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Abstract

A particularly successful class of approaches
for few-shot learning combines language mod-
els with prompts – hand-crafted task descrip-
tions that complement data samples. However,
designing prompts by hand for each task com-
monly requires domain knowledge and substan-
tial guesswork. We observe, in the context of
classification tasks, that instruction finetuned
language models are remarkably robust towards
some dimensions of a prompt’s design. We sub-
sequently propose a simple method to eliminate
the need for handcrafted prompts, named AuT-
Few. This approach consists of (i) a prompt re-
trieval module that selects suitable task instruc-
tions from the instruction-tuning knowledge
base, and (ii) the generation of two distinct, se-
mantically meaningful, class descriptions and a
selection mechanism via cross-validation. Over
12 datasets, spanning 8 classification tasks, we
show that AuT-Few outperforms current state-
of-the-art few-shot learning methods. More-
over, AuT-Few is the best ranking method
across datasets on the RAFT few-shot bench-
mark. Notably, these results are achieved with-
out task-specific handcrafted prompts on un-
seen tasks.

1 Introduction

Collecting annotated data is time-consuming and
expensive. The goal of few-shot learning is to ad-
dress this limitation by developing models that gen-
eralize from a small number of training examples.

A now dominant paradigm in few-shot learn-
ing involves pre-training a large language model
(PLM) on unsupervised language modelling objec-
tives, combined with supervised fine-tuning (Ka-
plan et al., 2020; Wei et al., 2022b). Fine-tuning
on a variety of classification tasks improves gen-
eralization to new unseen tasks even further (Sanh
et al., 2022; Wei et al., 2022b; Chung et al., 2022).

∗Work done while interning at Amazon Web Services.
† Work done when author was working at Amazon Web

Services.

Prompts, instructions that describe the tasks in
natural language, are crucial to successful fine-
tuning on many tasks. Typically, prompts con-
sist of two components: task templates and an-
swer choices. Task templates are textual instruc-
tions about the task. Answer choices are seman-
tic descriptions of the categorical labels. Super-
vised training on prompted samples, as shown in
Figure 1, helps PLMs generalize when instructed
via prompts on a new problem (here natural lan-
guage inference). Following Lin et al. (2022), we
use the term upstream model for these instruction-
finetuned PLMs. These prompted upstream models
provide state-of-the-art few-shot learning ( (Liu
et al., 2022), yet they still rely on strenuous manual
intervention from manually crafted prompts, de-
signed by experts with domain knowledge about
the underlying tasks.

Task Template Answer
Choices

Instruction Tuning Prompts

Sentiment

Review: We came here
on Saturday night [...]
How does the reviewer
feel about the movie?

0: very nega-
tive [...]
5: very posi-
tive

Paraph.

Last year, Comcast [...]
Is that a paraphrase of
the sentence Comcast has
about [...].

0: Yes
1: No

Unseen Target Task Prompts

NLI

Given Oil prices fall back
as Yukos oil threat lifted.
can we guarantee that Oil
prices rise. is true?

0: Yes
1: No

Figure 1: Instruction-tuning uses prompts to specify
the task via templates (blue) and label descriptions via
answer choices (magenta). Fine-tuning on multiple in-
structed tasks improves generalization to new ones.

In this paper, we are concerned with an auto-
mated few-shot classification regime, where the
algorithm can only access the training samples
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Yukos oil threat lifted.
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the following sentence:
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(Dataset Default)

Template-Tailored

 Paraphrase Iden.

Figure 2: A schematic view of our prompt automation method, AuT-Few, consisting of: the retrieval of templates
from the instruction tuning collection (§4.1), and the generation of template-tailored and topic-specific answer
choices and the configuration amongst them (and optionally the default dataset label text) (§4.2).

and their categorical labels. While efforts have
been made to automate prompting, these methods
are not directly transferable to upstream models.
Most techniques target prompted masked language
models (i.e. encoder-only models, that make pre-
dictions over continuous embeddings via its mask
token (Gao et al., 2021, inter alia). Automation
methods for models with a discrete output space
(i.e. a decoder over the vocabulary) are costly and
limited to the automation of the task template, still
relying on handcrafted descriptions of labels (Liu
et al., 2021; Zhou et al., 2023).

To automate few-shot learning with upstream
models, we analyse the role of prompts across
various classification tasks and we observe that
upstream models exhibit low variability towards
task-unspecific templates. In contrast, the selection
of suitable answer choices can be important, yet
answer choices do not need to be tailored to the spe-
cific instruction (e.g. Yes/No for a polar question).
These insights confirm observations by Webson
and Pavlick (2022) in a broader context and they
motivate a simple few-shot learning automation
method for upstream models, named AuT-Few.

AuT-Few builds on the state-of-the-art learn-
ing method T-Few (Liu et al., 2022), but crucially
does not use any task-specific handcrafted prompts.
AuT-Few automatically finds the most relevant tem-
plates to our target task from the collection prompts
used to instruction-tune the upstream model. As
illustrated in Figure 2, given an NLI task, AuT-
Few might retrieve templates written for paraphrase

identification. To automate answer choices, AuT-
Few generates label descriptions tailored to the re-
trieved templates (e.g., Yes/No for a polar question,
as for the illustrated paraphrase identification tem-
plate) and descriptions that capture a class’ overall
topic (e.g. Enron/purchase for Enron spam clas-
sification). AuT-Few selects the most appropriate
configuration via cross-validation.

AuT-Few outperforms strong baselines, includ-
ing T-Few (Liu et al., 2022), by 2.1 points over a
total of 12 datasets, spanning 8 tasks, without any
task-specific handcrafted prompts. All but one task
are unseen to the upstream models, indicating AuT-
Few’s strong generalization capabilities. Moreover,
by applying AuT-Few to a small upstream model
(BART0 (Lin et al., 2022)), we achieve competitive
performance and efficiency to the current state-of-
the-art prompt-free method, SetFit (Tunstall et al.,
2022). Furthermore, AuT-Few achieves the best
average rank across datasets on the few-shot RAFT
benchmark (Alex et al., 2021). An ablation justifies
the components of our automation method.1

2 Background and Related Work

2.1 Instruction-Finetuned Language Models

A language model is instruction-finetuned on
prompted samples Dsrc from various tasks, such
as summarization or question answering, by au-
toregressively generating the target answer choice
through standard maximum likelihood training. In-

1Code at: https://github.com/Raldir/AuT-Few.
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struction tuning not only improves generalization
for large decoder-only models (Wei et al., 2022a),
but also for comparably smaller encoder-decoder
models, like T0 (Sanh et al., 2022) or BART0 (Lin
et al., 2022). Prompt knowledge bases (KB), like
PromptSource (Bach et al., 2022), contain prompt
instructions for hundreds of tasks. Flan-T5 (Chung
et al., 2022) is an improved upstream model scaled
to thousands of tasks (Wang et al., 2022b).

