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Abstract

Model pruning methods reduce memory re-
quirements and inference time of large-scale
pre-trained language models after deployment.
However, the actual pruning procedure is com-
putationally intensive, involving repeated train-
ing and pruning until the required sparsity is
achieved. This paper combines data prun-
ing with movement pruning for Neural Ma-
chine Translation (NMT) to enable efficient
fine-pruning. We design a dataset pruning strat-
egy by leveraging cross-entropy scores of in-
dividual training instances. We conduct prun-
ing experiments on the task of machine transla-
tion from Romanian-to-English and Turkish-to-
English, and demonstrate that selecting hard-
to-learn examples (top-k) based on training
cross-entropy scores outperforms other dataset
pruning methods. We empirically demonstrate
that data pruning reduces the overall steps re-
quired for convergence and the training time
of movement pruning. Finally, we perform a
series of experiments to tease apart the role of
training data during movement pruning and un-
cover new insights to understand the interplay
between data and model pruning in the context
of NMT.

1 Introduction

Large-scale pre-trained language models have
demonstrated encouraging performance in various
NLP tasks at the cost of over-parametrized net-
works, and high memory requirements (Devlin
et al., 2019; Raffel et al., 2020). This has led to the
development of several pruning approaches for re-
ducing model size, such as magnitude pruning (Han
et al., 2015; Gale et al., 2019), movement pruning
(fine-pruning) (Sanh et al., 2020), block movement
pruning (Lagunas et al., 2021) and lottery ticket
hypothesis for BERT (Chen et al., 2020). Although
model pruning is effective at reducing the inference
time after deployment, the actual pruning proce-
dure is computationally intensive and unsuitable to

be performed in resource-constrained settings. For
example, BERT requires six iterations to reach 40%
sparsity with Iterative Magnitude Pruning (IMP)
—requiring training to convergence, pruning, and
retraining to recover the lost accuracy (Chen et al.,
2020, 2021). Recent work (Chen et al., 2021) at-
tempts to decrease the training time by identifying
structured winning tickets early in training but the
implementation does not allow general application
to other model pruning algorithms.

In contrast, we examine the problem of increas-
ing the efficiency of model pruning techniques
through the lens of reducing data requirements and
thus ask the following questions — How much data
is superfluous in fine-pruning language models for
machine translation? Can we develop a metric for
identifying the informative training examples and
significantly prune training data to decrease the
training time and memory requirements during lan-
guage model pruning?

In this work, we develop a dataset pruning al-
gorithm for efficient movement pruning of T5 lan-
guage model (Raffel et al., 2020) on the task of neu-
ral machine translation (NMT) across two datasets,
WMT16 En-Ro and En-Tr. We begin by leverag-
ing the training dynamics and use cross-entropy
score for ranking each example according to its dif-
ficulty. We utilize this ranking to prune the datasets
by selecting hard-to-learn training examples and
pruning the remaining examples. We compare
this approach with multiple data pruning baselines
used in standard vision and speech tasks, including
stratified (representative) selection (Azeemi et al.,
2022b), random selection, and easiest example se-
lection (Sorscher et al., 2022; Paul et al., 2022).
The pruned subsets are then used for movement
pruning at varying levels of model sparsity. Finally,
we perform a series of experiments in the context
of NMT to tease apart the role of training data
during movement pruning and make the following
contributions.
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1.1 Contributions

1. We find that fine-pruning T5 on hard-to-learn
examples identified through cross-entropy
score yields better BLEU score on two NMT
datasets than training on easy-to-learn, ran-
dom or stratified subsets of the training data.

2. We demonstrate that selecting hard-to-learn
examples leads to the least reduction of vo-
cabulary in the pruned dataset which helps
explain higher performance achieved through
these examples.

3. We observe that an unpruned model is better
for ranking the examples and pruning the data
as reduced model capacity asymmetrically re-
duces the capability of identifying hard-to-
learn examples.

4. We find that the score rankings are transfer-
able to other models —the subsets generated
through one model (e.g., T5) can be used for
fine-pruning another model (e.g., BART).

