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Abstract

Semi-Markov CRF has been proposed as an
alternative to the traditional Linear Chain CRF
for text segmentation tasks such as Named En-
tity Recognition (NER). Unlike CRF, which
treats text segmentation as token-level predic-
tion, Semi-CRF considers segments as the ba-
sic unit, making it more expressive. However,
Semi-CRF suffers from two major drawbacks:
(1) quadratic complexity over sequence length,
as it operates on every span of the input se-
quence, and (2) inferior performance compared
to CRF for sequence labeling tasks like NER. In
this paper, we introduce Filtered Semi-Markov
CRF, a variant of Semi-CRF that addresses
these issues by incorporating a filtering step
to eliminate irrelevant segments, reducing com-
plexity and search space. Our approach is eval-
uated on several NER benchmarks, where it
outperforms both CRF and Semi-CRF while
being significantly faster. The implementation
of our method is available on Github.

1 Introduction

Sequence segmentation, the process of dividing a
sequence into distinct, non-overlapping segments,
has various applications, including Named En-
tity Recognition and Chinese Word Segmentation
(Tjong Kim Sang and De Meulder, 2003; Li and
Yuan, 1998). In the past, this task has been ap-
proached as a sequence labeling problem using
pre-defined templates, such as the BIO and BILOU
schemes (Ratinov and Roth, 2009). The Condi-
tional Random Field (CRF) (Lafferty et al., 2001)
has become a popular method for sequence labeling
problems due to its ability to model the dependency
between adjacent token tags. However, the CRF
model may not efficiently capture the underlying
structure of the sequence, as it is limited to model-
ing relationships between individual tokens rather
than segments.

The Semi-Markov CRF (Sarawagi and Cohen,
2005) has been proposed as a variant of the CRF,

allowing for the incorporation of higher-level seg-
ment features, such as segment width. While the
Semi-CRF allows for a more natural approach to
sequence segmentation, it suffers from slower learn-
ing and inference due to its quadratic complexity
with respect to the sequence length. Additionally,
the Semi-CRF often underperforms CRF, show-
ing only marginal improvements in some cases
(Liang, 2005; Daumé and Marcu, 2005; Andrew,
2006), which can be attributed to the Semi-CRF’s
significantly larger solution space, complicating
the search for optimal solutions.

To address the limitations of Semi-CRF, we pro-
pose Filtered Semi-CRF, which introduces a fil-
tering step to prune irrelevant segments using a
lightweight local segment classifier. By leveraging
transformer-based features, such as BERT (Devlin
et al., 2019), this classifier can identify high-quality
candidate segments. Consequently, the task of the
Semi-CRF is simplified to selecting the best seg-
ments from the pool of high-quality candidates.
Our experiments demonstrate that this filtering step
not only accelerates the decoding process but also
improves the overall model performance.

Although pruning techniques have been ap-
plied to accelerate parsing algorithms (Roark and
Hollingshead, 2008; Bodenstab et al., 2011), they
often involve a trade-off between accuracy and in-
ference speed. In contrast, our filtering approach is
learned jointly and collaboratively with the Semi-
CRF during training, resulting in a model that not
only increases efficiency but also improves overall
performance.

When evaluated on Named Entity Recognition,
our model significantly outperforms both the CRF
and Semi-CRF, achieving F1 score improvements
of up to 2.5 and 1.1 points, respectively, on the
CoNLL 2003 dataset. Additionally, our model also
accelerates the decoding process to a speed that can
be up to 20 times and 137 times faster than CRF
and Semi-CRF, respectively.
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2 Background

2.1 Probabilistic structured predictor

In this paper, we aim to produce a structured out-
put y given an input sequence x. To assess the
compatibility between the input and output, we em-
ploy a parameterized score function Sθ(y|x). The
probability of a structure y given x is computed as
follows:

pθ(y|x) =
expSθ(y|x)∑

y′∈Y(x) expSθ(y′|x)
(1)

where Y(x) represents the set of all possible
outputs for x, and the denominator serves as a
normalization constant, referred to as the partition
function, denoted by Zθ(x).

Training During training, the goal is to update
the model’s parameters θ to maximize the likeli-
hood of the training data. The loss function for a
pair of data points (x,y) is computed as follows:

L(x,y) = − log pθ(y|x)
= −Sθ(y|x) + logZθ(x)

(2)

This loss function can be optimized using a stochas-
tic gradient descent algorithm on the training data.
Computing the partition function Zθ(x) can be
challenging when the output space is large, but it
can be calculated efficiently using dynamic pro-
gramming in some cases.

Inference During inference, the goal is to pro-
duce the most likely output:

y∗ = argmax
y∈Y(x)

Sθ(y|x) (3)

All the models we present in this paper follow this
type of probabilistic modeling. For the remainder
of this paper, we omit the dependency on θ for
better readability.

