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Abstract

Large Language Models (LLMs) are claimed
to be capable of Natural Language Inference
(NLI), necessary for applied tasks like question
answering and summarization. We present a
series of behavioral studies on several LLM
families (LLaMA, GPT-3.5, and PaLM) which
probe their behavior using controlled exper-
iments. We establish two biases originating
from pretraining which predict much of their
behavior, and show that these are major sources
of hallucination in generative LLMs. First,
memorization at the level of sentences: we
show that, regardless of the premise, models
falsely label NLI test samples as entailing when
the hypothesis is attested in training data, and
that entities are used as “indices” to access the
memorized data. Second, statistical patterns
of usage learned at the level of corpora: we
further show a similar effect when the premise
predicate is less frequent than that of the hy-
pothesis in the training data, a bias following
from previous studies. We demonstrate that
LLMs perform significantly worse on NLI test
samples which do not conform to these biases
than those which do, and we offer these as valu-
able controls for future LLM evaluation.1

1 Introduction

Large Language Models (LLMs) such as LLaMA,
GPT-3/4, PaLM, and more (Touvron et al., 2023;
Brown et al., 2020; Chowdhery et al., 2022), have
been trusted by many to perform language un-
derstanding in downstream tasks such as summa-
rization, question answering, and fact verification,
among others (Zhang et al., 2023). However, due
to the large-scale nature of LLM training on vast,
often proprietary data, and the inherent opacity
of LLM parameters, it is difficult to explain their

*Equal contribution.
1Code and LLM outputs (LLaMA and GPT-3.5)

are available at https://github.com/Teddy-Li/
LLM-NLI-Analysis.

behavior when answering user queries and the cor-
responding risks in terms of bias and robustness.
In particular, one LLM behavior poses a signifi-
cant challenge: “hallucination,” the phenomenon
in which LLMs provide information which is in-
correct or inappropriate, presented as fact.

This paper investigates two biases driving LLM
performance in natural language inference, some-
times called textual entailment. This is a basic com-
ponent of language understanding which is critical
in applied tasks, and we offer these two biases as
explanations of general false positive hallucination
in everyday use. We examine broader NLI, and
especially directional entailments, which hold in
one direction, but not both. For example, DEFEAT

entails PLAY but PLAY does not entail DEFEAT. In-
ferring directional entailment is more difficult than
that of symmetric paraphrase, so it more deeply
probes understanding.

Our approach is a behavioral study of prompted
LLM decision-making. We alter existing NLI
datasets in targeted ways while measuring how pre-
dictions change, across several major LLM families
(LLaMA, GPT-3.5, and PaLM). We demonstrate
two sources of LLM performance on the NLI task,
which we offer as explanations of general false pos-
itive hallucination: (1) LLM bias toward affirming
entailment when the hypothesis may be attested in
the training text, including reliance on named entity
identifiers; and (2) a corpus-frequency bias, affirm-
ing entailment when the premise is less frequent
than the hypothesis.

We establish that these biases originate from
the LLM pretraining objective, in which statisti-
cal modeling of the natural distribution of human-
generated text leads to (at the level of sentences)
memorizing individual statements, and (at the
level of corpora) learning typical patterns of us-
age. Though they are superficially performant, our
experiments show that even powerful LLMs still
use unsatisfactory tools instead of robust reasoning.
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We present three contributions, the demonstra-
tions of both factors and an analysis of their impact:

(1) In a prompting scenario, LLMs respond to
entailment samples according to an attestation bias,
affirming entailments more readily if the hypoth-
esis is attested by the pretraining text. We find
that LLaMA-65B, GPT-3.5, and PaLM-540B are
respectively 1.9, 2.2, and 2.0 times more likely
to wrongly predict Entail when the model al-
ready asserts the hypothesis is attested, compared
to when not attested. Further, LLMs recall from
their propositional memory using named entities as
identifying “indices,” even though they are irrele-
vant to the logic of the predicate inference task.