2 Related Work

Scoring individual instances The problem of
scoring individual instances has been studied
extensively for classification tasks in NLP.
Swayamdipta et al. (2020) use data maps to
visualize and score instances using training
dynamics and identify three broad instance classes
—easy-to-learn, hard-to-learn, and ambiguous by
measuring the confidence of the true prediction
and its variability across epochs. They find that
high performance can be achieved by training on
ambiguous instances while easy-to-learn instances
aid optimization. However, this approach is not
directly applicable to tasks other than classification,
e.g., NMT, where the confidence and variability of
individual examples need to be defined differently.
Earlier work on standard vision tasks (Paul
et al., 2021) has demonstrated that high-scoring,
hard-to-learn examples primarily drive learning
in neural networks, based on the observation that
data-dependant Neural Tangent Kernel (NTK)
submatrix for harder examples evolves faster
during training than other examples. Our work
considers intrinsic and extrinsic example scoring
metrics in the context of NMT for identifying
informative examples.

Data Pruning The primary aim of data pruning
methods for deep learning models is the identifi-
cation of informative training examples using dif-
ferent heuristics and removing redundant samples
from the dataset (Kaushal et al., 2019; Saadatfar
et al., 2020; Durga et al., 2021; Kothawade et al.,
2021; Killamsetty et al., 2021; Paul et al., 2021;
Ahia et al., 2021). Toneva et al. (2018) consider
the ‘forgetfulness’ of a training example by mea-
suring the number of times it is misclassified after
being classified correctly during training, i.e., the
forgetting score. The repeatedly forgotten exam-
ples are selected to construct a smaller training
subset without significantly affecting the general-
ization performance. Paul et al. (2021) show that
gradient norm (GraNd) can be used for removing
a large number of less informative examples while
retaining the test accuracy on multiple standard
vision datasets (CIFAR-10 and CIFAR-100) and
convolutional neural networks (ResNet). Paul et al.
(2022) conduct an empirical study on the impact of
data subsets for iterative magnitude pruning during
neural network pre-training in image classification.
They find that pre-training on the easier training
examples reduces the number of steps required for
finding a suitable initialization in iterative magni-
tude pruning.

Active learning The primary goal in active learning
is to select the most informative examples from a
pool of unlabelled examples that should be labeled
first. In NLP, active learning has been studied for
text classification (Ru et al., 2020; Yu et al., 2021),
visual question answering (Karamcheti et al., 2021)
and sentiment analysis (Venugopalan and Gupta,
2022) amongst other domains. We do not consider
active learning methods in this work since our core
objective is to prune data by selecting the examples
from a fully labeled dataset (with text and reference
translations).

Data subset selection for NMT Apart from active
learning, several other subset selection methods
have been proposed for NMT to achieve better per-
formance. This includes noisy data filtering (Pham
et al., 2018; Ramírez-Sánchez et al., 2020), con-
trastive data selection (Moore and Lewis, 2010),
scoring sentence pairs with dual cross-entropy
(Junczys-Dowmunt, 2018; Koehn et al., 2020), mul-
tilingual data, (Chaudhary et al., 2019; Wang and
Neubig, 2019) and bilingual mappings (Lo and Joa-
nis, 2020). Ahia et al. (2021) evaluate the impact of
model pruning with low-resourced data for NMT.
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They find that in a low-data regime, less model ca-
pacity rather than more aids out-of-distribution gen-
eralization. Additionally, they observe that pruning
affects performance on long-tail of data distribu-
tion more than prototypical instances. This work
considers the resource-constrained environment at
deployment time. In contrast, the primary focus
of our work is to consider pruning within the con-
straints at training time. Additionally, to the best
of our knowledge, our work is the first to combine
movement pruning with data pruning for NMT.

3 Preliminaries

In this section, we first introduce Neural Machine
Translation (NMT) and then present model pruning
and data pruning methods in the context of NMT.