2.2 Linear Chain CRF

The Linear-Chain CRF (Lafferty et al., 2001) is a
sequence labeling model that assigns a label to each
token in the input sequence, taking into account
dependencies between adjacent labels. The score
function of the CRF has the following form:

S(y|x) =
|x|∑

i=1

ψ(yi|x) +
|x|∑

i=2

T [yi−1, yi] (4)

Here, ψ(yi|x) ∈ R is the sequence label score
at position i, and T ∈ R|Y |×|Y | is a learnable label
transition matrix. The partition function is com-
puted using the Forward algorithm and the Viterbi
algorithm (Rabiner, 1989) is used to determine the
optimal labeling, both with a computational com-
plexity of O(L|Y |2) (More details in Appendix
A.2).

2.3 Semi-Markov CRF
The Semi-CRF, proposed by (Sarawagi and Co-
hen, 2005), operates at the segment level and al-
lows for the modeling of features that cannot be
captured by traditional linear-chain CRFs. It pro-
duces a segmentation y of length M for an input
sequence x of length L (L ≥M ). A segmentation
y = {s1, . . . , sM} ∈ Y(x) satisfies the following
properties:

• Each segment sk = (ik, jk, lk) ∈ y consists
of a start position ik, an end position jk, and
a label lk ∈ Y .

• The segments have positive lengths and com-
pletely cover the input sequence positions
1, . . . , L without overlapping. In other words,
the start and end positions satisfy i1 = 1,
jM = L, and for every jk and ik we have
1 ≤ ik ≤ jk ≤ L, and ik+1 = jk + 1.

Consider a sentence from a Named Entity
Recognition (NER) task: "Alain Farley works at
McGill University". It would be segmented as
y=[(1,2,PER), (3,3,O), (4,4,O), (5,6,ORG)], consider-
ing assumption from Sarawagi and Cohen (2005)
that non-entity segments (referred to as O or null
segments) have unit length. Furthermore, the Semi-
CRF score function is defined as follows:

S(y|x) =
M∑

k=1

ϕ(sk|x) + T [lk−1, lk] (5)

Here, ϕ(sk|x) ∈ R represents the score of the k-
th segment of y, and T [lk−1, lk] denotes the label
transition score. Additionally, T [l0, l1] = 0. The
partition function of the Semi-CRF can be com-
puted in polynomial time using a modified version
of the Forward algorithm and the segmental Viterbi
algorithm is used to compute optimal segmenta-
tion (Appendix A.3 for details). The computational
complexity of the Semi-CRF increases quadrati-
cally with both the sequence length and the number
of labels, i.e O(L2|Y |2).
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1) Input text: 

Alain Farley  works  at  McGill University

(1,1,PER)

(1,2,PER)
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(5,5,LOC)
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(1,2,PER)

(1,1,PER)
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(5,6,ORG)

2) Filtering using :ϕlocal
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4) Graph construction:

3) Score segments using :ϕglobal

2.5

-1.3

1.4

3.1

2.5

-1.3

3.1

3.1

1.4

1.4 0.0

0.0

5) Loss/decoding:

All possible paths and their scores: 
Start (1,2,PER) (5,5,LOC) End -> 3.9 
Start (1,2,PER) (5,6,LOC) End -> 5.6 
Start (1,1,PER) (5,5,LOC) End -> 0.1 
Start (1,1,PER) (5,6,LOC) End -> 1.8 

Partition function Z(x): 
Z=exp(3.9)+exp(5.6)+exp(0.1)+exp(1.8) 

Decoding:  
Return the path with maximum score

(1,1,PER)

(1,2,PER)

(5,6,ORG)

(5,5,LOC)

Figure 1: Filtered Semi-CRF for NER. The model takes as text sequence and output the best entity segments.

2.4 Graph-based Formulation of Semi-CRF
In this section, we present a graph-based formu-
lation of the Semi-CRF. As explained in § 2.3 , a
sequence x of length L is divided into M labeled
segments (ik, jk, lk), with ik, jk and lk denoting
respectively the start position, end position and
the label. We define a directed graph G(Vfull, E),
with Vfull its set of nodes composed of all possible
segments sk of x:

Vfull =
L⋃

i=1

L⋃

j=i

|Y |⋃

l=1

{(i, j, l)}, (6)

and an edge sk′ → sk ∈ E exists if and only if the
start position of sk immediately follows the end
position of sk′ , i.e., jk′ + 1 = ik. The weight of an
edge sk′ → sk is defined as:

w(sk′ → sk|x) = ϕ(sk|x) + T [lk′ , lk], (7)

where ϕ(sk|x) is the score of the segment sk
and T [lk′ , lk] is the label transition score. More-
over, Any directed path s1, s2, . . . , sM of the graph
G corresponds to a valid segmentation of x if it ver-
ifies the segmentation properties described in § 2.3 .
Additionally, the score of a valid path is computed
as the sum of the edge scores, and is equivalent to
the Semi-CRF score of the segmentation (Eq. 5):

S(s1, . . . , sM |x) =
M∑

k=1

w(sk−1 → sk|x)

=

M∑

k=1

ϕ(sk|x) + T [lk−1, lk]

(8)

The search for the best segmentation of the se-
quence x is equivalent to finding the maximal
weighted path of the graph G that starts at i1 = 1
and ends at jM = L. This search can be done
using a generic shortest path algorithm such as
Bellman-Ford, whose complexity is of L3. Never-
theless, taking into account the lattice structure of
the problem, the Viterbi algorithm (Viterbi, 1967;
Rabiner, 1989) can achieve this while reducing the
complexity to L2.

3 Filtered Semi-Markov CRF

In this section, we propose an alternative model
to Semi-CRF, named Filtered Semi-CRF, which
aims to address two fundamental weaknesses of
the original model. First, the Semi-CRF is not well-
suited for long texts due to its quadratic complexity
and the prohibitively large search space. Sec-
ondly, in tasks such as Named Entity Recogni-
tion (NER), where certain segments are labeled as
null (representing non-entity segments), the Semi-
CRF graph can create multiple redundant paths,
all leading to the same set of entities. For
instance, consider the scenario described in
§ 2.3. In this scenario, multiple segmentations,
such as y=[(1,2,PER), (3,3,O), (4,4,O), (5,6,ORG)] or
y=[(1,2,PER), (3,4,O), (5,6,ORG)], would yield the
same final set of labeled entities, specifically (1,2,
PER) and (5,6,ORG) in this case. To remedy these
shortcomings, our proposed model incorporates a
filtering step that eliminates irrelevant segments
using a lightweight local classifier. By leverag-
ing transformer-based features, this classifier ef-
fectively selects high-quality candidate segments,
significantly reducing the task of the Semi-CRF
to merely choosing the best among already high-
quality candidates.

3.1 Filtering
Local classifier We first define the local clas-
sifier ϕlocal as a model that assigns a score to a
labelled segment s = (i, j, l) given an input se-
quence x:

ϕlocal(s = (i, j, l)|x) = wl
T f(hi, . . . ,hj) (9)

where hi ∈ RD is the token representation at
position i (computed by a pretrained transformer
such as BERT), and wl ∈ RD is a learnable weight
associated with the label l. The function f rep-
resents the segment featurizer, which aggregates
token representations into a single feature repre-
sentation. We found that a simple sum operation
provides strong performance across settings.
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Filtered graph The filtering consists in remov-
ing the segments sk = (ik, jk, lk) for which lk =
argmaxl ϕlocal(ik, jk, l|x) and lk = null:

V =



(ik, jk, lk) ∈ Vfull

∣∣∣∣∣∣

lk = argmaxl ϕlocal(ik, jk, l|x)
∧
lk ̸= null





(10)
This new set of filtered nodes V requires to define
the set of edges E differently from the definition
of § 2.4. Thus, we propose to define the edges
following Liang et al. (1991): ∀(sk′ , sk) ∈ V 2,
sk′ → sk ∈ E if jk′ < ik and there is no sk∗ ∈ V
such that jk′ < ik∗ and ik∗ < jk. This definition
means that sk′ → sk is an edge if the start position
of sk follows the end position of sk′ , and that no
other segment lies completely in between these two
positions (jk′ , ik). This formulation generalizes
the Semi-CRF to graphs with missing segments.
However, with missing segments, the starting and
ending positions of segmentations do not necessar-
ily verify i1 = 1 and jM = L. Thus, we simply
add two terminal nodes start and end, verifying:
{
start→ sk ∈ E iff ∀k′ ̸= start, sk′ → sk /∈ E

sk → end ∈ E iff ∀k′ ̸= end, sk → sk′ /∈ E

In this context, a segmentation is simply a path
in the graph starting at start and ending at
end node (see Figure 1). Referring back to
the example in § 2.3, the correct segmenta-
tion of "Alain Farley works at McGill Univer-
sity" using the Filtered Semi-CRF would be
y=[start, (1, 2, PER), (5, 6, ORG), end], where all
remaining part of the segmentation are considered
as having null labels.