(2) LLMs also rely on a simple corpus-statistic
bias using relative term-frequencies, especially
when propositional memory is not available. The
three LLMs are 1.6, 1.8 and 2.0 times more likely to
wrongly affirm entailments if the premise has lower
term frequency than the hypothesis, than when not.

(3) For the NLI test samples consistent with
these factors, LLM scores are misleadingly high;
for NLI samples adversarial to them, LLM perfor-
mance is severely degraded. We show that when
labels go against the attestation bias, LLMs can be
poor or even near-random classifiers; for the rela-
tive frequency bias, we similarly show a substantial
performance decrease across all LLMs.

2 Related Work

Addressing task robustness, Poliak et al. (2018)
found a range of NLI datasets contain artifacts
which are learned by supervised models trained
on only sample hypotheses. In our work we design
a similar hypothesis-only test with LLMs, but we
use it to probe model memory without any training.
By conditioning on the attestation of hypotheses,
we show that LLMs are inherently sensitive to attes-
tation, separate from the statistical idiosyncrasies
of NLI datasets.2

Additionally, Talman and Chatzikyriakidis
(2019) report generalization failure among many
models supervised for NLI — models fail to gen-
eralize between NLI datasets, even if the task is
formatted the same. On smaller Language Models
such as RoBERTa (Liu et al., 2019; 355M params),
Li et al. (2022) also observed a reliance on dataset

2We speculate that a similar attestation effect could even
be present in the supervised models studied in Poliak et al.
(2018), which could contribute to those models’ performance.
We leave the investigation of this to future work.

artifacts when performing directional NLI on pred-
icates. We now study the behavior of much larger
LMs, which have demonstrated more robust perfor-
mance across NLP tasks.

Recent work has also explored LLM memoriza-
tion and generalization. Carlini et al. (2023) estab-
lish that LLMs are able to memorize more data than
small LMs, whereas Tirumala et al. (2022) further
demonstrate that LLMs pay special attention early
in training to numbers and nouns, which act as
unique identifiers for individual training sentences.
We also show that memories used in language infer-
ence are tied to specific named entities. And while
Weller et al. (2023) and Kandpal et al. (2022) find
that entity frequency in training data is correlated
with performance in factual recall about them, we
find that entity frequency is anti-correlated with
hypothetical generalization performance (§6).

Bubeck et al. (2023) argue that GPT-4 under-
stands language “beyond memorization”. We do
not disprove generalization, but we show that GPT-
4 shows the same hallucinations in Appendix F.

3 Experimental Design

We design behavioral experiments on LLMs by
modifying NLI datasets with rigorous controls. We
observe large behavior changes across three major
LLM families due to propositional-memory effects
in §5 and §6, and corpus frequency in §7. Finally,
we show the impact on real performance in §8.

3.1 Two Biases in Inference Predictions
We claim that the pretraining objective to fit the
distribution of natural text leads to biases in LLM
generations. We explore two such biases.

The Attestation Bias (Λ) is the over-reliance of
an LLM on its propositional memory about a query
statement. We claim that when a statement is likely
to be attested in some way by an LLM’s training
data, it is more likely to affirm it as a conclusion in
NLI tasks, regardless of any premise it is presented
with. We measure the attestedness of a sample
by prompting the LLM to ask if the hypothesis in
question is true, false, or unknown.3 Attestation
predictions are denoted by Λ.

A biased model will appear to perform well on
dataset samples with entailment labels that happen
to align with the bias. Table 1 shows examples
from the Levy/Holt dev set.

