tuple:
ei = (xi, yi), where x ∈ X is the input sequence
and y ∈ Y is its corresponding label. In this case,
the generative model factorizes as:

p(x, y) = p(x)p(y|x) =
pLM (T (x)|D(Dπ

t )) pLM (T (y)|D(Dπ
t )⊕ T (x))

(2)
In most cases, we only use the classifier p(y|x) to
predict the label of the given input sequence x. By
this intuitive construction, the classifier performs
surprisingly well on many NLP tasks, sometimes
even achieving state-of-the-art.

3 Distribution Shift of In-context Model

In this section, we provide both theoretical and em-
pirical evidence showing that the in-context model
has a distribution shift on the label.

3.1 A Bayesian View

It is shown that the in-context model would im-
itate the prompting examples to generate similar
sequences (Meyerson et al., 2023). One principled
and popular explanation is that such a model is an
approximation of the posterior predictive distribu-
tion in Bayesian statistics (Xie et al., 2021; Wang
et al., 2023):

p(x, y|Dπ
t ) ≈

∫
p(θ|Dt)p(x, y|θ)dθ

p(θ|Dt) =
p(θ)

∏K
i=1 p(xi, yi|θ)
p(Dt)

(3)

where θ ∈ Θ is a latent parameter controlling the
“topic” of the sequence like LDA (Pritchard et al.,
2000) topic model2. p(θ|Dt) is the posterior given
the training examples, which softly selects the topic.
Also note that this identity approximately holds
(≈), since Bayesian approaches consider all the ex-
amples to be exchangeable3, while clearly, LLMs
have order preference. We assume that LLMs have

2The topic could be viewed as the task.
3Exchangeability means that the joint distribution of a se-

quence e1:K is invariant to any order permutations p(x1:K) =
p(xπ(1):π(K)). According to de Finetti’s theorem (Aldous
et al., 1985), if a random sequence is exchangeable, it is then
equivalent to a mixture model that each sample is conditional
identically independent given a latent parameter, which forms
the null hypothesis of Bayesian inference.
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a topic supporting the data distribution of inter-
est, i.e., there exists θ⋆ ∈ Θ such that p(θ⋆) > 0
and p(x, y|θ⋆) = q(x, y). Ideally, if the posterior
recognizes the true topic θ⋆ of the training exam-
ples without uncertainty, i.e., p(θ|Dt) = δ(θ− θ⋆),
then the in-context model p(x, y) approaches the
true data distribution q(x, y) exactly. According
to Schwartz’s theorem for posterior consistency
(Schwartz, 1965), this ideal case can be asymptoti-
cally realized as the number of training examples
K goes to infinity, which is impossible for LLMs4.

When only a few training examples are accept-
able to LLMs, there are at least two negative con-
sequences. On one hand, as shown in Equation (3),
the prior preference of LLMs, i.e., topic prior p(θ),
would dominate the posterior p(θ|Dt). Empirical
evidence include common token bias (Zhao et al.,
2021; Razeghi et al., 2022) and prediction insensi-
tivity when the training labels are corrupted when
K is small (Min et al., 2022; Wei et al., 2023; Pan
et al., 2023). On the other hand, it is not enough to
express the data distribution with just a few train-
ing examples. To see this, consider a movie review
sentiment classification task. Suppose there exists
a topic θ′ such that p(x, y|θ′) only generates posi-
tive reviews5. When we happen to have only a few
positive samples in hand, the population of the pos-
terior p(θ|Dt) is easy to fall into regions close to θ′

instead of the true topic θ⋆, which would shift the
label marginal p(x|y) so that the probability of pos-
itive label is risen to a level far beyond the true one.
While being widely-observed in previous works in
terms of majority bias (Zhao et al., 2021) and under-
specification (Si et al., 2023), this phenomenon is
formally termed as label shift (Schölkopf et al.,
2012), which proposes that 1) the model and data
share the same label conditional: p(x|y) = q(x|y),
and 2) differ in the label marginal: p(y) ̸= q(y).

Besides this theoretical analysis, in what follows,
we empirically validate that label shift exists in in-
context models.

3.2 Label Shift Empirical Validation

By assuming to be accessible to a labeled valida-
tion set6, we now empirically verify two points

4Though there may also exists other conditions for a good
posterior estimation, e.g., high-quality training examples, we
just can’t ensure them to happen in the few-shot scenario.

5It is reasonable to believe that θ′ has support in the topic
prior such that p(θ′) > 0, since there are contiguous positive
reviews in the pretraining corpus.

6Validation set violates the true few-shot learning setting
only when it’s used for model development or selection. It is

of label shift: p(x|y) = q(x|y) and p(y) ̸= q(y).
While the second point is straightforward by simply
comparing the empirical label marginals, the first
one poses a challenge given that we are agnostic
to the true model q(x, y) but only some samples
from it (i.e., the validation set). As a surrogate,
we don’t seek to verify p(x|y) approaches q(x|y)
exactly. We shall show that p(x|y) performs very
well in ranking the examples, illustrating that it is
a good approximation of q(x|y). Then, our goal
is to verify: 1) in-context label conditional p(x|y)
is good to q(x|y) and 2) in-context label marginal
p(y) is different from the data label marginal q(y).

Our investigation is on SST2 dataset (Socher
et al., 2013) using GPT2-XL (1.5B) (Radford et al.,
2019), GPT-NEO (2.7B) (Black et al., 2021) and
GPT-J (6B) (Wang, 2021; Wang and Komatsuzaki,
2021). For simplicity, we only display results of
GPT2-XL (1.5B) and left others in Appendix E.

3.2.1 In-context Label Conditional is Good
Without the label marginal p(y), the label condi-
tional p(x|y) alone can’t tell if the input x belongs
to the class y. However, it can tell which of the two
samples x and x′ is more likely to belong to y in-
stead of other classes. In specific, let’s first consider
a binary classification task in which Y = {N,P},
where we denote N and P as negative and positive,
respectively. We score each input x as the ratio of
label conditionals:

s(x) :=
p(x|P )

p(x|N)
=

p(N)p(P |x)
p(P )p(N |x) ∝ p(P |x)

p(N |x) (4)

What does this score mean? Since the score is pro-
portional to the odds: the ratio of the probability
that the in-context recognition model p(y|x) pre-
dicts positive to the probability that it doesn’t, it
measures how much more confidence of the posi-
tive prediction than the negative prediction. Given
this score, we can obtain a rank rs of the entire val-
idation set, where examples of the higher ranking
are more likely to be positive. The rank quality can
be justified by the receiver operating characteristic
curve (ROC) and the area under it AUROC7. AU-
ROC formally stands for the empirical probability
that a random positive sample is ranked above a
negative sample (Zhou, 2021). Concretely, denote
the validation set Dv = DP

v ∪ DN
v , where the su-

perscript represents the subset that contains all the

hard to analyze the model if we don’t have a validation set for
grounding results.

7In multiple-class case, we use macro one-to-one AUROC,
which is abbreviated as macro-AUROC for simplicity.
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Figure 1: Macro-F1/AUROC performances (a) and estimated in-context label marginals (b) of GPT2-XL (1.5B)
across different prompt configurations on SST2.

examples in the corresponding label, AUROC is:

∑
xP∈DP

v

∑
xN∈DN

v
1(rs(x

P ) > rs(x
N ))

|DP
v ||DN

v | (5)

where rs(x) is the rank of x. Now, if a model
is perfect, i.e., p(x|y) = q(x|y), it will place all
the positive examples above the negative examples,
where AUROC reaches its maximum 1. Therefore
AUROC somehow measures the closeness between
p(x|y) and q(x|y).

Since the rank is invariant to the x-independent
term, e.g., p(P )/p(N) in Equation (4), we can use
the odds of the classification distribution p(y|x) to
compute AUROC, while this metric is actually eval-
uating p(x|y). We evaluate the 4-shot ICL perfor-
mance with prompts having different class balances
and orders on SST2, where each prompt configura-
tion is evaluated in three random runs. The results
in F1 and AUROC of GPT2-XL (1.5B) are shown
in Figure 1(a), where the x-axis represents differ-
ent prompt configurations. For example, “PNPP”
indicates three positive examples and one negative
example ordered in the second place in the prompt.

We can obtain two findings: 1) On average, ICL
achieves very high AUROC values that don’t match
the F1 across prompt configurations: the average
AUROC performance typically exceeds 0.95, while
the average F1 performance hardly reaches 0.8.
2) In contrast to the sensitivity of F1, AUROC is
stable to the prompt changes with low variances.
These findings provide strong evidence that p(x|y)
is a stable good approximation of q(x|y) no mat-
ter of prompt configurations, roughly establishing
p(x|y) ≈ q(x|y).