3.2 Segmentation scoring
In the filtered graph, the score of a segmentation,
y = {start, s1, . . . , sM , end} is computed by
summing its edge scores as for the Semi-CRF de-
scribed in § 2.4:

S(y|x) =
∑

sk∈y
w(sk′ → sk|x)

=
∑

sk∈y
ϕglobal(sk|x) + T [lk′ , lk]

(11)

where ϕglobal is a model that computes score of
the nodes/segments in the filtered graph, defined
similarly as ϕlocal in § 3.1 and they share the same
feature f . T [lk′ , lk] represents the transition score
between the adjacent labels. By default, we set
w(start → s1) = ϕglobal(s1|x) and w(sM →
end) = 0. See figure 1 for a visual example.

4 Training

In this section, we present our FSemiCRF training
which involves updating the whole model parame-
ters to minimize the following loss function:

L = Llocal + Lglobal (12)

Here, Llocal and Lglobal represent the filtering
loss and the segmentation loss, respectively.

4.1 Filtering loss
The filtering loss is the sum of the negative log-
probability of all gold-labeled segments, V ∗:

Llocal = −
∑

(i,j,l∗)∈V ∗
log p(i, j, l∗|x)

= −
∑

(i,j,l)∈V ∗
log

expϕlocal(i, j, l|x)∑
l′ expϕlocal(i, j, l′|x)

(13)

In practice, we assign a lower weight to the loss
of null segments to account for the imbalanced
nature of the task. For that, we down-weight the
loss for the label l = null by a ratio β ∈]0, 1],
tuned on the dev set.

4.2 Segmentation loss
The segmentation loss is the negative log-
likelihood of the gold path y in the filtered graph:

Lglobal = −S(y|x) + logZ(x) (14)

S(y|x) is the segmentation score as per § 3.2,
and the partition function Z(x), the sum of expo-
nentiated scores for all valid paths in the graph
from start to end. It can be computed efficiently
via a message-passing algorithm (Wainwright and
Jordan, 2008):

Algorithm 1 Computing Z(x)
Topologically sort the nodes in V

α[start] = 1 and α[k] = 0 otherwise for k ∈ V

forall k ̸= start in V do
forall k′ such that k′ → k ∈ E do

α[k]← α[k]+α[k′] exp{w(sk′ → sk)|x}
Z(x) = α[end]

In practice, this implementation of Z(x) can be
unstable, thus, all computations were performed in
log space to prevent issues of overflow or underflow.
The complexity of the algorithm is O(|V | + |E|)
as it performs a topological sort (which visits each
node and edge once), and then iterates over each
node and its incoming edges exactly once, perform-
ing constant time operations.
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During training, we impose certain constraints
to ensure that the gold segmentation y forms a
valid path in the filtered graph (with nodes V ),
which is critical for maintaining a positive loss,
i.e., logZ(x) > S(y|x): 1) All segments in V
that do not overlap with at least one segment from
the gold segmentation y are excluded. 2) All seg-
ments from the gold segmentation, even those not
initially selected in the filtering step, are included
in V .

4.3 Inference
During inference, the first step is to obtain the can-
didate segments V through filtering, and then con-
structing the graph G(V,E) (see § 3.1). The final
results is obtained by identifying the path, from
start to end, in the graph that has the highest
score. We achieve this by using a max-sum dy-
namic programming algorithm, which has a similar
structure to Algorithm 1:

Algorithm 2 Decoding

Topologically sort the nodes in V

δ[start] = 0

forall k ̸= start in V do

δ[k] = max
k′

(k′→k)∈E
δ[k′] + w(sk′ → sk|x)

y∗ = Traced(δ[end])

The highest scoring path y∗, represented by
argmaxyS(y|x), is identified by the path traced by
δ[end], which can be obtained through backtrack-
ing. This algorithm has a computational complexity
ofO(|V |+ |E|), the same as that of computing the
partition function Z(x) in Algorithm 1.

4.4 Complexity analysis
In this section, we analyze the complexity of the
algorithms 1 and 2, O(|V | + |E|), as a function
of the input sequence length L. Note that the size
of V does not depend on the number of labels |Y |
since there is at most one label per segment due to
the filtering step in equation 10.

Proposition 4.1 The number of nodes in a Semi-
CRF graph (as described in § 2.4) with an input
length of L is given by L(L+1)

2 .

Proposition 4.2 The number of edges in a Semi-
CRF graph (as described in § 2.4) with an input
length of L is given by L(L−1)(L+1)

6 .

We employ these propositions to determine the
complexity of the Filtered Semi-CRF model in the
following. The proofs for these propositions can
be found in Appendix § A.1.