3.1 Neural Machine Translation
The fundamental goal of an NMT model is to trans-
late a source sentence X = {x1, . . . , xS} into a
target sentence Y = {y1, . . . , yT }, where S and T
are the number of tokens in X and Y respectively.
The following chain rule describes the probability
of each token in the target sentence conditioned on
the source sentence:

P (Y | X; θ) =
T∏

i=1

p (yi | y0:i−1,X; θ) (1)

where θ represents the model parameters. The
NMT models optimize cross-entropy (CE) loss by
minimizing negative log-likelihood of the samples
during training:

LCE(θ) = −
N∑

i=1

log p (yi | y0:i,X; θ) (2)

In the inference phase, the probabilities for
the target tokens are generated through an auto-
regressive process. These probabilities are utilized
for the selection of high probability tokens using
search heuristics like beam search.

3.2 Model Pruning
The goal of model pruning methods is to reduce
the memory footprint and increase the efficiency
of neural networks through sparsity induction. The
two primary approaches for pruning language mod-
els are (i) structured and (ii) unstructured. Struc-
tured pruning aims to remove network blocks,
whereas unstructured pruning removes the least
important weights wherever they occur in the net-
work.

3.2.1 Magnitude Pruning
Magnitude pruning is an unstructured pruning ap-
proach where the weights to be pruned are deter-
mined by the importance scores S assigned to each
weight i, j in the weight matrix W. The parameter
mask M is used to retain the top k% weights and
zero out the others.

M(S) =

{
1, Si,j in top k%

0, otherwise
(3)

The model is pruned by replacing the original
weight matrix with the masked version.

W′ = W ⊙M(S) (4)

3.2.2 Movement Pruning
Movement pruning is an unstructured pruning
method that considers changes in weights (i.e., their
movement) during fine-tuning (Sanh et al., 2020).
It involves joint fine-tuning and compression in the
fine-pruning phase during which the sparsity of the
model is gradually increased from an initial value
si to a final value sf over n pruning steps through
automated gradual pruning (Zhu and Gupta, 2017).
The key difference between this approach and mag-
nitude pruning is that the weights can be pruned
if they shrink during training, regardless of their
magnitude. Hence, it considers the 1st-order infor-
mation instead of the 0th-order information used in
magnitude pruning. For high sparsity levels, move-
ment pruning can perform better than magnitude
pruning. It is better suited for the transfer learning
regime as it combines fine-tuning and compression
into a fine-pruning step.

4 Method

We consider a language model l(x; θ) (θ ∈ Rd) pre-
trained on a generic dataset through objective Lp.
This model is fine-pruned for the downstream task
of machine translation through movement pruning
on the dataset x ∈ Dt. Dt consists of sequence
pairs (xi, yi) where xi is the source sentence in
one language and yi is the translation in another
language. Our goal is to prune Dt through differ-
ent heuristics to obtain a smaller dataset Ds and
analyze the impact of fine-pruning the NMT model
l(x; θ) using this limited data. Specifically, we
consider the changes in test BLEU performance of
pruned model and the impact on the training time
during movement pruning using limited data.
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4.1 Pruning Metric

The existing data pruning methods for neural net-
works in vision and speech tasks leverage pruning
metrics —for example, normed error (EL2N) (Paul
et al., 2021), forgetting scores (Toneva et al., 2018),
forgetting norm (Azeemi et al., 2022a) —for rank-
ing the training examples according to their diffi-
culty. The data pruning method then operates on
this ranking to construct an informative data subset
by selecting the easy/hard examples according to
the task properties. Drawing inspiration from this,
we leverage training dynamics of language models
and propose two pruning metrics for ranking exam-
ples on the task of NMT —(i) Cross-entropy loss
(Eq. 2) and (ii) the BLEU score of individual exam-
ples during training (§6.1). CE loss can be consid-
ered as an intrinsic ranking metric that compares
the model output with labels, while BLEU score
is an extrinsic metric that compares the candidate
translation with the reference translation. These
metrics are used in the dataset pruning algorithm,
which we present next.

Figure 1: Data pruning with movement pruning for
NMT. In step (1), we fine-tune a pre-trained language
model on the complete NMT dataset and record training
scores for each training example (e.g., cross-entropy
score). In step (2), a data subset is created by ranking
the examples according to the score and selecting the
easy/hard examples according to the pruning strategy.
This pruned dataset is used in step (3) to fine-prune the
model and evaluate the test set.