Inference. We are interested in using upstream
models for an unseen few-shot binary or multi-
class classification task Dtgt

test. A prediction ŷ with
an upstream model θ is made by computing the
length-normalized log probabilities for each class
y ∈ Y , conditioned on the sample x, a handcrafted
template ϕj ∈ Φ (i.e. task description and sample
input formatting), and on the associated answer
choices ψj ∈ Ψ (textual descriptions of labels):

argmaxy(
1

T

∑

t

log pθ(ψj(y) | x, ϕj , ψj(y)<t),

with T being the length of the answer choice of y.
Since the use of a single prompt might model the
expectation over all possible prompts poorly, most
systems handcraft multiple prompts for a target
task. The expectation is then modelled by randomly
drawing a template and its answer choices.

Parameter-Efficient Finetuning. Adapting up-
stream models to a new task or domain on a few
available samples Dtgt

train via full model finetuning
is often infeasible as these models consist of bil-
lions of parameters. Parameter-efficient finetuning
adds or updates only a small subset of parameters
θPEFT ≪ θ, and largely retains the fine-tuning
performance (Karimi Mahabadi et al., 2021; Zhang
et al., 2021; Chen et al., 2023). Liu et al. (2022) pro-
posed T-Few and showed that parameter-efficient
finetuning an upstream model with T-Few performs
better than in-context learning with GPT-3 in the
few-shot learning setting. T-Few learns attention
and activation re-scaling vectors by optimizing the
maximum likelihood estimation and complements
it with an unlikelihood loss.

2.2 Prompt Automation

Template Automation. To automate the instruc-
tions as input to the model, previous work uses
soft representation in the input via prompt tuning
(Liu et al., 2021; Hambardzumyan et al., 2021),
generates discrete instructions (Shin et al., 2020;

Gao et al., 2021; Zhou et al., 2023), or combines
both via semi-parametric prompt tuning (Bari et al.,
2022). However, prompt tuning is brittle to opti-
mize (Hu et al., 2022a; Liu et al., 2022), and the
generation of discrete instructions requires substan-
tial computational resources, a particular concern
with upstream models as they typically have bil-
lions of parameters. The retrieval of instructions
is limited to the retrieval of trained soft prompts
and samples (Ye et al., 2022), prompt initialization
(Vu et al., 2022), or the retrieval of multiple prompt
mixtures (Qin and Eisner, 2021; Asai et al., 2022).

Answer Choice Automation. Methods to au-
tomate label representations are targeting BERT-
like masked language models (Devlin et al., 2019),
which enables optimization of the output descrip-
tions on continuous vector representation. Shin
et al. (2020) train a logistic classifier on embed-
dings to score tokens in the vocabulary by how well
they predict the task labels. Gao et al. (2021) com-
pute the probability for a token to be the masked
classification token, by computing the dot product
between both embeddings. Wang et al. (2022a)
additionally ensure that label tokens belong only to
a single class. Alternatively to such discrete search
is learning soft output representations of labels via
gradient descent (Hambardzumyan et al., 2021; Cui
et al., 2022; Hu et al., 2022b; Karimi Mahabadi
et al., 2022), or combining both (Ma et al., 2022).
Tunstall et al. (2022) propose a fully prompt-free
method using Sentence Transformers (Reimers and
Gurevych, 2019).

Novelty. Prior works on prompt automation are
computationally intensive, brittle to optimize, or
assume a continuous output representation for each
token. By contrast, our proposed approach auto-
mates prompts for upstream models, which operate
over a discrete output space. We do not insert any
additional trainable parameters for automating tem-
plates. Instead, our work is the first to use retrieved
instruction-finetuning templates for an unseen task
directly and to use them to optimize the answer
choices via the generation of distinct, semantically
meaningful, answer choice configurations.

3 How Much Does the Design of Prompts
Matter for Upstream Models?

To automate prompts, we need to understand their
role in few-shot classification. While previous re-
search suggests that the wording of instructions for

2416



Figure 3: An analysis of prompts used in PEFT of upstream models (here T0), broken down into templates (top)
and answer choices (bottom). Experiments span 12 datasets and 8 tasks. Error bars indicate one standard deviation
across 5 runs. General task-unspecific templates perform surprisingly well and instruction-independent single
answer choice configurations (i.e. dataset and best-single) outperform handcrafted prompts.

masked language models is crucial, Webson and
Pavlick (2022) observe that the semantic relevance
of a prompt is not a strong performance indicator
for upstream models. However, their analysis is re-
stricted to natural language inference whilst using
the PET (Schick and Schütze, 2021) algorithm to
train the model. Yet, results in Schick and Schütze
(2022) suggest that templates do matter in principle,
but PET is robust when correctly configured.

These results raise questions regarding the role
of prompts for upstream models in the context of
automated few-shot learning on unseen tasks. We
conduct a systematic ablation study for both tem-
plates Φ and answer choices Ψ. We use T-Few
with the T0 upstream model and 32 samples per
class. We evaluate 12 datasets, spanning 8 tasks.
For details on the datasets, see Appendix A.

Templates. We design four experiments to under-
stand the importance of accurate task descriptions
(i.e. semantics) in increasing order: concatenation
of a sample’s content without any additional text
(null), uniform sampling of words from the training
vocabulary (random), general purpose instructions
(e.g. Given ..., the answer is ...) that are not tai-
lored to the task (general), handcrafted instructions
(handcrafted). We use the same handcrafted answer
choices and templates across all settings (and vice
versa the same templates across experiments for
answer choice experiments).

As seen in Figure 3 (top), with a mean score

of 62.8, 62.9, 64.0, 64.2, for each setting, respec-
tively, we observe that simple task-unspecific tem-
plates perform surprisingly well, only perform-
ing slightly worse than more complex handcrafted
ones. Templates that are not well-formed or lack
an instruction entirely perform substantially worse
than handcrafted ones. Note that results differ heav-
ily between datasets. While some datasets (Enron
and CR) are virtually unaffected by the design of the
template, performance is strongly affected by the
template for some other (e.g. RTE, WSC, Amazon).

Answer Choices. Similarly, for answer choices
we run four experiments: reversed handcrafted an-
swer choices (reversed), uniform sampling of a ran-
dom word from the training vocabulary (random),
label text as presented in a dataset itself, such as
Entailment in Figure 2 (dataset), and handcrafted
choices. Different handcrafted templates for the
same task might have different answer choices, de-
pending on the instruction. In contrast, there ex-
ists only a single answer choice configuration for
dataset answer choices (i.e. mapping from categori-
cal label to text), which we use across all templates.

We observe that unlike templates, the selection
of answer choices makes a large difference in
performance. However, datasets that were particu-
larly robust regarding template design appear to be
also robust here. Moreover, despite dataset choices
(e.g. entailment, not_entailment) not matching a
template’s instruction (e.g. “Given ... does ... fol-
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low? Yes or No?"), and only having one configu-
ration of choices, we observe comparable perfor-
mance to handcrafted ones. Thus neither template-
tailored answer choices nor multiple distinct an-
swer choice configurations are needed. By man-
ually selecting a single configuration of answer
choices from both dataset and handcrafted choices
(best-single), we easily achieve the highest average
score with 66.2. An automated selection mecha-
nism of a single configuration can subsequently
perform favourably over multiple distinctly hand-
crafted prompts.