Worst case complexity In the worst case sce-
nario, the filtering model ϕlocal does not filter any
segments, resulting in all segments being retained.
By utilizing Propositions 3.1 and 3.2, we can de-
duce that in the worst case, O(|V |) = O(L2)
and O(|E|) = O(L3). This implies that the
complexity of our algorithm in the worst case is
cubic with respect to the sequence length L, as
O(|V |+ |E|) = O(L3). However, it is worth not-
ing that in this worst case scenario, the resulting
graph is the Semi-CRF and the complexity can be
reduced to L2 by utilizing the Forward algorithm
during training and the Viterbi algorithm during
inference (Eq. 19 and Eq. 18).

Best Case Complexity In the ideal scenario, the
filtering process is optimal, resulting in the num-
ber of nodes in the graph |V | being equal to the
true number of non-null segments in the input
sequence, denoted by S. Furthermore, since S
does not contain overlapping segments, |S| ≤ L
with |S| = L if all segments in S have unit
length and cover the entire sequence, i.e., S =
{(i, i, li)|i = 1 . . . L, li ̸= null}. Additionally,
|E| = |S| − 1 ≤ L− 1 as optimal filtering implies
that the path number is unique. As a result, in this
best case scenario, the complexity of the algorithm
is linear with respect to the sequence length L, i.e.,
O(L).

Empirical Analysis In this study, we assess our
model’s empirical complexity by examining the
correlation between the graph size (|V |+ |E|) and
the input sequence length L. We use three popu-
lar NER datasets for this analysis - CoNLL-2003,
OntoNotes 5.0, and Arabic ACE. Our findings
(shown in Figure 2) indicate a linear increase in
the graph size as the sequence length increases. In-
terestingly, the graph size always stays smaller than
the sequence length. This suggests that in practice,
the computational complexity of the FSemiCRF
model is at worst, O(L). However, during the ini-
tial stages of model training, the graph size may
be large because the filtering model, which is re-
sponsible for reducing the graph size, is not fully
trained, as depicted in Figure 3. But, the graph size
decreases rapidly after a few training steps as the
filtering classifier is improving.
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Figure 2: Empirical complexity analysis. We conducted an empirical complexity analysis using trained Filtered
Semi-CRF models. The plot showcases the relationship between the size of the filtered graph (|V |+ |E|) and the
input sequence length L on three NER datasets. As the length of the input sequence increases, the graph size seems
to grow in a linear fashion.

Figure 3: Graph Size during Training. The graph size (|V |+ |E|+ 1) undergoes three stages during training: 1)
initially large when the filtering classifier is untrained, 2) decreasing in the second stage as most of segments in
the training set have a null label (biasing the classifier toward this label), and 3) increasing again as the classifier
improves, better aligning with the training dataset statistics.

5 Experimental setups

Datasets and evaluation We evaluate our mod-
els on on three diverse Named Entity Recognition
(NER) datasets: CoNLL-2003 and OntoNotes 5.0,
both English, and Arabic ACE (further details in
Appendix A.4). We adopt the standard NER evalu-
ation methodology, calculating precision (P), recall
(R), and F1-score (F), based on the exact match
between predicted and actual entities.

Hyperparameters To produce contextual token
representations, we used bert-large-cased
(Devlin et al., 2019) for both CoNLL-
2003 and OntoNotes 5.0 datasets, and
bert-base-arabertv2 (Antoun et al., 2020)
for Arabic ACE. For simplicity, we do not use
auxiliary embeddings (eg. character embeddings).
All models are trained with Adam optimizer
(Kingma and Ba, 2015). We employed a learning
rate of 2e-5 for the pre-trained parameters and a
learning rate of 5e-4 for the other parameters. We
used a batch size of 8 and trained for a maximal
epoch of 15. We keep the best model on the
validation set for testing. In this work, for all
segment-based model, we restrict the segment
to a maximum width K to reduce complexity

without harming the recall score on the training
set (however some segments may be missed for
the test set). By bounding the maximum width of
the segments, we reduce the number of segments
from L2 to LK. Under this setup, the complexity
of the Semi-Markov CRF becomes O(LK|Y |2).
We implemented our model with PyTorch (Paszke
et al., 2019). The pre-trained transformer models
were loaded from HuggingFace’s Transformers
library, we used AllenNLP (Gardner et al., 2018)
for data preprocessing and the seqeval library
(Nakayama, 2018) for evaluating the sequence
labeling models. Our Semi-CRF implementation is
based on pytorch-struct (Rush, 2020). We trained
all the models on a server with V100 GPUs.