3Alternatively, LLM perplexity for a statement could be
used; however, this is not always available, e.g. with GPT-3.
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Dev Sample Query: [premise] ⇒ [hypothesis] Dataset Label Bias Prediction

Geysers are common to New Zealand ⇒ Geysers are found in New Zealand Entail Λ = hypothesis Attested
Geysers are found in New Zealand ⇒ Geysers are common to New Zealand No-Entail Λ = hypothesis Not-Attested

Whiskey consists chiefly of alcohol ⇒ Whiskey contains alcohol Entail Φ = f (consists chiefly of ) < f (contains)
Whiskey contains alcohol ⇒ Whiskey consists chiefly of alcohol No-Entail Φ = f (contains) > f (consists chiefly of )

Table 1: Two pairs of samples are consistent with a respective bias. Model predictions made on the basis of the bias
will appear to predict the direction of entailment for each sample. f(·) maps a term to its corpus frequency.

As discussed in §2, we draw inspiration from the
hypothesis-only baseline (Poliak et al., 2018), but
our test only queries model memory about the hy-
pothesis without any training. We describe prompt
generation in detail in §4.2, with an example in
appendix Table 13.

Dasgupta et al. (2022) show a similar effect in
LLMs on abstract reasoning tests, related to sen-
tential content, and equate it to human tendencies.
In contrast, we examine the risks of propositional
memory on more realistic inference tasks.

The Relative Frequency Bias (Φ) is the use by
LLMs of a simple rule for deciding entailment,
calculable from corpus statistics. Entailment is
affirmed if, ignoring named entities, the eventuality
in premise P is less frequent in training than that
in hypothesis H .

This bias is reflected in natural text: it is known
that nouns follow a trend of becoming more specific
as corpus-frequency decreases (Rosch et al., 1976;
Caraballo and Charniak, 1999) and the same is
observed for predicates (McKenna et al., 2023).
Since entailments may carry from a specific term
to a more general one, e.g. SPRINT entails RUN,
relative frequency can often indicate direction of
entailment. However, this is an artifact of natural
text and has no direct relationship with meaning.

Test samples are labeled for agreement with this
bias separately from models, with examples shown
in Table 1. Since LLM pre-train corpora are imprac-
tically large or proprietary, we instead use Google
N-grams4 as a proxy of the natural distribution of
text, and thus the distributions of these corpora.
We average frequencies between the years 1950-
2019, and compare between P and H . To acquire
the generic eventualities in each sample, we ex-
clude any extracted entities and lemmatize predi-
cate phrases; further, we reduce the effect of noise
and sparsity by requiring a wide margin of differ-
ence between P and H frequency estimates. Fre-
quency decisions are denoted by Φ.

4https://books.google.com/ngrams

3.2 Datasets

Levy/Holt consists of premise-hypothesis pairs,
with a task formatted: “Given [premise P ], is it
true that [hypothesis H]?” (Levy and Dagan, 2016;
Holt, 2019). Each P - and H-statement has the
property of containing one predicate with two en-
tity arguments, (where the same entities appear in
both P and H) as shown in Table 2. This targeted
dataset is ideal for precisely measuring model un-
derstanding of predicates, because entailment be-
tween statements is decidable purely on the basis
of the predicates and their attributes. We study the
challenging directional subset, where entailments
hold in one direction but not both.

RTE-1 is one of the original and most difficult
tests of NLI (Dagan et al., 2006). It is not purely
directional on the basis of predicates or consistently
structured like Levy/Holt, so we leave it out of the
behavioral experiments. However, it is a widely
understood dataset, and we use it to demonstrate
the impact of the two biases in general NLI in §8.

Exclusions are made of NLI datasets relating
to knowledge of the world, since we aim to test
LLMs on their capability to reason purely about
the semantics of natural language predicates with-
out relying on memorized facts. We explicitly
avoid datasets such as MMLU (Hendrycks et al.,
2021), Natural Questions (Kwiatkowski et al.,
2019), OpenBookQA (Mihaylov et al., 2018) etc.

3.3 Dataset Transformations

The Standard Inference Task (I) is on original
NLI datasets, in which entailment is determinable
by using general language inference on sentences.
In Levy/Holt, it is determinable just by predicates.