4 AuT-Few: Automated Few-shot
Classification with Upstream Models

AuT-Few is a simple, yet efficient, algorithm to
automate prompts for upstream models, drawing
from the insights gained from Section 3. Figure 2
shows an illustration of AuT-Few’s template and
answer choice automation. AuT-Few deploys a
lightweight template automation approach since
accurate task templates are not essential to perfor-
mance. It selects suitable templates from the collec-
tion of prompts the upstream model was instruction-
finetuned on (Section 4.1).

On the other hand, the selection of answer
choices has a substantial impact on performance.
Searching over all possible answer choices is in-
tractable for large upstream models and also impre-
cise due to the small training size. Thus, AuT-Few
only considers two distinct types of answer choices
(Section 4.2). One is tailored to the retrieved tem-
plates by measuring the log-likelihood on the train-
ing data (template-tailored). The other is based
on capturing the topic of samples belonging to the
same class (topic-specific).

We select the most appropriate template and
answer choice configurations via cross-validation.
The automated prompts are then used for training
and inference of our upstream model, where we
largely follow T-Few (c.f. Section 5.1 for details).

4.1 Automated Templates via Retrieval

We retrieve templates that are used in instruction
tuning the upstream models. This enables us to
(i) adhere closely to instructions the model is fa-
miliar with and has already learned (ii) exploit the
associated inductive bias on answer choices for
candidate generation in the next step. Specifically,
we consider the collection of all prompts used for
instruction tuning, ΦIT , such as the ones shown

in Figure 1 for sentiment classification and para-
phrase identification. We then aim to find templates
ΦA ⊂ ΦIT from the collection that are related to
our downstream task. For instance, given the NLI
sample from Figure 2, we rather want to retrieve
templates about paraphrase identification than sen-
timent classification. The former is both semanti-
cally and structurally more similar to NLI, as both
have two arguments in their input. For NLI they are
hypothesis and premise while for paraphrase iden-
tification these are the two compared sentences.

To find suitable templates, we first filter the col-
lection ΦIT to templates that match the target task
format the most. We achieve this by matching the
number of underlying arguments of our target task,
against the number of arguments of individual tem-
plates in ΦIT . We then do a semantic search via
an efficient retrieval system: we query a concatena-
tion of a sample’s argument descriptions (e.g. the
strings hypothesis and premise) against all suitable
templates in ΦIT by encoding both query and ev-
ery template in the collection with a lightweight
bi-encoder (Reimers and Gurevych, 2019). If the
field descriptions are uninformative (e.g. numbers),
we instead use the averaged representations of all
samples inDtgt

train as the query. Using cosine similar-
ity, we then select the top R templates. Finally, we
adjust the retrieved templates to the downstream
task via regular expressions to obtain ΦA.

4.2 Automated Selection of Answer Choices

Generation of Answer Choice Candidates.
Apart from the label descriptions that appear
in the dataset, which may not be meaningful,
we consider the generation of two distinct types
of answer choices given the retrieved templates:
template-tailored and topic-specific answer choices.
Template-tailored answer choices are generated by
finding individual tokens for each class c that max-
imize the conditional likelihood over the training
data of that class Dc

train, given the retrieved tem-
plates ϕ ∈ ΦA, computed via the upstream model:

Lc =
∑

x∈Dc
train

∑

ϕ∈ΦA

log pθ(v | x, ϕ),

with v ∈ V being a token of the subword vocabu-
lary of the upstream model. Tokens unspecific to an
individual class might be ranked high across mul-
tiple classes. Thus, we further compute for every
token how far its likelihood deviates from the mean
1
|C|

∑
c∈C Lc. We finally select the top-ranked dis-
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tinct tokens across all classes that maximize the
sum of these scores.

Relying exclusively on the likelihood signal (and
the retrieved templates) to find answer choices
might amplify the inductive bias of the model and
it restricts other potentially viable answer choices 2.
Since our analysis indicates that answer choices
not tailored to the templates can still perform
strongly, we additionally consider topic-specific an-
swer choices not generated via our upstream model.
We use the high quality contextual representations
of Sentence Transformers to find single-word (not
token) representations that semantically express the
underlying content for each class. For each sen-
tence Sc for a particular class, we obtain a contex-
tual representation of the sentence and each word.
For every class and over the training vocabulary we
then compute the cosine similarity between each
sentence and word. We remove words that occur
across different classes and finally use the top word
for each class as the topic-specific choices.

Selection of Best Answer Choice Configura-
tion. We are now tasked to find the best rep-
resentation for the given task. For each choice
option, we consider a joint signal derived from
a supervised evaluation, i.e. F1 score, on a
subset of the training data Dtrain, and from a
measure of the overall log probabilities on the
test data Dtest. The assumption for the latter
is that representative answer choices better esti-
mate the task’s distribution, resulting in overall
higher log probabilities on unseen data of the target
task:

∑
y

∑
ϕA∈ΦA

∑
x∈Dtest

( 1
T

∑
log pθ(ψp(y) |

x, ϕ, ψp(y)<t), with ψp being the current answer
choices configuration. We compute the final score
for each candidate by summing the normalized
scores of each metric over 3-fold cross-validation.

5 Evaluation

5.1 Experimental Setup
This section provides an overview of our experi-
mental setup. We are sampling K training samples
for each class yi ∈ Y , for a total of K × |Y| train-
ing samples3. We do not consider a validation set
to exist for hyperparameter-tuning, following Alex

2For example the input prompt and samples might have
been encountered for NLI tasks, focusing on options working
particularly well for this scenario.

3While in Liu et al. (2022) samples are drawn randomly,
i.e. not stratified, we largely adhere to the traditional N-Way-
K-shot classification setting, as data imbalance in training is
an aspect to be explored separately.

et al. (2021). For baselines, and implementation
specifics, including hyperparameters, see Appendix
B. For used datasets, see Appendix A.

Datasets. We conduct experiments on a total of
12 text classification datasets, spanning a total of 8
tasks. This collection is in essence a combination
of evaluation datasets used in Liu et al. (2022) and
Tunstall et al. (2022), minus datasets that we con-
sider not traditional classification tasks, e.g. sen-
tence completion, where the meaning of the class
changes per instance.

Implementation Details. AuT-Few largely fol-
lows T-Few (Liu et al., 2022) for finetuning, with
some modifications to training and inference to
increase robustness for our automated few-shot
method. Instead of only learning rescaling vectors
of the upstream model’s weights ((IA)3), we addi-
tionally learn and re-scale decomposition matrices
(LoRA), as proposed by Hu et al. (2022a). (IA)3

and LoRA are complementary and the gradient up-
dates from both methods can be made persistent to
the model’s weights after training without inquir-
ing additional inference costs over the upstream
model itself. Another limitation of T-Few is its in-
ference algorithm. T-Few selects a single template
at random (c.f. Section 2) and it can be a poor ap-
proximation of the overall expectation, especially
with noisy templates as used with AuT-Few. We
instead run a Monte-Carlo approximation over all
retrieved templates, computing a weighted average
over the probabilities computed via each template.