Baselines We compare our Filtered Semi-CRF
model against the CRF (Lafferty et al., 2001) and
Semi-CRF (Sarawagi and Cohen, 2005). Addi-
tionally, we include results from previous studies:
BiaffineNER (Yu et al., 2020), BartNER (Yan et al.,
2021), Boundary Smoothing (Zhu and Li, 2022),
PIQN (Shen et al., 2022), GSS (Zaratiana et al.,
2022a) and ArabIE (El Khbir et al., 2022). For
English datasets, models use bert-large-case
(except BartNER with bart-large). Our model
for Arabic data utilizes bert-base-arabertv2.
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Models CoNLL-2003 OntoNotes 5.0 Arabic ACE

P R F P R F P R F

Yu et al. (2020) 93.7 93.3 93.5 91.1 91.5 91.3 - - -
Yan et al. (2021) 92.61 93.87 93.24 89.99 90.77 90.38 - - -
Zhu and Li (2022) 93.61 93.68 93.65 91.75 91.74 91.74 - - -
Shen et al. (2022) 93.29 92.46 92.87 91.43 90.73 90.96 - - -
Zaratiana et al. (2022a) 94.29 93.33 93.81 90.21 91.21 90.71 85.35 83.64 84.49
El Khbir et al. (2022) - - - - - - 84.42 84.05 84.23

Our experiments

CRF 93.29 92.21 92.75 89.00 90.16 89.57 82.79 84.44 83.61
Semi-CRF 92.37 90.49 91.42 88.91 89.78 89.34 82.97 84.24 83.60
+ Unit size null† 92.08 91.41 91.74 89.17 89.76 89.47 83.35 83.62 83.48
FSemiCRF 94.72 93.09 93.89 90.69 91.31 91.00 83.43 85.51 84.46
– w/o Lglobal (14)† 94.24 92.70 93.46 90.85 89.57 90.21 83.73 83.56 83.64

Table 1: Main Results. All English models employ bert-large-cased as token representations for English
datasets, except (Yan et al., 2021) that uses bart-large. † See the ablation study (§ 7) for details.

6 Main results

FSemiCRF vs. CRF and Semi-CRF As shown
in Table 1, our FSemiCRF model outperforms both
the CRF and Semi-CRF reference models in all
datasets, validating its effectiveness. The Semi-
CRF model, while providing competitive results,
often lags behind, either matching or slightly un-
derperforming the CRF model. This observation is
in line with the findings of Liang (2005).

Comparison to pior works In our work, we
mainly compare our approach with previous work
that we consider comparable, i.e. that uses
sentence-level context and the same backbone
model. As shown in the Table 1, on all datasets,
we found that our FSemiCRF achieves competi-
tive results on all the datasets. For example, our
approach outperforms a span-based model we pro-
posed earlier (Zaratiana et al., 2022a), which uses
the Maximum weighted independent set to select
the best spans.

7 Ablation study

Semi-CRF + Unit null We study a variation of
the Semi-CRF that only allows for the use of null
labels for unit length segments. To do this, we
simply modify the original Semi-CRF by eliminat-
ing/masking segmentation paths that contain null
segments with a size greater than one. The motiva-
tion for this study is to fix the multiple redundant

paths problem of the Semi-CRF (§ 3). The results
show that this approach improves performance on
most of the datasets, but still does not perform as
well as the other methods, thus validating the im-
portance of segment filtering.

FSemiCRF w/o global loss We investigate the
impact of removing the global loss (Eq. 14) compo-
nent on our FSemiCRF model, resulting in a local
span classfication model. The results are presented
in Table 1 (w/o Lglobal), and show that even without
the global loss component, the model still performs
competitively. However, including global loss con-
sistently improves the overall scores of FSemiCRF
across all the datasets.

7.1 Efficiency analysis

This section focuses on the computational effi-
ciency of different models, for both training and
inference. For this experiment, all the models use
a base size for the encoder to ensure a fair compar-
ison.

Inference wall clock time The wall clock time
analysis for scoring and decoding operations, sum-
marized in Table 2, highlights subtle differences in
scoring times across all models. However, when it
comes to decoding, FSemiCRF significantly out-
performs both CRF and Semi-CRF models on
all datasets. Notably, FSemiCRF achieves a re-
markable 137x speedup over Semi-CRF on the
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CoNLL-2003 (|Y| = 4) OntoNotes 5.0 (|Y| = 18) Arabic ACE (|Y| = 7)

CRF Semi-CRF FSemiCRF CRF Semi-CRF FSemiCRF CRF Semi-CRF FSemiCRF

Scoring 3.9 3.9 3.9 4.8 4.9 4.9 8.1 8.3 8.3
Decoding 2.7 3.7 0.2 4.4 27.5 0.2 6.0 10.1 0.3
Decoding Speedup 1.3x 1.0x 18.5x 6.2x 1.0x 137x 1.7x 1.0x 33.7x

Overall 6.6 7.6 4.1 9.2 32.4 5.1 14.1 18.4 8.6
Overall Speedup 1.1x 1.0x 1.8x 3.5x 1.0x 6.3x 1.30x 1.0x 2.1x

Table 2: Inference Wall Clock Time (lower is better). Comparison of required wall-clock time for the scoring
(tokens for CRF, segments for Semi-CRF/FSemiCRF) and decoding processes, measured in milliseconds / sample.
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Figure 4: Training throughput in batches per second.