4.2 Dataset Pruning Algorithm

We now present the dataset pruning algorithm
for NMT (Algorithm 1). We first fine-tune the

pre-trained language model for NMT on the
complete (unpruned) dataset Ds. At the end of
fine-tuning, we compute the training scores for
each example through the pruning metric e, e.g.,
cross-entropy score. We then prune the dataset
through the computed scores and the pruning
strategy s. We consider three pruning strategies,
Top-K, Bottom-K and Stratified, which select
the hardest, easiest and representative examples
respectively using the computed scores.

How does data pruning enable efficient fine-
pruning? The initial fine-tuning to compute the
ranking of the training examples (step 1 in Fig. 1)
is done only once before the actual fine-pruning.
This ranking is then used to create an optimal
subset through the pruning strategy. This pruned
dataset can be utilized for the actual fine-pruning
in resource-constrained settings as it requires less
time and memory (§6.2). Thus, the cost of initial
fine-tuning run to compute the scores is amortized
across the efficiency improvements achieved via
multiple fine-prunings done using the pruned data,
potentially on other models (see §6.3).

Algorithm 1 Dataset Pruning for NMT

Input: Pre-trained language model l, Dataset
Ds, Data Pruning Fraction p, Pruning strategy s,
Pruning metric e
S ← Fine-tune f on Ds and compute scores for
each example through e
size← (1− p) ∗ len(Ds)
S ← sortDescending(S)
if s = topK then

Dl ← S[0 : size]
else if s = bottomK then

Dl ← S[len(Ds)− size : len(Ds)]
else if s = stratified then

Dl ← stratifiedSampling(Ds, size)
else if s = random then

Dl ← randomSampling(Ds, size)
end if

5 Experiments

5.1 Setup

Datasets. We evaluate our approach on WMT16
En-Ro and WMT16 En-Tr parallel datasets (Bojar
et al., 2016). En-Ro is selected as a medium diffi-
culty dataset while En-Tr is selected as a challeng-
ing dataset for NMT due to the rich agglutinative
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Figure 2: Test BLEU for fine-pruning T5 on subsets selected through training cross-entropy scores across different
strategies —Top-K: Selecting hard-to-learn examples —Bottom-K: Selecting easy-to-learn examples —Random:
Selecting random examples —Stratified: Selecting examples through stratified sampling of cross-entropy scores.
For each result, we do two runs and report the mean BLEU score.

morphology of Turkish and differences in word or-
der (SVO in English, SOV in Turkish). We consider
the translation tasks of Ro→ En and Tr→ En for
evaluation. The statistics are shown in Table 1.

Train Dev Test
En→ Ro 610,320 1,999 1,999
En→ Tr 205,756 1,001 3,000

Table 1: Size of the train, development and test sets for
En-Tr and En-Ro datasets.

Model We use the T5 multi-lingual pre-trained lan-
guage model for evaluation. T5 (Raffel et al., 2020)
is an encoder-decoder transformer model (Vaswani
et al., 2017) which frames every task as a text-to-
text problem. This allows using the same model
and the loss function on multiple NLP tasks. We
use the T5-small variant pre-trained on the 750 GB
C4 dataset containing text from the public web
scrape of the common crawl. This variant has 60
million parameters, 6 layers in the encoder and
decoder each, and 8-headed attention.

Model Pruning Setup. We fine-prune the
language model through movement pruning to
different levels of target sparsity {10%, 50%}
using data subsets at pruning fractions of
{20%, 40%, 60%, 80%}. We compute sparsity as
the number of pruned parameters divided by the

model size. The attention heads and dense layers
are pruned during training by gradually increasing
the sparsity level through a cubic sparsity scheduler.
The model is fine-pruned until convergence.

Baselines. We choose Random selection and
Stratified sampling as our baselines. For ran-
dom selection, we prune the training set randomly
according to the specified pruning percentage and
then fine-prune the model on the pruned subset. For
the second baseline, we compute the cross entropy
scores of individual examples similar to Algorithm
1 and perform stratified sampling. This constructs
a representative subset by selecting examples from
every sub-population, which results in a subset con-
taining examples of varying difficulty and has been
shown to outperform random sampling for speech
tasks (Azeemi et al., 2022b).