Baselines. In addition to the current state-of-the-
art few-shot learning method T-Few, we consider
SetFit (Tunstall et al., 2022) (with a RoBERTA
backbone), which is of particular relevance in our
context, since it is the state-of-the-art efficient
prompt-free few-shot method. We also compare
against a fully-finetuned RoBERTaLARGE model,
based on the baseline in Tunstall et al. (2022). The
majority baseline is based on the class distribution
in the test data.

5.2 Results

Results for K = 32 samples per class are shown
in Table 1. Both T-Few and AuT-Few use T0-3B
as the upstream model. We report accuracy on all
datasets with the exception of Amazon-CF, where
we report Matthew’s correlation coefficient due to
the skewed distribution, following Tunstall et al.
(2022).
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Majority Zero-shot Finetune SetFit Rand. T-Few T-Few AuT-Few
RTE 52.7 65.61.2 56.45.6 51.41.8 65.25.6 82.52.4 81.42.4

WSC 63.5 62.13.9 49.27.1 50.34.4 49.66.6 70.23.1 59.21.5

WiC 50.0 51.30.6 53.95.1 55.05.1 55.35.2 55.94.4 58.45.1
∗

ANLI-R1 33.4 35.60.8 32.11.9 32.91.6 45.24.9 52.92.0 49.13.7
∗

ANLI-R2 33.4 33.60.7 33.41.6 34.01.7 40.62.0 42.51.4 42.01.5

ANLI-R3 33.5 34.20.8 31.51.6 32.71.0 36.93.4 44.21.2 43.53.0

CB 50.0 57.50.8 86.16.6 84.35.0 77.56.1 91.43.2 93.91.6

Emotion 35.2 42.10.8 57.6 3.5 71.93.2 48.73.5 65.42.3 72.62.5
∗

Enron 50.9 53.30.4 92.22.4 95.11.2 96.90.6 96.50.4 95.50.5

Amazon-CF 0.00 0.040.7 40.59.9 60.13.0 35.710.6 24.07.5 59.08.2
∗

CR 64.2 88.90.4 84.84.3 90.71.7 93.63.5 93.70.2 92.51.1

SST-5 26.3 38.91.0 42.13.4 49.20.9 47.23.9 51.51.1 48.62.5

Average ↑ 41.1 47.31.0 55.04.4 59.02.6 57.74.4 64.22.4 66.32.5

Table 1: Main results with 32 samples per class, averaged over five runs. AuT-Few adopts T0 as the upstream
model. Rand. T-Few uses randomly selected answer choices. Statistically significant differences between AuT-Few
and T-Few are marked with ∗, using a two-sided Monte-Carlo permutation test with 10000 repetitions (p < 0.01).
AuT-Few has the highest average score across datasets without the use of handcrafted task prompts while maintaining
comparable standard deviation to T-Few and SetFit.

AuT-Few outperforms T-Few (64.2 ± 2.4) and
SetFit (59.0 ± 2.6), with an average score of
66.3 ± 2.5. A trivial T-Few automation strat-
egy that randomly draws answer choices from the
training data (c.f Section 3) performs substantially
worse than AuT-Few with much higher variability
(57.7± 4.4). While AuT-Few has a higher average
score than T-Few, the latter wins against AuT-Few
on 8 out of 12 datasets. However, we observe a sta-
tistically significant difference4 on only 4 datasets.
Out of these four datasets where we observe statis-
tical significance, AuT-Few outperforms T-Few in
three of them (WiC, Emotion, Amazon-CF).5 More-
over, we would like to emphasise that performing
even comparable against T-Few is already a win
since the latter uses multiple diverse handcrafted
prompts for each target task while AuT-Few does
not require any manual involvement by the user to
optimize the prompt while maintaining comparable
standard deviation.

On the blind test set with the best variant of
T0 (T0++, 11B parameters) AuT-Few achieves an
average score of 71.3 versus 70.5 for T-Few (with
the same backbone), excluding WiC and WSC, as

4We ran the two-sided Monte-Carlo permutation test with
10000 repetitions (p-value < 0.01). Significance for a dataset
holds iff results are significant across all seeds.

5Notably, the performance difference between AuT-Few
and T-Few on WSC, the only dataset where AuT-Few performs
substantially worse, is not statistically significant given our
test: this can be explained by the very small sample size of the
dataset’s evaluation data of only 104 samples. Liu et al. (2022)
also observed “unstable results" on WSC, see the discussion
on this Github issue.

these datasets have been used to train T0 (see App.
C.1 for detailed scores).

We note that the automated prompts are not al-
ways semantically coherent. As shown in Appendix
D, automation choices for some datasets, such as
mp3player and ipod for CR, appear odd, yet the
model still achieves a very high score on them.
This observation can be explained by our findings
in section 3, identifying that some datasets such
as CR and EnronSpam are particularly robust to-
wards the task description and the answer choices.
For CR, AuT-Few’s cross-validation strategy for
selecting the best answer choice subsequently mea-
sures almost identical scores for all three choice
configurations (90.1, 89.8, 90.4 for the dataset,
template-tailored, and topic-specific choices, re-
spectively), resulting in the seemingly erroneously
answer-choice selection.

Results across Upstream Models & Efficiency.
Results of AuT-Few with different upstream mod-
els, namely BART0, T0, and Flan-T5 are seen in
Table 2. The results in the table are computed
without Monte-Carlo approximation, resulting in
a minor performance decline, yet simplifying the
efficiency comparison. Datasets that are part of
the instruction-tuning corpus of Flan-T5 or BART0
have been excluded (greyed out). BART0 being
about 8 times smaller than T0 performs substan-
tially worse, but it still substantially outperforms
T-Few with BART0 and maintains a higher average
score than SetFit. Flan-T5 performs on average the
best on its unseen datasets, indicating the improved
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T-Few AuT-Few
SetFit BART0 T0 BART0 T0 Flan-T5

# Param. 330M 400M 3B 400M 3B 3B
# Tr. Param. 330M 0.1M 0.3M 1.9M 10.5M 10.5M
Inf. FLOPs 2.5e10 1.9e10 1.8e11 1.9e10 1.8e11 1.8e11
Tr. FLOPs 8.5e14 4.1e14 3.9e15 3.6e15 2.7e16 2.7e16
RTE 51.41.8 80.41.5 82.52.4 71.37.0 79.33.5 90.11.8
WSC 50.34.4 61.23.3 70.23.1 52.93.1 58.34.6 73.15.6
WiC 55.05.1 59.41.5 55.94.4 55.12.9 59.74.9∗ 67.62.5
ANLI-R1 32.91.6 34.70.7 52.92.0 33.43.1 47.83.5∗ 67.13.5
ANLI-R2 34.01.7 34.71.0 42.51.4 36.11.7 42.11.1 53.32.6
ANLI-R3 32.71.6 36.91.3 44.21.2 36.21.1 42.12.9 52.12.8
CB 81.35.0 78.67.3 91.43.2 85.74.6 93.61.6 91.01.3
Emotion 71.93.2 42.03.3 65.42.3 63.96.5 72.12.6∗ 74.31.8
Enron 95.11.2 54.31.6 96.50.4 92.81.8 95.61.8 96.10.7
Amazon-CF 60.13.0 0.023.0 24.07.5 55.011.0 59.46.8∗ 62.77.5
CR 90.71.7 91.70.8 93.70.2 90.60.8 92.01.5 93.20.3
SST-5 49.20.9 42.40.3 51.51.1 47.43.9 47.71.3 48.67.2
Average ↑ 59.92.2 49.82.0 64.52.2 61.24.1 67.13.0 –