OntoNotes 5.0. Overall, FSemiCRF demonstrates
superior performance, being up to 6x and 2x faster
than CRF and Semi-CRF, respectively.

Training throughput Figure 4 presents the train-
ing throughput of the models, which measures the
number of batches processed per second using a
batch size of 8. It reveals that, in general, CRF
is the fastest during training, with FSemiCRF fol-
lowing closely as the second fastest model. This
can be attributed to the larger graph size of FSemi-
CRF during training, particularly in the early stages,
which can potentially slow down the process, as dis-
cussed in the complexity analysis (4.4). However,
the differences in training performance between the
models are not as pronounced as during inference.

8 Related Work

Linear-chain CRF Numerous frameworks ex-
ist for text segmentation. The commonly used
Linear-Chain CRF (Lafferty et al., 2001) treats
this task as token-level prediction, training through
sequence-level objectives and using the Viterbi al-
gorithm (Viterbi, 1967; Forney, 2010) for decoding.
Variants have evolved from using handcrafted fea-
tures (Lafferty et al., 2001; Gross et al., 2006; Roth
and tau Yih, 2005) to automated feature learning

through neural networks (Do and Artières, 2010;
van der Maaten et al., 2011; Kim et al., 2015;
Huang et al., 2015; Lample et al., 2016). Higher
order dependencies (Markov order N > 1) have
been explored for enhanced performance, but their
adoption is limited due to complexity and marginal
gains (Ye et al., 2009; Cuong et al., 2014).

Semi-Markov CRF Semi-CRF (Sarawagi and
Cohen, 2005) is an alternative operating at seg-
ment level, applied to tasks like Chinese word
segmentation (Kong et al., 2016) and Named En-
tity Recognition (Sarawagi and Cohen, 2005; An-
drew, 2006; Zhuo et al., 2016; Liu et al., 2016a;
Ye and Ling, 2018). It has the advantage of incor-
porating segment-level features but suffers from
quadratic complexity and generally equivalent or
marginally better performance than CRFs (Liang,
2005; Daumé and Marcu, 2005; Andrew, 2006).

Dynamic Programming Pruning Prior research
has investigated the use of pruning techniques in
dynamic programming to improve the efficiency
of structured prediction tasks (Roark and Holling-
shead, 2008; Rush and Petrov, 2012; Bodenstab
et al., 2011; Vieira and Eisner, 2017). These ap-
proaches aim to optimize runtime by selectively
discarding hypotheses during inference. However,
these methods often involve a trade-off between ef-
ficiency and performance. In contrast, our Filtered
Semi-CRF model introduces a learned filtering step
that collaboratively improves both efficiency and
overall model performance.

Named Entity Recognition NER is an important
task in Natural Language Processing and is used
in many downstream information extraction appli-
cations such as relation extraction (Zaratiana et al.,
2023) and taxonomy construction (Zhang et al.,
2018; Dauxais et al., 2022). Usually, NER tasks are
designed as sequence labelling (Huang et al., 2015;
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Lample et al., 2016; Akbik et al., 2018) where
the goal is to predict tagged sequence (eg. BIO
tags). Recently, different approaches have been
proposed to perform NER tasks that go beyond tra-
ditional sequence labelling. One approach that has
been widely adopted is the span-based approach
(Liu et al., 2016b; Fu et al., 2021; Li et al., 2021;
Zaratiana et al., 2022a,b,c; Lou et al., 2022; Corro,
2023) where the prediction is done in the span level
instead of entity level. Futhermore, the use of the
sequence-to sequence models for Named Entity
Recognition has become popular recently. For in-
stance, Yan et al. (2021) uses the BART (Lewis
et al., 2019) model to generate named entity using
encoder-decoder with copy mechanism.

9 Conclusion

In this paper, we introduce Filtered Semi-CRF, a
novel algorithm for text segmentation tasks. By
applying our method to NER, we show substantial
performance gains over traditional CRF and Semi-
CRF models on several datasets. Additionally, our
algorithm exhibits improved efficiency, speed, and
scalability compared to the baselines. As future
work, we plan to investigate the extension of Fil-
tered Semi-CRF to nested segment structures.

Limitations

While our Filtered Semi-CRF model offers several
advantages, it also has limitations that should be
considered:

Sensitivity to Filtering Quality The overall per-
formance and efficiency heavily rely on the accu-
racy of the filtering process in identifying high-
quality candidate segments. Inaccurate filtering
or the introduction of errors during this step can
adversely affect the model’s performance.