3.2.2 In-context Label Marginal is Different
The second point, i.e., p(y) ̸= q(y) is straightfor-
ward to verify by comparing the empirical label
marginals of the in-context model and data. First,
we need to estimate the in-context label marginal,
which is the marginalization of the joint distribu-
tion:

p(y) =
∑

x∈X
p(x)p(y|x) (6)

The exact marginalization is intractable since we
can’t enumerate all the sequences in the input space
X . Therefore, we apply Monte-Carlo sampling to
obtain an unbiased estimate:

p(y) ≃ p̂(y)

=
1

L

L∑

l=1

pLM

(
T (y)|D(Dπ

t )⊕ T (xl)
) (7)

where xl is a sample from pLM (T (x)|D(Dπ
t )),

i.e., a generated sequence of LLMs prompted with
training examples in Dt. The whole process is
shown in Figure 2. In this paper, we set L = 100,
which is enough for a stable estimation (Details
are shown in Appendix J). As for the data label
marginal q(y), simply counting the number of dif-
ferent labels in the validation set and then normal-
izing them forms a maximized likelihood estimate.
We plot the estimated in-context model and data
marginal probability of the positive label p̂(y = P )
and q̂(y = P ) in Figure 1(b). We can see that the
in-context label marginal deviates from the data
label marginal in most cases. Concretely, the devi-
ation extent positively correlated with the majority
label, which is in expectation as discussed in Sec-
tion 3.1. Also, GPT2-XL (1.5B) has much prior
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\nReview: are more deeply thought through than in most ` right-thinking ' films \nSentiment: positive\n

\nReview: delivers roughly equal amounts of beautiful movement and inside information .\nSentiment: positive\n

\nReview:

pioneering analysis of the natural religion movement.\n

pretty darn good.\n

unexpected and absolutely amazing.\n

 a surprisingly short and clear book.\n

...

\nSentiment:

L generations of LLMs

0.17 0.83

0.02 0.98

0.03 0.97

...

0.12 0.88

A
verage

Figure 2: Illustration of the marginal distribution estimation on SST2. We first sample L sequences (the generation
ends when it meets line break "\n") conditioned on the prompt concatenated with few-shot training examples and
the input prompt phrase ("\nReview:" in this case), and next concatenate the output prompt phrase ("\nSentiment:"
in this case) to obtain their in-context predictive distributions. The in-context label marginal is then estimated by
averaging those in-context predictive distributions.

preferences on the positive label, where except the
case when all the training examples are negative,
i.e., “NNNN”, the marginal probability of the label
positive exceeds 0.5 in other cases.

In short summary, in-context models are mainly
biased by shifting the label marginal, which is gen-
erally implicitly assumed in previous works (Zhao
et al., 2021; Han et al., 2022; Fei et al., 2023). How-
ever, to the best of our knowledge, we are the first
to verify this systematically.

4 Generative Calibration

With the understanding in the previous section, if
we accept that p(x|y) = q(x|y), the solution is
quite straightforward, that is, adjusting the label
marginal to the desired one yields the true label
predictive distribution:

q(y|x) = q(y)q(x|y)
q(x)

∝ q(y)

p(y)
p(y|x) (8)

where the model label marginal p(y) is estimated
via Equation (7). The data label marginal q(y) is
hard to estimate since we only have a few training
examples in our setting. Previous works (Zhao
et al., 2021; Min et al., 2021; Han et al., 2022; Fei
et al., 2023) typically assume q(y) to be uniform,
yielding the following classifier:

q̃(y|x) ∝ p(y|x)
p̃(y)

(9)

We follow this convention and leave accurate esti-
mation of data label marginal q(y) in future works8.

8Some methods to estimate the data label marginal include
BBSE (Lipton et al., 2018; Azizzadenesheli et al., 2019) or

Since our method involves multiple generations
(for estimating p(y)), we denote it as generative
calibration (GC). GC could be also explained via
cost-sensitive learning theory (Elkan, 2001; Ling
and Sheng, 2008), where the label marginal is one
of the most widely-used costs (Buda et al., 2018).

Although previous state-of-the-art calibration
methods (Zhao et al., 2021; Han et al., 2022; Fei
et al., 2023) share the same form as ours in Equa-
tion (9), in contrast to our principled unbiased es-
timate, their estimates are too heuristic to be solid.
For example, contextual calibration (Zhao et al.,
2021) estimates the label marginal via heuristically
constructed seemingly context-free texts such as
“N/A”: p̂(y) = p(y|“N/A”). However, these texts
are never verified to be context-free as claimed, be-
cause LLMs might have a preference bias on them.
Also, LLMs barely see these texts in the pretraining
corpus, which would pose an out-of-distribution
(OOD) (Kim et al., 2020) problem.

5 Experiments

5.1 Setups

Datasets
We use 12 text classification tasks in our experi-
ments: SST2 and SST5 (Socher et al., 2013), CR
(Hu and Liu, 2004), MR (Pang and Lee, 2005),
SUBJ (Pang and Lee, 2004), AGNews (Zhang

EM algorithm in Saerens et al. (2002). Both methods involve
estimating expected statistics of p(x, y), which is done by
generations similar to estimating p(y). However, we find that
their estimates are extremely unstable in our case, causing
severe performance drops even compared with vanilla ICL.

2316



et al., 2015), DBPedia (Zhang et al., 2015), TREC
(Voorhees and Tice, 2000), CB (De Marneffe et al.,
2019), RTE (Dagan et al., 2006), QQP (DataCa-
nary et al., 2017) and SNLI (Bowman et al., 2015).
For datasets whose testing set size is greater than
2000, we sub-sample 2000 examples for evaluation.
The prompt template and example generations of
each dataset are shown in Appendix A and B, re-
spectively.

Language Models
We investigate 12 LLMs in a wide range of scales,
including Transformer-based models GPT2-Large
(774M), GPT2-XL (1.5B) (Radford et al., 2019),
GPT-NEO (2.7B) (Black et al., 2021), GPT-J (6B)
(Wang, 2021; Wang and Komatsuzaki, 2021), GPT-
NEOX (20B) (Andonian et al., 2021; Black et al.,
2022), OPT (13B and 30B) (Zhang et al., 2022),
LLaMA (13B and 33B) (Touvron et al., 2023) and
recently proposed RNN-based models RWKV (3B,
7B, and 14B) (Peng et al., 2023).

Compared Methods
Besides vanilla ICL, we include the following state-
of-the-art ICL calibration methods for comparison:
1) Noisy channel (NC) (Min et al., 2021) changes
the slot position of the input and output in
the template, and then uses the label likelihood
p(x|y) = pLM(T (x)|D−1(Dπ

t ),T (y)) for pre-
diction, where D−1(Dπ

t ) denotes the concatena-
tion of flipped demonstrations. Since p(x|y) ∝
p(x|y)/p(y), this method actually has the same
form as ours in Equation (9), so we categorize it as
a calibration method.
2) Contextual calibration (CC) (Zhao et al., 2021)
estimates the label marginal via context-free texts.
3) Domain-context calibration (DC) (Fei et al.,
2023) proposes a further requirement for the
context-free texts: they must be also context-free
in the task domain. They construct such domain
context-free texts by randomly sampling and con-
catenating words from the task dataset.
4) Prototypical calibration (PC) (Han et al., 2022)
learns a Gaussian mixture model (GMM) from
the output probability vectors. They then consider
each cluster corresponds uniquely to a label, where
the learned cluster weights are the estimated la-
bel marginal. For a fair comparison, we learn the
GMM on the set of generative sequences as the
same as GC.

We consider 2, 4, and 8-shot true few-shot learn-
ing settings. For evaluating each method, we ran-

domly sample the original training set of the dataset
to construct the training examples. LLMs scaling
less than 30B are evaluated in 5 runs, while those
larger than 30B are evaluated in 2 runs using dif-
ferent random seeds. This finally yields 1944 runs
for each method, which the results should be solid.
The performance is measured by macro-F1. Im-
plementation details are shown in Appendix C. We
also present time complexity analysis in Appendix
D.