Table 2: Results and computational costs using different
upstream models, 32 samples per class. All results are
computed without Monte-Carlo approx. Datasets that
appear in an upstream model’s training are greyed out.
WiC and WSC were excluded from all averages.

capabilities of the model’s much larger and diverse
instruction-tuning. These results highlight the ef-
fectiveness of AuT-Few across upstream models of
varying sizes.

The computational costs for training and infer-
ence are listed in Table 2. We follow the approach
adopted by Liu et al. (2022) and Tunstall et al.
(2022) to measure computational costs, namely
FLOPs-per-token (Kaplan et al., 2020). AuT-Few
requires about 7x the training cost of T-Few, yet
remains computationally accessible, taking only a
few hours to train on a single A10G GPU, since
the number of training steps for few-shot PEFT
is overall small. Similarly, while AuT-Few with
BART0 takes 4.2x longer than SetFit, it still takes
less than an hour of total training time. Impor-
tantly, during inference, AuT-Few is as efficient
as T-Few (excluding Monte-Carlo approximation,
otherwise scaling linearly with the number of re-
trieved templates). AuT-Few with BART0 is even
more efficient than SetFit during inference, requir-
ing only 60% of its computation while maintaining
a competitive score.

We emphasize that while T-Few takes somewhat
less computation than AuT-Few, T-Few requires
significantly more human intervention, and human
time is much more valuable than computer time.
The difference of a couple hours of computer time
is negligible when it can save orders of magnitude
more human time and associated costs.

Varying sample sizes. Figure 4 shows the perfor-
mance of our baselines as well as Aut-Few over 16,

Figure 4: Average scores when finetuned on 16, 32, and
64 samples per class. AuT-Few performs better relative
to the baselines with more training samples.

32, and 64 samples, respectively. With K = 16,
we observe slightly worse performance than T-Few
with AuT-Few. The provided signal from only 16
samples is too noisy for our automation pipeline.
With an increase in number of training samples fol-
lows a larger lead of AuT-Few over other models.
While AuT-Few (T0) is on average 2.1 points better
than T-Few with 32 samples, this lead increases to
3.1 for K = 64. Similar observation is made when
comparing AuT-Few (BART0) with SetFit.

Real-world evaluation: RAFT. RAFT (Alex
et al., 2021) is a benchmark targeted towards eval-
uating few-shot classification methods. It consists
of 11 datasets, from various domains, such as the
legal or medical domain. In RAFT 50 randomly
sampled training samples are provided, with a po-
tentially imbalanced label distribution. We submit-
ted predictions of AuT-Few with the 11B Flan-T5
backbone, with handcrafted prompts as provided
by RAFT (AuT-Few (H)), as well as with our au-
tomated prompts (AuT-Few). We do not make any
manual dataset adjustments, with the exception of
Banking_77 as only a subset of the classes appears
in its training data, c.f. App. C.2.

Results are shown in Table 3. Our method with
handcrafted prompts and the Flan-T5 upstream
model achieves rank-1 with the overall highest
average score. Our automated version achieves
scores slightly below T-Few (the previously 2nd
ranked system). This is largely due to AuT-Few’s
poor performance on a single dataset, Tweet-Eval-
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Hate, as a result of improper selection of answer
choices. However, AuT-Few has the best aver-
age rank across all five models with 2.45. It wins
against T-Few on 7 out of 11 datasets. Furthermore,
it has the highest overall win rate, winning against
all other models we considered (including our ap-
proach with handcrafted prompts) on 4 out of 11
datasets, see Table 7. These results highlight AuT-
Few’s robustness and generalizability to real-world
classification tasks.

Rank Method Avg. Score ↑ Avg. Rank ↓
– AuT-Few (H) 77.3 2.82
– AuT-Few 74.7 2.45
1 yiwise 76.8 2.55
2 T-Few 75.8 2.82
12 SetFit 71.3 4.27
5 Human baseline 73.5 –

Table 3: Results on the RAFT benchmark as of Octo-
ber 19 2023. Avg. Rank is reported across the shown
models. Our method with handcrafted prompts achieves
rank-1 with the overall highest average score while AuT-
Few has the best average rank and highest win rate.

Ablation. Results of our ablation study for AuT-
Few with 32 samples per class are shown in Ta-
ble 4. We ablate our template retrieval method
by considering randomly selected templates from
the instruction tuning KB, as well as template re-
trieval from the entire PromptSource collection of
prompts. As seen both settings perform worse than
AuT-Few, with higher standard deviation across
seeds. While retrieving from the entire collection
performs slightly better for tasks that appear in it
(e.g. NLI, emotion classification), it strongly under-
performs on unseen ones (e.g. WiC, Amazon-CF).
Further, the ablation of the choice options shows
that each definition of answer choices by itself per-
forms worse than AuT-Few (including the label
descriptions that appear in the dataset). Finally, we
see that our modifications to T-Few’s inference and
training are effective, with both LoRA and (IA)3

PEFT performing worse individually. Note that
AuT-Few still outperforms T-Few even when us-
ing only (IA)3, indicating AuT-Few’s superiority
without any architectural adjustments.

6 Conclusion

AuT-Few replaces hand-designed task-specific
prompts with automated templates, and achieves
state-of-the-art results on a wide range of datasets

Setup Avg. Score
AuT-Few 66.32.5

Template
w/o retrieved template (randomized) 65.72.9
w/ entire Collection 65.62.9

Choices
only dataset 65.52.7
only template-tailored 63.33.4
only topic-specific 62.24.3

Improv.
w/o Monte-Carlo approximation 65.83.0
only LoRA 63.43.4
only (IA)3 65.22.5

Table 4: Ablation for AuT-Few with 32 samples per
class: randomized indicates randomly selected tem-
plates, entire Coll. considers all PromptSource prompts.

and tasks, and the best average rank across datasets
on the RAFT benchmark. Machine learning, es-
pecially few-shot learning, is about automation.
Although T-Few takes less computation, it requires
hand-designed prompts which involves significant
human intervention and expertise. Human-time is
profoundly more valuable than computer time, and
AuT-Few saves this valuable human time while still
retaining computational tractability. Future work
includes the identification of causes for the obser-
vations made in section 3, particularly for datasets
that are completely unaffected by the prompt’s de-
sign (e.g Enronspam and CR).