Restriction to Non-overlapping Entities Our
model is designed specifically for non-overlapping
entity segmentation. It assumes that entities within
the text do not overlap with each other. While
this assumption is valid for many applications and
datasets, scenarios exist where specific cases of
entity overlap occurs, such as nested entities.
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A Appendix

A.1 Proofs

Proposition 3.1 The number of nodes in a Semi-CRF graph (as described in § 2.4) with an input length
of L is given by L(L+1)

2 . Nodes are the enumeration of all segments (regardless of labels). Thus,

V =
L⋃

i=1

L⋃

j=i

(i, j) =⇒ |V | =
L∑

i=1

L∑

j=i

1 =

L∑

i=1

(L+ 1− i)

=
L∑

i=1

(L+ 1)−
L∑

i=1

i = L(L+ 1)− L(L+ 1)

2
(15)

|V | = L(L+ 1)

2

Proposition 3.2 The number of edges in a Semi-CRF graph (as described in § 2.4) with an input length
of L is given by L(L−1)(L+1)

6 . We know that in the complete segment graph

1. By definition, (ik, jk)→ (ik′ , jk′) ∈ E iff jk + 1 = ik′

2. There are jk segments ending at jk i.e |⋃jk
i=1(i, jk)| = jk

3. There are L− jk segments starting at ik′ i.e |⋃L
i=ik′

(ik′ , i)| = L− ik′ + 1 = L− jk

From 1, 2 and 3, we can deduce that there is jk(L− jk) segments starting at ik′ and ending at jk.
Finally, the total number of edges of the graph is the sum over all jk from 0 to L:

|E| =
L∑

jk=1

jk(L− jk) = L
L∑

jk=1

jk −
L∑

jk=1

j2k

= L
L(L+ 1)

2
− L(L+ 1)(2L+ 1)

6
= L(L+ 1)(

L

2
− 2L+ 1

6
) (16)

|E| = L(L+ 1)(L− 1)

6

A.2 CRF

Partition function The partition function Z(x) of the CRF (Lafferty et al., 2001) is computed using
the forward algorithm, with α(1, y) = ψ(y|x) and for i = 2 . . . L:

α(i, y) =
∑

y′∈Y
α(i− 1, y′) exp{ψ(y|x) + T [y′, y]}

Z(x) =
∑

y∈Y
α(L, y)

(17)

Decoding The decoding of CRF is done with the Viterbi algorithm, with δ(1, y) = ψ(y|x)

δ(i, y) = max
y′∈Y

δ(i− 1, y′) +ψ(y|x) + T [y′, y] (18)

The best labeling is given by the path traced by maxy∈Y δ(L, y). Both the computation of the partition
function and the decoding of the CRF have a complexity of O(L|Y |2).
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A.3 Semi-CRF
Partition function The partition function of the Semi-CRF (Sarawagi and Cohen, 2005) Z(x) is
computed using the following dynamic program (a modification of the forward algorithm) with α(0, :) = 1
and α(m, :) = 0 if m < 0 and otherwise:

α(m, y) =
L∑

d=1

∑

y′∈Y
α(m− d, y′) exp

{
ϕ((i = m− d+ 1, j = m, l = y)|x) + T [y′, y]

}

Z(x) =
∑

y∈Y
α(L, y)

(19)

Decoding The decoding of the Semi-CRF is done with the segmental/Semi-Markov Viterbi algorithm
with δ(0, :) = 0 and δ(m, :) = −∞ if m < 0 and otherwise:

δ(m, y) = max
y′∈Y

d=1...L

δ(i− d, y′) + ϕ((i = m− d+ 1, j = m, l = y)|x) + T [y′, y] (20)

The highest scoring segmentation is the path traced by maxy∈Y δ(L, y). Both the computation of the
partition function and the decoding of the Semi-CRF have a complexity of O(L2|Y |2).

A.4 Datasets
We evaluate our models on three diverse datasets of Named Entity Recognition. CoNLL-2003 (Tjong
Kim Sang and De Meulder, 2003) is a dataset from the news domain designed for extracting entities
such as Person, Location, and Organization. OntoNotes 5.0 (Weischedel et al., 2013) is a large corpus
comprising various kinds of text, including newswire, broadcast news, and telephone conversation, with a
total of 18 different entity types, such as Person, Organization, Location, Product, or Date. Arabic ACE is
the Arabic portion of the multilingual information extraction corpus, ACE 2005 (Walker et al., 2006). It
includes texts from a wide range of genres, such as newswire, broadcast news, and weblogs, with a total
of 7 entity types.
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