5.2 Main Results

We plot the average 4-shot performance across dif-
ferent datasets in different runs in Figure 3. For
the 2 and 8-shot results please refer to Appendix
F. We find that our proposed GC is effective in the
following aspects:
1) The proposed GC significantly improves the ICL
performance, by up to 27% absolute (2-shot case
of GPT2-Large (774M)). The improvement is con-
sistency for LLMs in all parameter scales. Notably,
our approach enables small models to outperform
larger models’ vanilla ICL performances. For ex-
ample, GC lifts GPT2-XL (1.5B) to 0.64 in macro-
F1, while OPT’s (30B) ICL performance is only
0.57, despite being over 20 times larger. Also, note
that the improvement is more obvious for smaller
models, which is useful in the limited resources
scenario.
2) The proposed GC outperforms all the calibration
baselines, by up to 7% absolute (4-shot case of
LLaMA (33B)), suggesting that our method is not
only theoretically guaranteed to be superior (being
an unbiased estimate of p(y)), but also empirically
verified to be better.

6 Analysis

Following the finding that GC generally outper-
forms ICL and other calibration methods, we con-
duct further analysis in this section.

6.1 Robustness

Since we’ve shown in Section 3 that p(x|y) is a
good and stable approximation of q(x|y) no mat-
ter of the prompt configurations, if the estimated
p(y) is solid, then GC is expected to be also robust
towards changes of the prompt. This is verified
empirically, as shown in Figure 4 that depicts the
4-shot performance distribution of 10 randomly
sampled training sets and 10 random order arrange-
ments of one particular training set for GPT2-XL
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Figure 3: Average 4-shot performances on 12 datasets, where the best result of each LLM is colored green. We also
conduct Hotelling’s t-square test (Hotelling, 1992) to show that the improvement of GC is statistically significant in
the level of significance 0.01, as shown in Appendix G.
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Figure 4: Sensitivity results for GPT2-XL (1.5B).

(1.5B) (Results of GPT-NEO (2.7B), GPT-J (6B),
and LLaMA (13B) can be found in Appendix H). It
is obvious that the proposed GC greatly and consis-
tently reduces the performance variance for almost
all datasets. For instance, GC reduces the choice
standard deviation from 0.25 to 0.03 for GPT2-XL
(1.5B) on AGNews, while CC only achieves 0.10.

To further show that GC does address the major-
ity and recency bias (Zhao et al., 2021) introduced
by the choice and order of training examples, we
conduct 4-shot experiments with prompts that have
different class balances and orders in SST2 dataset,
where each prompt configuration is evaluated in
three random runs. The results of GPT-XL (1.5B)
are shown in Figure 5. According to Zhao et al.
(2021) and our analysis in Section 3.2, LLMs tend
to predict labels that appear more frequently in the
prompt and are closer to the testing input, which
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Figure 5: 4-shot results of GPT2-XL (1.5B) on SST-2
using prompts with different configurations.

is damageable to the performance. For example, if
all the training examples are positive, i.e., “PPPP”
in Figure 5, LLMs would pathogenically predict
all the testing inputs as positive, leading to an ex-
tremely low F1 performance. As shown, our pro-
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posed GC greatly and consistently alleviates this
issue across all the prompt configurations, where
the increase is up to 54%.

6.2 Comparison with Prompt Optimization
Methods

In addition to calibration methods, we also compare
our approach against prompt optimization methods
for order and choice of training examples, where
4-shot results for all LLMs are shown in Figure 6
(2 and 8-shot results are shown in Appendix I).

6.2.1 Order

We compare GC with LocalE and GlobalE (Lu
et al., 2021), which aim to find the best order per-
mutation of the training examples in the true few-
shot setting based on heuristic scores. We only
reproduce the 2 and 4-shot results because these
methods would rate every order permutation, where
the complexity is O(K!) and larger shot is compu-
tational prohibitive. As shown in Figure 6, our pro-
posed GC exceeds both order optimization methods
by considerable margins, while being much more
efficient with complexity O(L).

6.2.2 Choice

We compare GC with KATE (Liu et al., 2021),
which for each testing example, it retrieves the
K-th most similar training examples in the whole
training set to construct the prompt. Note that this
method violates the true-few shot learning setting
by accessing a large training set containing much
more examples than that of ours9. We include
two implementations that use BM25 and Roberta-
Large fine-tuned on text similarity and natural
language inference tasks (Reimers and Gurevych,
2019) for retrieval, denoted as KATE-BM25 and
KATE-RoBERTa. As shown in Figure 6, though
with only a few training examples, the proposed
GC is usually competitive with choice optimiza-
tion methods. For example, 4-shot performance
gaps between GC and KATE-BM25 don’t exceed
0.03 for GPT2-XL (1.5B), OPT (13B), OPT (30B),
LLaMA (13B) and LLaMA (33B).

In general, GC outperforms or is competitive
with strong prompt optimization methods, thus sav-
ing the effort of cumbersome prompt engineering.

9For example, SNLI has 56k training examples in the
training set, which is over 10k times more than our case.

7 Related Works

In-context learning, or few-shot prompting (Brown
et al., 2020) has become one of the most curious
emergent abilities (Wei et al., 2022a) of LLMs,
which benefits in fast-prototyping and much less
requirement of annotated data. ICL also forms
the basis of its further extensions, including chain
of thoughts (CoT) (Wei et al., 2022b; Wang et al.,
2022; Lyu et al., 2023), in-context instruction learn-
ing (ICIL) (Ye et al., 2023), meta-ICL (Coda-Forno
et al., 2023) and so on.

There are many works empirically analyzing
in-context learning, which generally find that in-
context learning is pathogenically unstable towards
the template, choice, and order of the training ex-
amples (Gao et al., 2020; Zhao et al., 2021; Lu
et al., 2021). This motivates numerous works trying
to find a better prompt in terms of template (Min
et al., 2021), choice (Rubin et al., 2021; Su et al.,
2022; Wang et al., 2023; Iter et al., 2023; An et al.,
2023), and order of the training examples (Lu et al.,
2021; Wu et al., 2022). However, most of them ei-
ther violate the true few-shot learning (Perez et al.,
2021), or are complicated learning-based (Wang
et al., 2023), or both (Rubin et al., 2021), which
deviates from the original intention of ICL. On the
other hand, except for a few works that fine-tune
LLMs to learn in-context (Chen et al., 2021; Coda-
Forno et al., 2023), most LLMs are pretrained on a
large amount of raw text. So it is not reasonable to
believe that LLMs faithfully express the label distri-
bution of a given task. To address this, other lines
of work try to calibrate the in-context classifier by
estimating and then countering this bias introduced
from the prompt (Zhao et al., 2021; Yang et al.,
2023; Han et al., 2022). These methods are much
more lightweight compared to prompt optimization
methods but fail in their heuristic bias estimations.

Theoretical understanding is also attractive to
researchers. For example, Dai et al. (2022); von
Oswald et al. (2022) find surprising similarities
between ICL and gradient descent formally and
empirically, establishing explanations via implicit
gradient descent. Han et al. (2023) provide an
explanation of ICL under the view of kernel regres-
sion. Xie et al. (2021) demonstrate ICL as implicit
Bayesian inference, where it occurs when the LLM
infers a shared latent topic of demonstrations in
the prompt. While their theory is appealing, they
assume the pre-trained data distribution as a mix-
ture of hidden Markov models (HMMs), and con-
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Figure 6: Average 4-shot performance comparison results with prompt optimization methods.

duct experiments on a small-scale synthetic dataset,
which is far different from the real case.

8 Conclusion

In this work, we for the first time theoretically
and empirically identify that the in-context model
mainly poses a label shift to the data distribu-
tion. We then propose generative calibration, a
lightweight solution to mitigate this distribution
shift. Exhaustive experimental results on 12 tasks
and 12 LLMs demonstrate the effectiveness of our
approach, in its improvement and stability.
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Limitations

The main limitation of this work is to assume the
data label marginal q(y) to be uniform. Though
to the best of our knowledge there is no work re-
searching this problem and previous works also fol-
low this assumption, this assumption is not true in
general realistic cases containing much label imbal-
ance scenarios. However, estimating q(y) in a true
few-shot learning setting is challenging since we
only have a few training samples and an unlabeled
testing set in hand. We’ve actually experimented
with BBSE (Lipton et al., 2018) and EM algorithm
in (Saerens et al., 2002), which naturally fit our
idea because they require samples from the model
distribution. However, the estimate is just plausible
in a few runs accidentally, in general we fail to
obtain consistent solid estimates, especially for the
dataset which the number of labels is large such as
DBPedia. Although this limitation is important, it

doesn’t affect main claims of this paper. We leave
this point for future works.