Limitations

This work and the automation pipeline is con-
strained to classification tasks in English. The role
of templates and answer choices is necessarily dif-
ferent for tasks such as natural language generation
(e.g. summarization or question answering) where
a single textual class representation does not exist.
The proposed automated few-shot approach is not
expected to work well under extremely low data
regime or when training samples are highly imbal-
anced (i.e. < 8 samples per class) as some data
signal is required for optimizing the choice space.
While our evaluation aims to cover a diverse range
of classification tasks, the list of evaluation tasks is
not exhaustive. Subsequently, there is no guarantee
that AuT-Few performs equally well on every un-
seen tasks, particular ones that divert strongly from
tasks the model has seen during instruction tuning.

Ethics Statement

Our paper makes state-of-the-art few-shot classifi-
cation methods more accessible to non-experts for
real-world problems. The goal of this work is not
to replace human involvement in the deployment of
AI systems but instead to shift human resources to
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other essential aspects of model deployment such
as the analysis of data, biases, or system errors. We
discussed the computational costs of our automa-
tion approach and show that they are comparable at
similar model size with the most efficient few-shot
systems, which themselves again are computation-
ally much more efficient than full-data and full
model fine-tuning, or in-context learning.
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Matthew Henderson, and Ivan Vulić. 2020. Efficient
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A Datasets

We conduct experiments on a total of 12 text classi-
fication datasets. The tasks we consider are 1) nat-
ural language inference: RTE (Dagan et al., 2005)
, CB (de Marneffe et al., 2019), ANLI (Nie et al.,
2020); 2) coreference resolution: WSC (Levesque
et al., 2012); 3) word sense disambiguation: WiC
(Pilehvar and Camacho-Collados, 2019); 4) coun-
terfactual detection: Amazon-CF (O’Neill et al.,
2021); 5) sentiment classification: SST-5 (Socher
et al., 2013), Customer reviews (CR) (Conneau
and Kiela, 2018); 6) emotion classification: emo-
tion (Saravia et al., 2018); and 7) spam detection:
Enron (Metsis et al., 2006). All datasets are in
English. Enron contains personal identifiable in-
formation, yet substantial efforts have been made
to remove any integrity problems and samples of
affected employees, see here for reference. Enron
is an long-established dataset to use for classifica-
tion problems and our use is in line with previous
usages of it.

B Implementation Details

Parameter-efficient fine-tuning via low-rank
adaptation and rescaling While exclusively
rescaling weights of an upstream model via IA3

has shown to perform remarkably well, the ex-
pressiveness of the fine-tuning process is restricted,
due to ∆h (the accumulated gradient update) be-
ing always of the form | W0 − λW0 |, with W0

being the weights of the upstream model and λ
being the rescaling vector. For tasks that require
major adaptation capabilities, this might pose a
hindrance. In contrast, LoRA explicitly models
via decomposition matrices the gradient update
∆h = BA, resulting in higher expressiveness
(about 10x as many parameters as IA3), but has
repeatably shown in our experiments to have sub-
stantially higher variability. We hence combine
both PEFT strategies, by rescaling both the weights
of the upstream model and the accumulated gradi-
ent updates jointly: h = λ(W0x + BAx). After
training, both λ andBA can be applied toW0, mak-
ing the weight updates persistent without inquiring
any additional computation during inference. Fol-
lowing Liu et al. (2022), we pre-train the weights
of the rescaling vectors in a similar fashion to the
upstream model. While the authors only train the
vectors for 100K steps, we observed further im-
provements when training them for longer (500K
steps).
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Inference via Monte-Carlo Approximation over
Templates As outlined in section 3, in its current
version the expectation over template and choice
space is approximated during inference by ran-
domly drawing a template from a collection of
handcrafted ones. Besides being non-deterministic,
the selected template might be a poor approxima-
tion of the overall expectation. Instead, we run
a Monte-Carlo Approximation over the template
space ΦA, by computing a weighted average over
all retrieved templates:

ŷ = argmaxyEΦ,Ψ[pθ(yi | x,Φ,Ψ)]

= argmaxy

R∑

r=1

wrpθ(yi | x, ϕr, ψA),

with
∑R

r=1wr = 1. We determine the weights
for each template by computing the log-likelihood
of each template on Dtest and applying a softmax
function on them, following the previously men-
tioned motivation.

Hyperparameters Since our joint PEFT method
converges substantially faster than IA3 by itself,
we set the number of total steps to 600 (contrary
to 1000 used by T-Few). Further, for both T-Few
and AuT-Few we use the following hyperparam-
eters across all experiments: we use Adam, a
learning rate of 1−3, cosine decay with a warmup
ratio of 0.06, a learning rate decay of 1.0, and
a batch size of 8. The contextual embeddings
for template retrieval as well the topic-specific
choices are generated using sentence-transformers’
all-MiniLM-L6-v2 encoder model. For all main
experiments, we set the number of retrieved tem-
plates to R = 5. The underlying prompt knowl-
edge base used is PromptSource (Bach et al., 2022).
For selecting the best answer choices, we split the
training data using 3-fold cross-validation and train
the upstream model with identical hyperparameters
as our final model for every choice option.

System & Code All models (550M, 3B, 11B pa-
rameters) are trained and run on a single A10G
GPU with 23GB of memory by using gradient
checkpointing, bfloat16 floating-point format, and
in the case of the 11B model by offloading param-
eters using DeepSpeed 6. We produce results for
the SetFit and finetune baseline using the associ-
ated repository7. We filter stopwords and punctua-
tion from the vocabulary of topic-specific answer

6https://github.com/microsoft/DeepSpeed
7https://github.com/huggingface/setfit

choices using NLTK (Bird and Loper, 2004). Our
code and models will be made openly accessible
under Apache License 2.0.

Baselines In addition to the current state-of-the-
art (Liu et al., 2022), we consider SetFit (Tun-
stall et al., 2022), as well as a standard fine-
tuned LM. SetFit is of particular relevance to us
since it is the state-of-the-art prompt-free few-
shot method, shown to perform competitively to
T-Few in their experiments while being computa-
tionally substantially more efficient. In their com-
parison to T-Few, they use a very small variation
of the sentence-transformer MPNET, consisting of
only 110M, however, we observed substantially bet-
ter performance with the larger ROBERTa sentence-
transformer model (355M parameters). Hence, we
report results on the latter model8. The traditionally
finetuned model is a RoBERTaLARGE model, fully-
finetuned with an additional linear head, based on
the baseline in (Tunstall et al., 2022).

C Detailed Results

Detailed results of the experiment in Table 1 for
different sample sizes are shown in Table 8.

C.1 Results Blind Test Set

Dataset T-Few AuT-Few

RTE 87.2 82.1
ANLI-R1 60.7 54.6
ANLI-R2 52.1 49.1
ANLI-R3 51.9 51.8
CB 93.6 96.0
Emotion 62.1 71.7
Enron 97.0 97.6
Amazon-CF 50.2 62.6
CR 93.7 92.8
SST-5 56.6 55.1
Avg 70.5 71.3

Table 5: Results on the held out test set. Excluding WiC
and WSC as these wereeen in T0pp’s pre-training.