6 Results and Discussion

Figure 2 shows the complete results for BLEU
on the development datasets after fine-pruning T5
on the subsets selected through Top-K, Bottom-K,
Random and Stratified strategies. The sweep
across pruning percentage demonstrates consis-
tently higher BLEU for fine-pruning on subsets
consisting of hard-to-learn examples (Top-K strat-
egy). Bottom-K performs the worst, indicating that
the selection of the easy-to-learn examples is not
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Figure 3: Distribution of cross entropy scores for indi-
vidual training examples in WMT16 En-Ro and En-Tr
dataset.

a good choice in a limited data regime, especially
for challenging datasets like En-Tr.

To identify the subpopulations being selected by
each pruning strategy, we analyze the distribution
of training cross-entropy scores (Figure 3). For
En-Ro dataset, we observe a long-tail of hard-to-
learn examples and thus Top-K strategy is selecting
these examples to an extent determined by pruning
percentage. In contrast, En-Tr being a challenging
dataset, has a significantly smaller number of easy-
to-learn examples. Despite having different train-
ing distribution, the better performance of Top-K
compared to other strategies (Table 2) signifies the
appropriateness of selecting hard-to-learn exam-
ples for fine-pruning T5 for NMT. We hypothesize
that this is due to the greater inclusion of informa-
tive examples in Top-K subsets which we verify in
§6.4.
Data pruning without model pruning. The first
column in Fig. 2 shows the result of pruning data
without pruning the language model. We notice
that up to 60% pruning, regular and sparse models
demonstrate comparable test BLEU score. Beyond
this—on extreme pruning percentages (≥ 80%)—
the decrease in BLEU is greater for model pruning.
This suggests that for the majority of data pruning
percentages, sparse models are indeed suitable for
practical usage.

6.1 Can we use an extrinsic pruning metric?
The original pruning algorithm considers the cross-
entropy loss of individual examples as the pruning

metric. We now consider using the BLEU score
of individual training examples for data pruning.
This is an extrinsic metric that compares the candi-
date translation with the reference translation. The
distribution of the training BLEU score (shown in
Figure 4) is different from the cross-entropy dis-
tribution (Figure 3). Particularly, the long-tail we
observe in the distribution of cross-entropy scores
of En-Ro dataset corresponding to the rare, hard-
to-learn examples is not present for training BLEU
scores distribution of En-Ro.

Figure 4: Distribution of BLEU scores for individual
training examples in WMT16 En-Ro and En-Tr dataset.

We next evaluate our pruning algorithm with
BLEU training scores instead of the cross-entropy
pruning scores (Table 2) on 10% model sparsity.
No strategy consistently outperforms random sub-
set selection for Ro→ En implying that the BLEU
score is not a suitable pruning metric as compared
to cross-entropy training scores.

Dataset Strategy Dataset Pruning Percentage

20% 40% 60% 80%

En-Ro Random 25.74 25.89 25.57 23.04
Top-K 25.59 25.56 25.62 22.39

Bottom-K 25.93 25.83 25.82 21.70
Stratified 25.82 25.56 25.93 22.73

Table 2: Test BLEU for fine-pruning on subsets selected
through training BLEU scores across different strate-
gies at 10% model sparsity. No single pruning method
consistently performs better than the random pruning
baseline.
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6.2 Does data pruning reduce the
fine-pruning time?

We conduct an experiment to quantify the reduc-
tion in training time and the impact on conver-
gence steps during movement pruning. In Figure
5, we observe a significant reduction in the over-
all steps required for convergence for pruned sub-
sets —for example, fine-pruning with 40% data is
48.9% faster than training with 80% data for En-Tr
dataset. For En-Ro, increasing the pruning percent-
age from 20% to 60% reduces the convergence
steps by 29.6% (54000 → 38000) while only de-
creasing the BLEU by 2.22% (26.08 → 25.50)
for Top-K strategy (Figure 6). This demonstrates
that data pruning reduces the memory and time re-
quirements during fine-pruning, thus enabling train-
ing in compute-restricted environments. Moreover,
we observe that the convergence steps are linearly
proportional to the number of examples, implying
that pruned datasets consisting of high-scoring ex-
amples do not negatively affect the convergence
rate. This finding is consistent with recent work
on data pruning in vision tasks (Sorscher et al.,
2022), which demonstrated that the convergence
time for pruned datasets is primarily determined by
the number of training examples.