This work is also limited by using AUROC to
measure the closeness of p(x|y) and q(x|y). Note
that AUROC is high is just a necessary condition
to say p(x|y) and q(x|y) are close, but not the suf-
ficient condition. Therefore, when AURCO is high,
we can’t rigorously say the p(x|y) and q(x|y) are
close. To the matter of fact, for our method to be ef-
fective, we don’t need the model label conditional
p(x|y) to be close to the true one, we only need
the in-context model to perform well in inter-label
ranking: it can put most of the positive examples
in the front, and most of the negative samples in
the back (in a binary classification setting). If so,
all we need is to set a proper decision threshold
(an 1D decision boundary), which is actually what
our calibration method do: if the model has shift
on the positive label, i.e., p(P ) > p(N), the pro-
posed GC actually increases the decision threshold
from the default 1 to p(P )

p(N) , i.e., predict P when
p(P |x)
p(N |x) >

p(P )
p(N) and predict N otherwise. Choosing

this decision boundary can ensure that the model
label marginal is uniform but not biased to any spe-
cific labels. So a high AUROC is actually enough
for our method to work.
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A Prompt Template

Table 1 shows prompt templates used for different
datasets.

B Example Generations

Table 2 shows example generations using GPT2-
XL (1.5B) of different datasets. Note that the se-
quences are generated by vanilla sampling, there-
fore they might not be a coherent sentence. But
they are reasonable to estimate the in-context label
marginal.

C Implementation Details

We use LLM.int8() (Dettmers et al., 2022) quanti-
zation for all LLMs to reduce the memory usage10.
This techniques allows us to use LLMs in a few
consumer GPUs. Specifically, we use two servers
with 8 NVIDIA GeForce RTX 2080Ti (11GB mem-
ory) and 10 NVIDIA GeForce RTX 3090 (24GB
memory) in the experiments, where device usages
of different LLMs are shown in Tabel 3. We cache
the prompt hidden states to improve the inference
speed since the ICL prompt remains unchanged for
every testing example. Note that RNN-based mod-
els RWKV requires much less memory compared
to Transformer-based models in the same scale.
This is because the cached hidden states of RWKV
are only of length 1, while that of Transformer-
based models equal to the prompt length.

In the generation process, the prompt is the ICL
demonstration prompt D plus the input slot name,
e.g., “Review: <x>\nSentiment: <y>\n\nReview:”

10HuggingFace’s transformers library supports this fea-
ture, see https://huggingface.co/docs/transformers/
v4.30.0/en/perf_infer_gpu_one.
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Dataset Prompt Template Label Words

SST2 Review: <x>\nSentiment: <y> negative, positive

SST5 Review: <x>\nSentiment: <y> terrible, bad, neutral, good, great

CR Review: <x>\nSentiment: <y> negative, positive

MR Review: <x>\nSentiment: <y> negative, positive

Subj Input: <x>\nType: <y> objective, subjective

TREC Question: <x>\nAnswer Type: <y> abbreviation, entity, description, person, loca-
tion, number

AGNews Input: <x>\nType: <y> world, sports, business, technology

DBPedia Input: <x>\nType: <y> company, school, artist, athlete, politics, trans-
portation, building, nature, village, animal, plant,
album, film, book

RTE Premise: <x1>\nHypothesis: <x2>\nPrediction: <y> true, false

CB Premise: <x1>\nHypothesis: <x2>\nPrediction: <y> true, false, neither

SNLI Premise: <x1>\nHypothesis: <x2>\nPrediction: <y> entailment, neutral, contradiction

QQP Question1: <x1>\nQuestion2: <x2>\nPrediction: <y> false, true

Table 1: Prompt templates and label words of different datasets, where x and y denote the input sequence and output
label, respectively. Each demonstration is split by double line breaks “\n\n”.

for SST2. Given that each slot is split by a line
break as shown in Table 1, when the generation en-
counters a line break, we force the next contiguous
tokens to be the next slot phrase of the template.
The maximum generated length is set to 384.

D Time Complexity

In deployment, if we have N testing examples, the
method includes L generations and N ICL infer-
ences, which the time complexity is O(L + N).
When N ≫ L, the additional time cost of the gen-
eration can be neglected. Time complexities of
different methods are shown in Table 4. As seen,
our method is superior or on par to previous meth-
ods.

E Additional Results of Label Shift
Empirical Validation

As a supplement to Section 3.2, Figure 7 and 8
display the macro-F1/AUROC performances and
estimated in-context label marginals across differ-
ent prompt configurations on SST2 of GPT-NEO
(2.7B) and GPT-J (6B), respectively. The results
show similar trends with that of GPT2-XL (1.5B),
as detailed in 3.2.

F Full Results of Main Experiments

We provide full results of main experiments in sec-
tion 5. Figure 9 shows the average 2 and 8-shot

performances on 12 datasets. We also show 2, 4,
and 8-shot full results (averaged by random runs) of
different calibration methods on different datasets
in Table 5, 6, and 7.

G Hotelling’s T-square test

We show that the improvement of GC to the other
methods is statistically significant. Concretely, the
complete method performance is represented by a
matrix with shape M × 12, where each row con-
tains results of 12 datasets in a random run (each
run has different training examples randomly sam-
ple from the dataset training set). We then use
Hotelling’s t-square test (Hotelling, 1992) to test
whether the 12-dimensional performance vectors
of two methods have the same mean, where the
null hypothesis is that their means are the same. To
compute the test static, the covariance matrix of
samples should be invertible, requiring M > 12,
while in our main experiments, we only run each
method in 5 or 2 random runs. Since running each
method of each LLM more than 12 times is pro-
hibitively time-consuming, here we only consider
the 4-shot case of GPT2-XL (1.5B), where we set
M = 50. As shown in Table 8, GC is signifi-
cant different from other methods given that the
p-values are lower than 0.01.
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Dataset Generated data

SST2 Review: everyone else should watch this; don’t be surprised stingy, it might be your last one.
Review: any playthrough starts with a score of 2-3up, best games worth the coin!

SST5 Review: a grim, disgusting, thoroughly pleasant reflection on mankind.
Review: on first viewing it feels like the actors are auditioning to star in a gag reel.

CR Review: It is a wonderful tool and i would use it without worry. one moment to the next.
Review: good photo i put to it all took about 4 hrs

MR Review: it’s hard to freeze an action sequence.
Review: he has thus managed to reconcile his proven wavelike power with the sheer inevitable tre future friction
frustration of this endless writing process.

Subj Input: can you imagine ever audition meeting anyone else in the world who can bear your burden, miss kumin
surely.
Input: for the last 10 weeks, when my 100 BOP brother and I, have been in US, we went to trade mart everyday
every day... This is the kind of effect it has!.

TREC Question: What was the official reason given for Ben Franklin’s death?
Question: What city is named for San Francisco’s Golden Gate Bridge?

AGNews Input: 446 billion times faster Than Neptune 1 June 2018 26:53m The counter-clockwise nucleus of Europa
hinted at at experiences better than those quenched by hyperplaces. or ancient enigmasmas
Input: BBC browsers golden age loses its shine The golden age of BBC browsers looks set to date back to 1996,
with both IE Microsoft and F1 team Lotus falling prey to penalty points..

DBPedia Input: Rush Limbaugh is an American radio host, radio talk show host, and raconteur who hosts, produces
and produces and hosts. He moved to SiriusXM in 2006. He currently hosts the nationally syndicated "Rush
Limbaugh Show" on SiriusXM which programs airs on weekday afternoons at 2:05 p.m. eastern time.
Input: Mushy Plant is a photo type of spore-forming pur fastaceous or lichen, with many, many major species by
the name of Petrosphaeria. It is the most common compound fungus known, with about 35,000 species believed
to exist, all either spore forming, or forming mushrooms.

RTE Premise: The most successful dam-builders are those that find out how to mitigate accidents quickly and avoid
frivolous lawsuits.\nHypothesis: It is expensive to know when you are going into an accident; not knowing where
it happens is just as costly.
Premise: Partner-long-term international agreements should be recognized as the best way to reduce trade
barriers between developed, emerging, and underdeveloped nations.\nHypothesis: International trade can be
reduced through tariffs there.

CB Premise: In the work room, he sent the monitor onto the floor. “Safe”, lettering in green ink on the monitor
rectangle. It seemed empty, aside from possibly one of Tara’s remains or.\nHypothesis: in yellow ink the monitor
was flooded covered in bloody print
Premise: She scrunched up her face up to her shoulder, buried the note in her grief, and then found walk up the
stairs.\nHypothesis: Tara couldn’t walk up the stairs. She lay down in the sunshine on a sunny day, antiseptic
mustache hair once again surrounding her blushing cheeks, and then made another toothy, hom dismissive sniff
and.

SNLI Premise: A woman sitting on her couch.\nHypothesis: It is a real family from all around the country.
Premise: A beautiful lady is waiting for customers in an area of a grocery store.\nHypothesis: The customers
don’t exist exist.