8Albeit some sentence-transformer models are targeted for
a certain domain, e.g. QA or NLI, in our experimental setup
we aim to minimize human involvement, including model
selection. Hence, the same pre-trained model is used across
all experiments.
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C.2 Results RAFT
RAFT consists of 11 datasets from different do-
mains. The individual datasets included in RAFT
are ADE Corpus V2 (medical case reports) (Gu-
rulingappa et al., 2012), Banking77 (Casanueva
et al., 2020), NeurIPS impact statement risks
(Ashurst et al., 2022), Onestop English (Vajjala and
Lučić, 2018), Overruling (legal domain) (Zheng
et al., 2021), Systematic Review Inclusion (Saeri
et al., 2022), Tai safety research (Riedel and Deibel,
2020), Terms of Service (Lippi et al., 2019), Tweet
Eval Hate (Basile et al., 2019), and Twitter Com-
plaints (Preotiuc-Pietro et al., 2019). All datasets
are in English.

Since only a small subset of the 77 classes appear
in the training data of the Banking_77 dataset, we
directly use the dataset’s class representations for
the answer choices. Banking_77 is strictly speak-
ing a zero-shot and few-shot evaluation dataset and
previous work such as SetFit that does not use a
verbalizer at all also had to make use of the given
class representations for that dataset9.

D Automated Choices

The generated and selected answer choices as used
in AuT-Few with K = 32 and T0 as the upstream
model on seed 0 are shown in Table 9.

E Automated Templates

The retrieved templates as used in AuT-Few with
K = 32 and T0 as the upstream model on seed 0
are shown in Table 10.

9https://towardsdatascience.com/
sentence-transformer-fine-tuning-setfit-\
outperforms-gpt-3-on-few-shot-text-class\
ification-while-d9a3788f0b4e
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Dataset Handcrafted Dataset Choice Automated Choice
Ade ADE-related/not ADE-related chemotherapyinduced/diagnosis
Banking c.f. C.2 c.f. C.2
Neurips doesn’t mention a harmful application/mentions a

harmful application
doesn’t mention a harmful application/mentions a
harmful application

One
Stop

elementary/intermediate/advanced Black/World/Science

Overrul-
ing

not overruling/overruling court/overrule

Org
Types

company/research institute/university company/research institute/university

Review included/not included included/not included
Tai
Safety

TAI safety research / not TAI safety research agent/learning

ToS not potentially unfair/potentially unfair not potentially unfair/potentially unfair
Eval
Hate

hate speech/not hate speech Sports/World

Com-
plaints

complaint/no complaint complaint/no complaint

Table 6: Generated answer choices, when using T0 and 32 samples for seed 0.

System Ade Banking Neurips One Stop Overruling Org Types Review Tai Safety ToS Eval Hate Complaints
AuT-Few (H) 0.837 0.647 0.78 0.847 0.942 0.917 0.687 0.703 0.728 0.517 0.892
AuT-Few 0.846 0.587 0.898 0.77 0.963 0.801 0.62 0.742 0.738 0.350 0.901
yiwise 0.856 0.695 0.839 0.698 0.944 0.906 0.493 0.737 0.749 0.647 0.883
T-Few 0.804 0.695 0.833 0.676 0.95 0.915 0.508 0.736 0.75 0.586 0.879
SetFit 0.799 0.632 0.859 0.76 0.93 0.769 0.503 0.664 0.604 0.487 0.831

Table 7: Results on RAFT.
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Majority Zero-shot Finetune SetFit T-Few AuT-Few (H) AuT-Few (w/o D) AuT-Few (A)
RTE 52.7 65.61.2 50.32.6 52.74.0 81.01.5 81.83.9 81.02.4 80.11.5
WSC 63.5 62.13.9 53.74.8 50.25.3 61.94.4 65.05.7 50.54.8 48.96.2
WiC 50.0 51.30.6 53.34.1 57.03.9 54.42.9 60.62.5 52.74.5 54.94.7
ANLI-R1 33.4 35.60.8 32.91.4 32.31.3 50.22.0 51.12.4 47.44.5 48.03.7
ANLI-R2 33.4 33.60.7 34.31.0 34.01.7 42.40.7 40.81.9 41.30.6 41.11.9
ANLI-R3 33.5 34.20.8 33.21.9 32.30.9 43.01.5 42.81.8 36.92.2 38.15.0
CB 50.0 57.50.8 64.35.2 81.44.7 85.72.8 91.82.0 85.78.1 87.57.7
Emotion 35.2 42.10.8 37.54.3 68.41.7 62.03.2 72.63.3 61.54.1 66.01.7
Enron 50.9 53.30.4 90.73.5 94.51.8 95.60.9 96.11.4 93.62.6 92.73.5
Amazon-CF 0.00 0.040.7 20.412.6 56.74.0 23.45.3 61.712.1 32.48.5 38.615.2
CR 64.2 88.90.4 74.78.1 91.01.1 93.42.7 93.60.4 92.71.3 92.61.7
SST-5 26.3 38.91.0 37.55.1 47.91.4 51.72.3 52.10.9 51.61.4 51.21.3
Average 41.1 47.31.0 48.54.6 58.12.6 62.12.3 64.43.3 60.73.7 61.74.5

16 samples per class.

Majority Zero-shot Finetune SetFit T-Few AuT-Few (H) AuT-Few (A w/o D) AuT-Few (A)
RTE 52.7 65.61.2 56.45.6 51.41.8 82.52.4 81.83.9 82.34.0 81.42.4
WSC 63.5 62.13.9 49.27.1 50.34.4 70.23.1 65.05.7 50.84.4 59.21.5
WiC 50.0 51.30.6 53.95.1 55.05.1 55.94.4 60.62.5 55.63.9 58.45.1
ANLI-R1 33.4 35.60.8 32.11.9 32.91.6 52.92.0 51.12.4 50.13.8 49.13.7
ANLI-R2 33.4 33.60.7 33.41.6 34.01.7 42.51.4 40.81.9 42.71.8 42.01.5
ANLI-R3 33.5 34.20.8 31.51.6 32.71.0 44.21.2 42.81.8 42.93.8 43.53.0
CB 50.0 57.50.8 86.16.6 84.35.0 91.43.2 91.82.0 93.92.0 93.91.6
Emotion 35.2 42.10.8 57.6 3.5 71.93.2 65.42.3 72.63.3 70.52.2 72.62.5
Enron 50.9 53.30.4 92.22.4 95.11.2 96.50.4 96.11.4 95.51.2 95.50.5
Amazon-CF 0.00 0.040.7 40.59.9 60.13.0 24.07.5 61.712.1 53.28.3 59.08.2
CR 64.2 88.90.4 84.84.3 90.71.7 93.70.2 93.60.4 93.01.3 92.51.1
SST-5 26.3 38.91.0 42.13.4 49.20.9 51.51.1 52.10.9 50.03.2 48.62.5
Average 41.1 47.31.0 55.04.4 59.02.6 64.22.4 67.53.3 65.12.9 66.32.5

32 samples per class.