Figure 5: The convergence steps for fine-pruning T5 on
the pruned subsets for En-Ro and En-Tr at 10% sparsity
for movement pruning. Dataset pruning significantly
reduces the steps required for convergence and hence
the real time required for fine-pruning.

Practical efficiency improvements. The initial
computation of the pruning metric before fine-
pruning needs to be done once for a particular
dataset. Hence, the initial setup cost amortizes
over the efficiency improvements achieved with ev-
ery subsequent fine-pruning done using the pruned

Figure 6: The relationship between BLEU score and
convergence steps (determined by pruning percentage)
when fine-pruning T5 on En-Ro and En-Tr at 10% spar-
sity. The dataset pruning percentage is mentioned below
each marker.

dataset. Finally, the choice of the dataset pruning
percentage can be made according to the compute
constraints present at training time. Alternatively,
the desired final BLEU range can be used to deter-
mine the corresponding pruning fraction and sub-
sequently the most suitable compute environment
for fine-pruning the model.

6.3 Are the pruning scores transferable across
models?

The pruned subsets are generated by ranking the
training examples through a pruning metric. Intu-
itively, these subsets should reflect the properties
of the training data instead of a specific model. We
now perform an empirical analysis to determine if
the pruned subsets generated through one model
can be used for fine-pruning another model i.e.,
if the score rankings are transferable. We con-
sider the subsets of En-Tr dataset pruned through
the T5 cross-entropy scores and use them for fine-
pruning BART-base, which is another transformer
encoder-decoder model that works well for trans-
lation tasks (Lewis et al., 2019). The results (Fig.
7) are intriguing; we observe that the same pruned
subsets are effective for fine-pruning BART-base.
From these observations, we hypothesize that the
relative ranking of cross-entropy scores and thus
the pruned subsets are dataset-specific and model-
agnostic which allows them to be used for different
models. Experiments on other datasets would serve
to validate these findings.
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Figure 7: The test BLEU score with model pruning
(10% sparsity) of BART-base on Tr→ En dataset using
the pruned subsets created through T5.

6.4 How does data pruning change the
training distribution of NMT datasets?

To understand the changes in the distribution of
pruned subsets that are contributing to better per-
formance of Top-K strategy, it is essential to ana-
lyze the vocabulary of pruned subsets. We perform
empirical analysis to determine the reduction in
vocabulary for En-Tr (Figure 8) and En-Ro (Figure
9) datasets pruned through Top-K, Bottom-K and
Stratified strategy.

Figure 8: The decrease in vocabulary of English and
Turkish after pruning En-Tr dataset through different
strategies across multiple dataset pruning percentages.

Figure 9: The decrease in vocabulary of English and
Romanian after pruning En-Ro dataset through different
strategies across multiple dataset pruning percentages.

We observe the least reduction in vocabulary
size for Top-K pruning with a decrease of 83,911

unique tokens for Tr (at 60% pruning) as com-
pared to a reduction of 107,370, 107,906, and
145,834 unique tokens for Stratified, Random
and Bottom-K respectively. As noted earlier, Top-K
shows the highest test BLEU for multiple pruning
percentages (Fig. 2). This signifies that hard-to-
learn examples are essential for learning during
fine-pruning, regardless of their distribution in the
unpruned dataset.