QQP Question1: How can one calculate next company earnings by splitting earnings by homonym\nQuestion2: How
do I use computer algebra as a second language?
Question1: How should I learn how to code if I don’t know Java, C++, PHP, Java Script?\nQuestion2: How
should I make a mobile app? + an Android app from without write a single line of Java?

Table 2: Example generated sequences of GPT2-XL (1.5B) when prompting with 4 demonstrations.
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Figure 7: Macro-F1/AUROC performances (a) and estimated in-context label marginals (b) of GPT-NEO (2.7B)
across different prompt configurations on SST2.
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Figure 8: Macro-F1/AUROC performances (a) and estimated in-context label marginals (b) of GPT-J (6B) across
different prompt configurations on SST2.

Model Device

GPT2-Large (774M) 1 × 2080Ti
GPT2-XL (1.5B) 1 × 2080Ti
GPT-NEO (2.7B) 2 × 2080Ti
GPT-J (6B) 2 × 2080Ti
RWKV (3B) 2 × 2080Ti
RWKV (7B) 2 × 2080Ti
RWKV (14B) 3 × 2080Ti
GPT-NEOX (20B) 3 × 3090
OPT (13B) 2 × 3090
OPT (30B) 3 × 3090
LLaMA (13B) 2 × 3090
LLaMA (33B) 3 × 3090

Table 3: Device usages of LLMs in our experiments.

H Additional Results of Robustness
Analysis

Figure 10 and 11 show sensitivity results of GPT-
NEO (2.7B) and GPT-J (6B) to further support
Section 6.1.

I Additional Results of Comparison with
Prompt Optimization Methods

Figure 12 shows 2 and 8-shot comparison results of
the proposed GC and prompt optimization methods
to further support section 6.2.

J Effect of the Number of Generations

We study the effect of the number of generations,
i.e., L in Equation (7). As shown in Figure 13, as
the number of generations increases, the model per-
formance rapidly increases and converges. Also,
the performance has been improved considerably
when the number of generations is small, which
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Method Complexity Remark

ICL O(N)
NC O(|Y |N) |Y |: size of label space
PC O(L+N) L: number of generations
CC O(L+N) L: number of context-free inputs
DC O(L+N) L: number of domain context-free inputs
LocalE/GlobalE O(K!L+N) L: number of generations per-order permutation
KATE O(M +N +MN) M : size of the whole training set
GC (Ours) O(L+N) L: number of generations

Table 4: Time complexities of different methods.

benefits in the limited computational resource sce-
nario.
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Model Method SST2 SST5 CR MR Subj TREC AGNews DBPedia RTE CB SNLI QQP Avg

GPT2-Large ICL 41.74 9.92 40.72 46.05 33.52 20.96 13.2 19.03 48.11 20.09 19.12 43.36 29.65
774M NC 83.8 36.83 79.09 80.77 64.23 22.92 54.79 64.14 52.42 24.93 32.84 35.67 52.7

PC 83.19 18.05 84.69 80.07 42.45 18.42 24.29 1.94 45.56 25.94 19.41 40.63 40.39
CC 56.41 19.71 62.95 66.94 59.49 46.15 56.01 71.81 44.58 19.17 20.53 45.29 47.42
DC 75.1 30.46 75.79 77.36 57.9 42.84 52.88 70.11 47.51 26.55 20.89 41.69 51.59
GC 85.64 33.98 85.87 82.67 60.5 45.5 60.39 75.77 47.22 28.65 29.52 45.78 56.79

GPT2-XL ICL 53.75 9.3 49.79 55.91 44.78 25.75 32.97 45.26 46.7 20.75 24.39 40.8 37.51
1.5B NC 81.24 36.66 76.48 77.17 65.62 18.88 52.87 62.93 52.76 24.87 33.44 42.09 52.08

PC 86.5 15.36 87.29 81.02 55.75 20.88 40.22 1.66 48.48 36.33 24.71 39.0 44.77
CC 73.73 31.22 66.2 74.14 64.34 40.51 66.3 77.91 47.28 32.32 23.44 48.27 53.81
DC 85.82 29.97 87.1 83.12 65.14 46.18 72.23 77.19 47.7 29.76 19.67 45.2 57.42
GC 84.88 34.22 84.58 83.18 66.97 48.2 74.22 80.02 49.65 43.45 34.04 47.92 60.94

GPT-NEO ICL 61.81 14.12 78.02 70.02 39.56 36.14 59.94 63.15 40.25 24.48 19.52 42.44 45.79
2.7B NC 80.15 36.07 78.02 76.44 65.63 28.76 58.65 64.81 52.28 35.11 38.33 49.22 55.29

PC 87.97 19.62 84.3 83.57 58.85 31.29 55.9 6.19 47.26 32.33 21.85 44.74 47.82
CC 84.18 31.62 86.5 79.83 48.29 53.4 74.94 80.28 44.35 28.77 24.27 45.47 56.83
DC 89.42 34.69 89.02 86.67 61.87 52.84 80.45 78.73 47.76 34.09 20.77 46.98 60.27
GC 88.5 36.12 85.76 86.7 68.03 53.46 80.09 78.18 48.91 38.5 31.5 48.74 62.04

GPT-J ICL 81.12 18.97 81.45 75.33 61.74 37.55 55.06 67.68 50.23 33.04 17.66 36.42 51.35
6B NC 87.28 38.64 83.29 85.09 67.33 31.69 61.97 69.65 55.93 37.2 42.48 51.35 59.33

PC 80.06 30.46 86.9 89.94 54.35 30.2 52.16 4.52 52.9 28.19 18.07 46.12 47.82
CC 89.19 41.76 89.37 89.07 67.6 55.73 73.02 88.83 39.43 27.96 24.63 46.41 61.08
DC 93.47 43.95 89.4 90.22 68.82 61.25 74.97 88.73 51.1 26.59 27.0 49.03 63.71
GC 93.2 44.55 87.46 90.52 69.3 61.37 79.3 88.22 54.88 34.95 31.62 47.35 65.23

RWKV ICL 64.6 16.82 75.65 71.78 37.22 23.54 50.27 45.09 48.89 20.8 20.77 35.37 42.57
3B NC 40.16 32.38 44.42 74.74 56.94 30.74 42.99 55.08 36.54 30.41 32.87 44.04 43.44

PC 89.8 17.43 90.88 87.62 51.48 18.69 43.97 2.47 43.92 26.59 20.62 39.88 44.45
CC 83.78 30.96 89.07 83.07 59.94 38.27 70.42 77.69 50.51 24.55 30.96 43.1 56.86
DC 89.98 26.09 90.09 87.65 58.03 44.27 76.98 73.9 52.87 24.2 22.69 43.03 57.48
GC 92.07 33.73 89.91 88.49 67.35 41.7 76.51 77.69 52.78 24.46 31.97 45.14 60.15

RWKV ICL 64.68 17.54 69.1 79.96 39.22 32.59 22.47 63.98 43.81 31.81 18.85 39.77 43.65
7B NC 44.39 32.47 53.97 74.32 61.21 30.86 49.35 49.44 36.63 30.78 27.11 52.97 45.29

PC 89.01 13.76 84.25 73.0 32.91 15.28 30.4 5.85 36.7 31.98 19.36 40.1 39.38
CC 86.64 34.38 84.13 87.1 46.55 48.79 53.12 86.18 45.67 28.91 34.9 45.09 56.79
DC 84.66 35.11 80.38 86.14 59.15 53.62 72.85 81.14 45.96 29.45 22.05 45.86 58.03
GC 88.56 37.2 83.27 86.13 66.77 52.26 77.6 83.39 50.97 34.62 31.45 49.89 61.84

RWKV ICL 77.51 14.47 87.02 85.26 35.46 39.06 28.34 51.01 47.77 24.01 21.04 35.4 45.53
14B NC 45.94 35.93 54.93 81.49 60.07 32.33 49.47 62.63 38.44 27.77 35.67 49.8 47.87

PC 87.91 10.22 90.05 86.45 34.96 26.09 31.27 5.13 56.85 22.95 18.72 43.69 42.86
CC 87.64 35.31 89.96 85.12 34.89 57.66 65.97 78.54 40.11 19.67 34.7 43.11 56.06
DC 91.42 34.23 91.54 87.88 40.22 57.57 63.77 74.44 50.74 36.48 31.44 48.72 59.04
GC 88.17 36.08 90.79 85.05 41.62 55.11 73.8 81.62 60.01 34.55 39.9 42.39 60.76