Majority Zero-shot Finetune SetFit T-Few AuT-Few (H) AuT-Few (A w/o D) AuT-Few (A)
RTE 52.7 65.61.2 52.15.1 52.33.1 86.10.4 85.41.2 85.22.8 85.71.9
WSC 63.5 62.13.9 48.82.4 48.95.3 71.72.5 72.74.4 58.26.1 65.15.9
WiC 50.0 51.30.6 56.33.5 56.72.3 58.23.1 60.73.3 56.81.4 58.73.1
ANLI-R1 33.4 35.60.8 34.31.4 34.01.0 55.02.1 52.42.6 54.22.5 52.83.7
ANLI-R2 33.4 33.60.7 36.43.3 33.32.2 43.50.9 44.42.2 45.11.1 45.11.8
ANLI-R3 33.5 34.20.8 33.42.0 33.61.4 44.60.9 42.32.5 45.12.1 44.51.4
CB 50.0 57.50.8 84.23.2 88.52.7 93.23.4 93.23.6 96.11.9 95.70.9
Emotion 35.2 42.10.8 72.22.4 76.92.4 69.01.3 80.12.0 75.24.3 80.11.6
Enron 50.9 53.30.4 95.12.3 96.00.8 97.10.3 97.20.9 97.10.1 97.80.4
Amazon-CF 0.00 0.040.7 55.74.8 64.86.3 29.84.1 62.84.2 64.53.7 66.63.1
CR 64.2 88.90.4 89.31.8 91.61.0 94.00.7 94.30.8 92.62.1 92.61.8
SST-5 26.3 38.91.0 46.11.1 50.81.3 52.31.4 50.03.4 49.43.2 45.65.2
Average 41.1 47.31.0 58.62.6 60.72.5 66.21.7 69.62.6 68.32.6 69.22.5

64 samples per class.

Table 8: Results with T0 upstream model. (H): Handcrafted, (A w/o D): Automated Prompts without dataset label
candidates, (A): Automated Prompts.
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Dataset Answer Choice
Dataset template-tailored Topic-Specific Selected

RTE entailment/not_entailment Yes / No scandal / dictator Yes / No
WiC No / Yes run / work force / sentence No / Yes
WSC No / Yes good / Yes bob / peter No / Yes
ANLI-
R1

entailment / neutral /
contradiction

Yes / </s>/ No hound / market / presence Yes / </s> / No

CB entailment / contradiction /
neutral

Yes / No / no passage / sentence / funny Yes / No / no

Emo-
tion

sad-
ness/joy/love/anger/fear/surprise

" nega-
tive/pos/good/bad/positive

sadness / joy / love /
anger / fear /surprise

Enron ham / spam Business / 5 enrononline / pricing enrononline / pricing
Amazon-
CF

not-counterfactual /
counterfactual

positive / negative fabric / perfect not-
counterfactual/counterfac

CR negative / positive negative / positive mp3player / ipod mp3player / ipod
SST-5 very negative / negative /

neutral / positive / very positive
No / negative /
<unk> / Yes /
positive

filmmaking / genre / scene /
documentary / cinematic

No / negative / <unk>/
Yes / positive

Table 9: Generated and selected answer choices, when using T0 and 32 samples for seed 0.
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Dataset Rank Template

RTE

1 {{premise}} Question: {{hypothesis}}
2 {{premise}} \n Is that a paraphrase of the following sentence? \n {{hypothesis}}?
3 {{premise}} \n Is that paraphrasing the following sentence? \n {{hypothesis}}?
4 {{premise}} Question: {{hypothesis}}
5 Sentence 1: {{premise}} \n Sentence 2: {{hypothesis}} \n Question: Does Sentence 1 paraphrase

Sentence 2?

WiC

1 Pick one category for the following text. The options are - {{sentence1}}. {{sentence2}} - {{word}}
2 {{sentence1}} - {{sentence2}} Given a choice of categories {{word}}, the text refers to which one?
3 This is a correct answer to the following word about {{sentence1}}. \n Answer: {{sentence2}} \n

Question: {{word}}

WSC

1 Pick one category for the following text. The options are - {{sentence1}}. {{sentence2}} - {{word}}
2 {{sentence1}} - {{sentence2}} Given a choice of categories {{word}}, the text refers to which one?
3 This is a correct answer to the following word about {{sentence1}}. \n Answer: {{sentence2}} \n

Question: {{word}}

ANLI

1 {{premise}} Question: {{hypothesis}}
2 {{premise}} \n Is that a paraphrase of the following sentence? \n {{hypothesis}}?
3 {{premise}} \n Is that paraphrasing the following sentence? \n {{hypothesis}}?
4 {{premise}} Question: {{hypothesis}}
5 Sentence 1: {{premise}} \n Sentence 2: {{hypothesis}} \n Question: Does Sentence 1 paraphrase

Sentence 2?

CB

1 {{premise}} Question: {{hypothesis}}
2 {{premise}} \n Is that a paraphrase of the following sentence? \n {{hypothesis}}?
3 {{premise}} \n Is that paraphrasing the following sentence? \n {{hypothesis}}?
4 {{premise}} Question: {{hypothesis}}
5 Sentence 1: {{premise}} \n Sentence 2: {{hypothesis}} \n Question: Does Sentence 1 paraphrase

Sentence 2?

Emotion

1 {{text}} How does the viewer feel about the movie?
2 {{text}} How does the reviewer feel about the movie?
3 {{text}} Did I regret it?
4 If you ask me whether I like this place? The answer is {{text}}
5 {{text}} Overall, the experience is

Enron

1 {{text}} If you ask me whether I will come again, my answer is
2 {{text}} Will you come here again?
3 {{text}} What is the sentiment expressed in this text?
4 Based on that, my rating for this place is {{text}}
5 {{text}} If you ask me whether I like this place? The answer is

Amazon-CF

1 {{text}} How does the reviewer feel about the movie?
2 {{text}} Did the reviewer enjoy the movie?
3 {{text}} How does the viewer feel about the movie?
4 Based on this review, would the user recommend this product? \n === \n Review: {{text}} \n Answer:
5 {{text}} What is the sentiment expressed by the reviewer for the movie?

CR

1 Based on this review, would the user recommend this product? === \n Review: {{text}} \n Answer: |||
2 {{text}} How does the viewer feel about the movie?
3 {{text}} How does the reviewer feel about the movie?
4 Review: \n {{text}} \n Overall rating:
5 {{text}} \n Overall, the experience is

SST-5

1 {{text}} How does the viewer feel about the movie?
2 {{text}} How does the reviewer feel about the movie?
3 {{text}} What sentiment does the writer express for the movie?
4 The following movie review expresses what sentiment? {{text}}
5 {{text}} Did the reviewer enjoy the movie?

Table 10: Retrieved templates, when using T0 and 32 samples for seed 0.
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