6.5 Why is an unpruned model better for
ranking the examples?

The original pruning strategy (§4.2) computes the
cross-entropy scores and ranks the examples by
fine-tuning the unpruned model. We compare this
with an alternate strategy of computing the scores
for the complete dataset through the sparse model,
i.e, after fine-pruning. Fig. 10 shows the difference
between the distribution of scores computed with
an unpruned T5 model and a pruned T5 model (at
10% sparsity) for En-Tr dataset. We find that the
absolute cross-entropy scores computed through
the pruned model are shifted to the left with a visi-
bly longer tail of harder examples, suggesting that
reduced model capacity asymmetrically reduces
the capability of identifying hard-to-learn exam-
ples. We also observe a sharp peak of the examples
with a training cross-entropy score close to zero
for the sparse model, which is not present for the
unpruned model, indicating that pruned model ex-
hibits a lower training error on easy-to-learn ex-
amples. However, this is not necessarily beneficial
due to the clumped-together scores, which prevent
the deterministic ranking of easier examples for
subsequent pruning.

Figure 10: Comparison of the distribution of cross en-
tropy scores computed through a 10% sparse T5 model
and the unpruned T5 model on WMT16 En-Tr dataset.
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7 Limitations

We list the potential limitations of our work below:

Other datasets. We evaluated our data pruning al-
gorithm on two NMT datasets —En-Ro and En-Tr.
Further empirical evaluation will help verify the
generalization of our approach to other types of
NMT datasets —for example, high-resource lan-
guages like WMT14 En-De (Bojar et al., 2014),
noiser datasets like MTNT (Michel and Neubig,
2018), datasets with high OOV rate like Gnome and
the ones from a different domain like the Ubuntu
technical dataset.

Cheaper pruning metrics. The proposed pruning
method requires a fine-tuning run to compute the
cross-entropy scores and construct the ranking for
all the training examples. Although this procedure
is done before fine-pruning, it still contributes to the
end-to-end cost. Cheaper example scoring metrics,
e.g., self-supervised metrics that do not require a
complete training run (Sorscher et al., 2022) might
reduce the initial cost of data pruning and yield
more efficient results.

8 Conclusion

In this work, we leverage training dynamics to de-
vise a dataset pruning algorithm for efficient move-
ment pruning in NMT. Experiments on two NMT
datasets of varying difficulty show the advantage of
selecting hard-to-learn examples for fine-pruning
T5 language model. Finally, we demonstrate the de-
sirable properties of the proposed pruning method,
including minimal vocabulary changes and trans-
ferability to other models. Future work includes
experimentation with the proposed pruning strategy
on other downstream tasks and an in-depth analysis
of the pruned subsets.

9 Ethical Impact

The data pruning strategies do not explicitly pre-
vent unbalanced pruning of different subpopula-
tions within the translation datasets. This can lead
to the under-representation of certain groups in the
source and target language subsets and introduce
potential bias against certain entities. To mitigate
these concerns, a comprehensive explainability and
fairness evaluation of the models trained on pruned
data should be conducted.
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A Implementation Details

We extend the HuggingFace nn-pruning1 pack-
age and implement data pruning methods for move-
ment pruning specifically for machine translation
tasks. Our implementation can be easily extended
to allow any translation dataset2 and model3 avail-
able on HuggingFace (Wolf et al., 2019) to lever-
age the data pruning algorithm for computing the
pruning metrics and generating a data subset for
fine-pruning.

A.1 Models
We use the T5 model publicly available on Hugging-
Face transformers (Wolf et al., 2019). The Hug-
gingFace repository is available under the Apache
License 2.0 license.

A.2 Datasets
We use the WMT16 En-Ro and En-Tr datasets
available under the CC-BY-SA license.

B Reproducibility and Hyperparameters

We report the hyperparameters used in our exper-
iments in Table 3 tuned through the validation
dataset.

Hyperparameter
fine-pruning learning rate 3e− 5
train batch size 32
eval batch size 32
num beams 4
pad-to-max-length true
initial-threshold (density) 100%
label-smoothing 0.1

Table 3: Hyperparameters for the experiments.

C Resources

We use a single 48GB NVIDIA A6000 GPU for
running our experiments on a privately hosted
server. We consumed a total of 2710 GPU hours
for the entirety of the project including early exper-
iments and the final results.

1https://github.com/huggingface/nn_pruning
2https://huggingface.co/datasets?task_

categories=task_categories:translation
3https://huggingface.co/models?pipeline_tag=

translation
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