GPT-NEOX ICL 82.5 17.09 85.36 83.09 41.65 37.99 52.62 60.46 46.33 29.99 23.96 38.92 50.0
20B NC 87.62 37.17 82.09 84.93 73.15 34.7 66.84 71.07 56.76 40.21 44.93 49.54 60.75

PC 92.95 26.72 91.01 90.74 64.97 32.42 70.11 7.08 58.6 33.98 18.5 49.68 53.06
CC 95.0 42.08 91.94 90.89 61.72 56.25 81.68 90.2 41.06 41.77 35.22 49.61 64.79
DC 94.87 41.04 91.7 91.59 62.43 58.06 83.95 88.58 49.6 35.22 32.09 52.4 65.13
GC 93.96 44.97 90.54 91.27 65.83 55.24 84.49 89.61 60.74 41.11 42.2 52.08 67.67

OPT ICL 85.49 18.69 84.06 80.35 42.02 38.5 54.85 73.62 39.53 32.82 16.97 44.32 50.93
13B NC 87.75 40.79 83.71 85.74 67.81 40.1 65.46 76.26 54.52 37.07 45.73 51.2 61.34

PC 93.24 24.89 89.66 91.72 56.37 33.35 50.0 9.58 40.56 41.53 20.86 44.84 49.72
CC 94.34 35.21 90.83 91.2 64.28 52.95 81.23 88.17 53.69 44.06 26.19 44.29 63.87
DC 95.04 35.29 91.31 91.71 63.13 60.62 80.22 89.4 41.6 34.99 20.33 46.46 62.51
GC 93.27 43.21 90.94 92.34 66.97 57.98 84.78 84.32 55.2 53.39 37.17 47.07 67.22

OPT ICL 84.16 14.0 85.62 90.7 51.49 46.7 37.72 81.46 55.43 24.18 16.9 39.02 52.28
30B NC 86.79 38.21 83.29 87.56 76.51 41.27 67.21 77.9 54.16 24.81 46.09 43.89 60.64

PC 92.81 23.98 91.1 87.97 45.72 38.05 71.64 8.26 45.5 22.35 29.06 36.42 49.4
CC 91.8 42.97 93.06 91.31 71.31 53.65 69.95 93.6 48.88 18.97 29.72 46.07 62.61
DC 94.81 44.93 93.21 91.65 67.25 62.05 74.17 92.55 56.68 27.37 18.05 49.36 64.34
GC 93.53 44.19 90.77 89.17 72.31 60.44 77.76 83.01 61.66 31.61 44.09 48.96 66.46

LLaMA ICL 95.85 18.91 91.0 91.43 49.37 58.86 77.12 64.5 64.18 33.71 24.91 36.52 58.86
13B NC 86.72 38.71 83.39 85.61 66.81 47.91 72.13 73.32 56.62 34.61 49.28 54.19 62.44

PC 93.13 29.85 88.95 91.57 57.02 50.31 71.61 3.76 74.21 50.53 28.0 40.54 56.62
CC 96.25 39.44 90.45 92.36 69.59 64.45 87.39 92.8 72.2 55.07 39.86 40.72 70.05
DC 95.79 41.15 88.32 92.27 63.32 72.05 81.79 82.33 73.15 48.94 26.84 40.73 67.22
GC 92.69 44.73 89.84 91.56 77.45 76.53 86.83 91.25 72.36 60.63 43.49 55.25 73.55

LLaMA ICL 95.35 15.14 90.35 86.59 66.38 77.12 80.22 81.77 77.01 30.85 17.67 49.13 63.97
33B NC 86.02 36.73 83.89 86.76 69.72 52.72 73.72 74.19 62.83 25.54 55.58 61.73 64.12

PC 87.01 30.12 89.86 90.97 55.97 48.31 76.15 2.54 74.0 52.8 18.96 53.81 56.71
CC 96.05 34.05 91.0 88.44 80.69 74.6 88.11 92.91 66.66 52.9 29.88 52.37 70.64
DC 94.33 37.46 89.97 91.92 55.46 82.07 88.48 87.73 64.84 59.29 32.7 66.4 70.89
GC 90.25 35.95 89.47 92.06 77.85 73.72 88.35 91.46 73.9 66.92 49.45 59.39 74.06

Table 5: 2-shot full results.
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Model Method SST2 SST5 CR MR Subj TREC AGNews DBPedia RTE CB SNLI QQP Avg

GPT2-Large ICL 42.69 9.72 73.37 43.53 43.83 30.83 31.84 33.92 44.96 22.12 18.28 41.15 36.35
774M NC 83.86 36.74 79.83 81.8 68.51 27.48 53.97 70.17 52.83 28.23 31.69 42.73 54.82

PC 70.89 20.59 85.57 72.12 55.83 25.16 33.72 5.24 40.65 29.95 18.1 36.05 41.16
CC 55.75 20.37 63.22 49.55 45.9 45.26 60.29 73.02 39.35 31.59 17.99 52.48 46.23
DC 79.54 32.41 85.17 78.71 60.84 49.58 65.3 70.84 51.43 35.99 17.67 50.14 56.47
GC 85.84 37.13 86.22 80.96 70.34 51.16 72.2 77.13 50.21 38.44 26.29 51.8 60.64

GPT2-XL ICL 48.2 11.75 48.71 41.83 47.55 38.36 52.42 66.55 48.9 35.32 19.71 41.85 41.76
1.5B NC 80.94 33.8 77.98 79.69 66.99 22.1 52.13 61.88 53.48 28.64 33.51 46.0 53.1

PC 81.89 13.71 82.48 81.97 59.34 31.28 55.52 2.77 43.59 39.32 23.4 45.95 46.77
CC 62.4 28.94 64.45 60.36 59.96 45.47 75.52 83.61 41.56 43.49 26.94 54.94 53.97
DC 85.2 33.08 84.85 82.92 71.96 49.06 75.72 82.01 42.09 34.34 23.09 54.91 59.94
GC 87.16 36.31 82.96 81.86 74.32 56.92 77.69 83.18 48.35 50.47 34.28 55.08 64.05

GPT-NEO ICL 71.23 11.28 81.83 75.93 42.47 42.08 66.44 79.09 47.54 30.69 19.75 50.09 51.54
2.7B NC 80.89 34.81 77.6 78.26 70.37 31.41 58.62 68.58 52.03 28.94 37.61 49.72 55.74

PC 67.62 21.54 87.53 87.19 41.99 35.92 66.53 4.46 45.23 30.93 24.23 50.41 46.97
CC 80.8 33.36 84.27 82.34 44.88 61.99 81.19 87.86 50.79 33.42 24.37 49.48 59.56
DC 90.72 36.03 88.61 85.59 66.12 57.7 80.98 84.12 50.18 39.27 25.24 52.97 63.13
GC 91.22 39.15 87.41 87.2 68.26 58.22 81.81 86.02 51.23 39.82 34.32 54.01 64.89

GPT-J ICL 87.6 25.32 89.05 83.2 67.39 46.36 58.18 85.01 47.41 32.2 24.15 46.22 57.67
6B NC 87.41 38.12 83.85 86.26 67.46 38.64 64.35 72.8 53.66 43.91 44.06 55.98 61.38

PC 92.75 33.18 88.79 89.22 54.36 39.91 68.37 5.93 50.09 34.39 16.99 38.62 51.05
CC 84.61 43.44 86.63 86.16 73.36 59.78 73.32 92.43 39.49 25.86 26.54 50.47 61.84
DC 93.73 44.23 89.41 90.04 73.39 63.27 78.65 91.56 46.05 37.07 27.81 50.67 65.49
GC 93.94 47.01 88.15 90.14 74.22 65.22 83.02 87.99 56.44 37.81 30.19 52.59 67.23

RWKV ICL 73.17 21.06 86.1 61.11 48.05 33.31 46.94 65.26 43.87 23.26 19.67 32.51 46.19
3B NC 40.41 31.73 42.7 75.14 53.17 31.17 43.68 57.89 36.77 32.14 32.36 46.11 43.61

PC 90.98 24.36 89.9 88.15 56.48 17.29 54.57 4.69 48.67 31.53 22.56 44.72 47.83
CC 79.01 24.05 85.84 81.54 56.43 45.62 66.52 82.06 46.53 27.57 33.85 39.45 55.71
DC 89.89 27.57 89.99 84.37 58.14 48.42 74.12 76.64 52.98 30.33 23.62 44.99 58.42
GC 92.09 39.41 89.9 87.93 65.12 48.98 79.25 82.18 54.79 32.17 35.14 48.65 62.97

RWKV ICL 78.95 16.9 79.92 80.43 38.05 32.84 33.27 77.76 45.77 35.82 19.23 41.61 48.38
7B NC 42.87 29.64 53.48 73.89 61.71 28.8 50.23 51.57 34.96 33.14 30.09 54.55 45.41

PC 87.16 13.69 84.88 83.33 32.61 20.02 48.33 6.28 34.59 36.84 19.29 38.86 42.16
CC 90.37 34.85 84.73 86.81 50.82 51.3 59.9 87.49 48.5 35.07 31.08 41.79 58.56
DC 86.63 28.62 80.95 86.07 51.04 54.36 74.4 82.69 47.57 31.99 24.8 47.2 58.03
GC 89.72 39.13 84.27 86.83 64.57 53.78 79.31 84.03 50.36 37.73 34.42 48.92 62.76

RWKV ICL 85.33 20.37 90.08 79.75 43.24 39.46 33.87 69.96 48.61 29.02 21.11 32.22 49.42
14B NC 45.9 34.75 52.67 77.97 58.75 42.27 54.31 68.93 37.86 27.48 37.21 47.78 48.82

PC 87.91 19.26 91.54 85.04 33.34 21.86 34.27 3.1 59.05 32.74 19.11 39.13 43.86
CC 91.34 37.41 89.2 89.1 40.22 59.17 52.22 85.84 41.92 25.98 32.85 29.49 56.23
DC 91.0 38.9 91.61 83.28 44.49 58.91 63.53 80.81 56.02 47.36 27.41 51.37 61.22
GC 89.66 41.56 90.68 88.68 47.5 55.5 76.9 84.44 60.41 46.75 35.8 42.83 63.39

GPT-NEOX ICL 88.62 22.33 91.36 88.03 46.88 46.79 53.3 79.29 50.18 38.71 27.56 45.93 56.58
20B NC 88.09 38.34 82.36 84.26 78.62 39.05 68.55 72.86 55.24 35.31 44.77 52.54 61.67

PC 95.06 32.66 89.42 90.52 57.75 37.52 71.6 5.96 60.24 34.52 24.42 44.72 53.7
CC 95.9 37.89 91.89 91.18 63.82 62.03 85.41 92.25 46.94 42.12 38.31 49.38 66.43
DC 95.58 36.6 92.18 91.39 65.77 61.26 84.03 87.62 61.82 41.87 35.15 54.12 67.28
GC 95.52 45.62 91.32 91.34 72.26 64.45 84.76 91.57 61.66 44.0 42.67 54.13 69.94

OPT ICL 85.22 24.55 88.57 88.76 76.43 42.09 57.79 80.41 46.01 38.7 18.09 45.36 57.66
13B NC 87.86 41.15 82.03 85.5 69.43 43.73 65.98 77.84 59.47 39.8 45.68 55.47 62.83

PC 93.85 28.07 90.02 90.97 58.49 29.76 65.88 7.8 47.76 24.45 21.12 39.69 49.82
CC 95.56 42.85 91.29 91.82 66.85 60.36 81.9 91.36 53.61 51.89 22.79 48.69 66.58
DC 94.94 41.87 90.4 91.08 71.39 64.57 79.69 91.66 41.5 35.38 26.32 53.12 65.16
GC 95.37 44.38 90.69 90.5 78.91 58.8 85.07 90.04 57.34 55.7 40.06 49.06 69.66

OPT ICL 82.84 26.38 91.94 89.76 55.97 55.03 47.85 77.88 51.47 37.3 17.47 49.79 56.97
30B NC 89.51 39.21 83.08 87.89 73.09 42.22 68.25 77.18 58.35 29.05 48.83 56.23 62.74

PC 92.61 36.12 91.93 87.55 66.14 40.42 73.63 0.92 48.11 38.91 17.74 47.78 53.49
CC 93.87 37.11 90.52 92.26 77.68 62.89 78.99 93.1 34.94 36.41 24.87 41.84 63.71
DC 95.16 40.44 92.33 92.35 83.54 62.23 79.24 91.7 56.41 43.51 21.33 41.54 66.65
GC 94.77 44.09 91.98 90.69 87.77 71.21 86.44 94.17 61.98 42.28 41.48 51.64 71.54

LLaMA ICL 95.56 29.36 91.62 89.95 72.86 62.82 80.2 80.92 73.19 51.7 36.48 52.89 68.13
13B NC 89.03 38.79 82.13 86.45 73.5 50.76 74.01 73.32 61.87 39.82 52.9 60.35 65.24

PC 95.27 43.5 92.08 89.95 85.04 54.91 80.58 10.22 63.76 49.35 40.34 39.46 62.04
CC 96.69 42.34 90.75 92.02 79.62 68.23 86.2 94.34 65.8 46.31 44.97 62.69 72.5
DC 96.32 40.46 90.38 91.83 82.73 73.66 82.45 87.16 75.95 52.15 44.76 53.5 72.61
GC 95.74 47.39 92.32 90.91 81.41 76.39 87.81 92.27 76.54 68.59 50.42 65.12 77.08

LLaMA ICL 95.55 22.36 91.45 92.72 85.12 70.77 76.37 86.75 75.5 59.28 35.61 75.09 72.21
33B NC 87.43 40.29 85.48 87.41 74.9 57.47 73.49 73.19 61.89 27.96 51.61 65.98 65.59

PC 95.38 32.22 91.15 92.44 88.11 54.69 85.94 1.89 74.43 54.91 35.32 65.0 64.29
CC 95.88 39.05 91.1 88.29 64.5 76.61 87.62 95.43 73.47 58.99 33.09 58.79 71.9
DC 95.46 35.7 91.03 92.1 66.25 80.18 87.73 87.62 62.18 55.5 50.37 33.14 69.77
GC 95.08 48.24 91.11 91.63 87.53 80.34 85.91 95.61 75.08 69.48 51.52 72.86 78.7

Table 6: 4-shot full results.
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Model Method SST2 SST5 CR MR Subj TREC AGNews DBPedia RTE CB SNLI QQP Avg

GPT2-Large ICL 61.13 17.65 55.94 61.34 57.21 38.22 44.52 44.53 41.32 24.47 18.43 39.91 42.06
774M NC 84.41 38.63 80.7 81.38 67.75 26.04 52.38 72.04 52.43 27.91 31.81 40.18 54.64

PC 84.23 17.19 87.76 76.21 47.76 25.54 43.27 3.69 45.03 37.45 17.39 39.8 43.78
CC 67.38 30.91 69.13 67.35 53.12 48.09 63.87 77.59 39.5 36.37 17.71 50.18 51.77
DC 85.55 30.62 84.55 79.73 70.1 53.08 70.26 76.25 50.63 38.04 18.31 45.76 58.57
GC 88.17 38.02 87.96 82.23 78.92 50.5 74.33 79.28 53.04 39.95 26.88 49.43 62.39

GPT2-XL ICL 43.01 13.45 45.35 48.88 52.1 42.02 58.16 73.28 44.13 34.02 18.29 41.72 42.87
1.5B NC 82.35 35.48 75.19 79.97 68.16 20.91 51.34 65.39 53.5 33.48 33.78 43.72 53.61

PC 82.34 18.05 84.15 69.5 45.51 30.42 61.51 2.4 44.81 35.28 23.74 45.38 45.26
CC 64.15 24.09 59.95 64.16 60.04 45.77 73.06 86.62 38.62 28.42 29.18 46.4 51.7
DC 86.5 22.55 88.29 81.42 76.52 50.05 77.18 85.9 41.82 35.37 24.82 53.01 60.29
GC 86.13 33.14 84.54 84.42 78.83 52.84 79.53 89.57 51.43 43.2 36.85 51.48 64.33

GPT-NEO ICL 81.98 17.53 88.43 75.32 44.95 47.24 74.25 83.89 53.58 32.26 21.86 46.03 55.61
2.7B NC 80.31 35.81 77.54 77.23 71.87 29.34 58.81 70.68 51.7 28.38 39.66 48.38 55.81

PC 79.03 22.15 87.59 73.27 48.54 29.28 67.96 6.45 53.48 27.93 21.73 46.37 46.98
CC 75.73 27.3 86.38 83.6 48.81 57.4 79.65 88.94 51.04 40.27 28.3 48.81 59.69
DC 92.58 31.69 88.92 85.94 70.16 57.62 81.91 85.43 50.48 42.11 29.36 45.64 63.49
GC 92.57 38.68 86.48 86.73 71.77 60.24 81.15 87.23 53.2 44.2 33.53 51.19 65.58

GPT-J ICL 94.73 37.21 89.65 90.61 70.03 54.93 66.09 85.8 39.28 40.83 19.94 43.6 61.06
6B NC 87.68 39.48 84.34 86.89 71.05 38.96 64.64 75.73 57.93 43.52 43.46 50.24 61.99

PC 93.96 38.75 90.19 90.55 70.17 46.12 77.46 13.49 49.07 46.11 16.76 42.34 56.25
CC 89.77 42.05 89.81 88.97 77.61 62.08 71.63 92.42 37.5 40.68 28.25 52.32 64.42
DC 95.12 43.23 90.4 90.89 79.08 66.09 77.19 91.69 42.53 46.13 27.74 50.43 66.71
GC 95.0 47.6 89.94 91.08 76.09 60.22 84.84 92.1 55.46 51.62 31.14 54.79 69.16

RWKV ICL 65.27 29.03 77.75 66.02 38.22 39.36 47.53 67.71 43.55 25.78 21.51 35.91 46.47
3B NC 39.07 32.38 42.04 71.35 54.28 30.96 43.38 56.76 36.07 36.46 32.33 45.95 43.42

PC 88.39 26.79 87.45 86.68 51.26 16.51 57.65 1.52 42.26 24.36 21.29 40.75 45.41
CC 70.52 27.0 87.24 79.11 53.63 50.23 68.59 78.23 38.87 31.23 30.3 40.64 54.63
DC 88.07 28.1 89.5 85.9 52.26 48.92 77.08 77.19 53.26 30.82 24.17 47.76 58.59
GC 91.11 38.91 89.09 87.81 60.56 50.44 80.62 81.46 54.32 34.7 34.15 45.44 62.38

RWKV ICL 80.85 19.71 81.83 82.7 42.76 38.36 47.54 76.51 49.21 27.0 17.54 41.48 50.46
7B NC 42.52 31.09 49.69 74.41 61.89 25.1 49.18 54.45 35.32 37.62 27.97 54.9 45.34

PC 80.48 12.05 72.77 69.89 32.59 16.89 48.91 1.19 48.14 38.13 17.81 38.84 39.81
CC 88.82 36.41 81.23 84.04 48.97 50.23 70.25 85.62 48.43 30.96 34.31 46.92 58.85
DC 84.77 22.97 83.11 82.51 52.29 54.04 75.94 84.26 44.89 30.13 20.13 47.19 56.85
GC 89.77 41.59 84.52 85.88 63.46 55.74 81.83 85.26 52.25 35.11 31.16 48.43 62.92

RWKV ICL 91.21 23.13 89.8 89.34 42.12 42.85 43.75 73.67 48.83 27.65 26.57 40.13 53.25
14B NC 44.54 36.28 52.43 80.95 59.16 41.25 50.59 69.18 38.02 31.8 34.58 45.25 48.67

PC 81.0 20.78 89.38 90.52 35.39 33.51 36.69 9.02 49.9 30.36 17.54 41.79 44.66
CC 92.82 41.47 91.39 89.04 40.16 61.12 59.3 85.33 41.54 29.28 28.54 39.9 58.32
DC 89.03 40.24 91.49 84.47 44.82 60.13 64.7 84.58 54.27 39.32 23.42 42.71 59.93
GC 91.09 43.41 90.15 90.08 46.0 61.42 76.75 86.59 60.76 47.6 30.01 44.88 64.06

GPT-NEOX ICL 95.89 34.24 91.61 91.17 63.85 55.92 64.75 78.74 46.5 38.23 29.42 43.61 61.16
20B NC 89.07 38.2 82.77 86.21 79.04 41.87 68.43 75.05 54.79 39.0 46.89 50.59 62.66

PC 94.87 38.71 90.62 90.41 75.57 42.28 55.77 21.52 56.5 47.56 17.44 39.9 55.93
CC 95.8 39.33 92.07 91.08 59.16 68.95 84.1 90.2 43.57 41.51 34.3 52.32 66.03
DC 95.82 36.05 92.27 91.21 62.51 65.73 81.9 88.14 63.86 49.36 34.96 55.8 68.13
GC 95.68 45.97 92.34 91.34 79.99 67.9 84.2 92.89 62.5 57.07 43.61 54.44 72.33

OPT ICL 91.05 36.31 91.14 89.02 77.0 47.33 65.97 81.71 45.79 40.31 17.55 42.36 60.46
13B NC 88.78 40.08 82.31 86.69 72.58 42.91 66.57 79.51 58.57 41.25 47.37 52.12 63.23

PC 95.87 37.9 90.97 92.26 63.19 34.9 70.62 8.2 47.43 37.99 16.98 41.99 53.19
CC 95.84 43.98 91.69 92.61 67.1 56.33 81.62 91.05 56.86 47.28 24.43 48.05 66.4
DC 95.54 41.51 91.07 90.54 71.67 60.95 80.75 91.73 41.16 40.36 33.07 49.72 65.67
GC 94.77 45.34 90.03 91.31 85.28 57.4 84.82 90.1 60.06 62.84 38.02 49.05 70.75

OPT ICL 92.46 38.88 90.29 89.74 81.52 49.25 72.26 82.05 56.15 40.34 19.44 46.78 63.26
30B NC 89.48 41.12 83.98 87.76 76.73 41.11 63.76 77.85 61.06 43.3 49.18 57.19 64.38

PC 95.24 37.74 87.86 91.68 81.18 44.4 59.33 12.86 48.69 39.43 23.94 48.72 55.92
CC 95.58 43.08 91.91 91.87 78.36 63.85 80.82 90.23 35.98 41.24 27.07 35.05 64.59
DC 96.54 45.0 92.72 92.07 79.38 63.92 76.69 91.36 60.96 30.29 29.68 38.14 66.4
GC 96.32 48.65 91.88 91.98 90.01 66.05 84.14 91.46 64.76 55.62 39.53 51.63 72.67

LLaMA ICL 96.72 39.47 92.14 92.41 66.6 71.38 79.98 83.92 77.84 52.51 48.22 45.33 70.54
13B NC 89.93 41.89 84.45 88.05 78.47 52.9 75.07 74.42 58.82 39.47 54.34 53.58 65.95

PC 95.39 41.64 91.3 92.72 86.32 64.22 81.21 27.3 72.6 51.63 39.07 38.84 65.19
CC 96.5 39.19 91.92 92.96 77.78 68.69 85.19 93.66 71.55 54.56 42.82 55.77 72.55
DC 95.98 39.39 90.76 92.93 67.95 78.54 83.63 83.3 76.63 56.33 43.29 55.39 72.01
GC 96.96 49.18 92.42 92.7 84.77 79.93 86.98 92.18 76.6 65.5 51.59 58.73 77.29

LLaMA ICL 96.76 34.25 92.69 93.62 78.28 66.54 84.89 84.0 76.67 62.21 53.44 47.86 72.6
33B NC 89.37 41.04 84.65 88.45 79.49 58.45 75.55 75.39 57.88 34.09 56.93 64.69 67.17

PC 96.79 50.11 92.78 93.2 88.37 52.52 81.8 27.03 76.54 45.87 65.62 56.04 68.89
CC 96.54 36.72 92.68 92.34 68.07 81.57 85.38 93.01 72.54 60.43 49.1 73.36 75.14
DC 96.92 38.47 92.28 93.29 49.73 83.74 84.44 83.51 66.18 69.53 59.33 55.66 72.76
GC 96.68 50.55 92.84 93.39 88.04 83.0 86.62 95.92 74.95 73.39 63.88 67.46 80.56

Table 7: 8-shot full results.
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(b) 8-shot results.

Figure 9: Average 2 and 8-shot performances on 12 datasets.

Method ICL PC CC DC

P-value 4.32× 10−60 7, 47× 10−85 3.80× 10−35 1.02× 10−23

Table 8: P-values of Hotelling’s t-square test by comparing GC and other methods.
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(a) Sensitivity results for GPT-NEO (2.7B).
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(b) Sensitivity results for GPT-J (6B).
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(c) Sensitivity results for LLaMA (13B).

Figure 10: Sensitivity results of GPT-NEO (2.7B), GPT-J (6B), and LLaMA (13B).
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(a) 4-shot performances of GPT-NEO (2.7B) using prompts
with different configurations.
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(b) 4-shot performances of GPT-J (6B) using prompts with
different configurations.

Figure 11: 4-shot performances of GPT-NEO (2.7B) and GPT-J (6B) using prompts with different configurations.
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(a) Average 2-shot performance comparison results with prompt optimization methods.
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(b) Average 8-shot performance comparison results with prompt optimization methods.

Figure 12: Average 2 and 8-shot performance comparison results with prompt optimization methods.
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Figure 13: Effect of the number of generations to GC on SST2 and SUBJ, where L = 0 indicates ICL performance.
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