We define three dataset transformations to study
the change in model responses as targeted informa-
tion is removed. These are the randomized premise
predicate setting IRandPrem, and two argument
transformations: generic arguments IGenArg, and
type-constrained randomized arguments IRandArg.
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Task Label Dev Sample Query: [premise] ⇒ [hypothesis]

I Entail George Bush was the Governor ofwas the Governor ofwas the Governor ofwas the Governor ofwas the Governor ofwas the Governor ofwas the Governor ofwas the Governor ofwas the Governor ofwas the Governor ofwas the Governor ofwas the Governor ofwas the Governor ofwas the Governor ofwas the Governor ofwas the Governor ofwas the Governor of Texas ⇒ George Bush is a politician fromis a politician fromis a politician fromis a politician fromis a politician fromis a politician fromis a politician fromis a politician fromis a politician fromis a politician fromis a politician fromis a politician fromis a politician fromis a politician fromis a politician fromis a politician fromis a politician from Texas
IRandPrem No-Entail George Bush resided inresided inresided inresided inresided inresided inresided inresided inresided inresided inresided inresided inresided inresided inresided inresided inresided in Texas ⇒ George Bush is a politician fromis a politician fromis a politician fromis a politician fromis a politician fromis a politician fromis a politician fromis a politician fromis a politician fromis a politician fromis a politician fromis a politician fromis a politician fromis a politician fromis a politician fromis a politician fromis a politician from Texas

Table 2: From the original dataset task (I) we derive the Random Premise task (IRandPrem), respecting type-
constraints. A random premise is highly unlikely to entail the hypothesis, so samples are relabeled No-Entail.

Task Label Dev Sample Query: [premise] ⇒ [hypothesis]

I Entail IndiaIndiaIndiaIndiaIndiaIndiaIndiaIndiaIndiaIndiaIndiaIndiaIndiaIndiaIndiaIndiaIndia exports tons of ricericericericericericericericericericericericericericericericerice ⇒ IndiaIndiaIndiaIndiaIndiaIndiaIndiaIndiaIndiaIndiaIndiaIndiaIndiaIndiaIndiaIndiaIndia exports ricericericericericericericericericericericericericericericericerice
IGenArg Entail location Xlocation Xlocation Xlocation Xlocation Xlocation Xlocation Xlocation Xlocation Xlocation Xlocation Xlocation Xlocation Xlocation Xlocation Xlocation Xlocation X exports tons of food Yfood Yfood Yfood Yfood Yfood Yfood Yfood Yfood Yfood Yfood Yfood Yfood Yfood Yfood Yfood Yfood Y ⇒ location Xlocation Xlocation Xlocation Xlocation Xlocation Xlocation Xlocation Xlocation Xlocation Xlocation Xlocation Xlocation Xlocation Xlocation Xlocation Xlocation X exports food Yfood Yfood Yfood Yfood Yfood Yfood Yfood Yfood Yfood Yfood Yfood Yfood Yfood Yfood Yfood Yfood Y
IRandArg↓ Entail SloterdijkSloterdijkSloterdijkSloterdijkSloterdijkSloterdijkSloterdijkSloterdijkSloterdijkSloterdijkSloterdijkSloterdijkSloterdijkSloterdijkSloterdijkSloterdijkSloterdijk exports tons of oatmeal cookiesoatmeal cookiesoatmeal cookiesoatmeal cookiesoatmeal cookiesoatmeal cookiesoatmeal cookiesoatmeal cookiesoatmeal cookiesoatmeal cookiesoatmeal cookiesoatmeal cookiesoatmeal cookiesoatmeal cookiesoatmeal cookiesoatmeal cookiesoatmeal cookies ⇒ SloterdijkSloterdijkSloterdijkSloterdijkSloterdijkSloterdijkSloterdijkSloterdijkSloterdijkSloterdijkSloterdijkSloterdijkSloterdijkSloterdijkSloterdijkSloterdijkSloterdijk exports oatmeal cookiesoatmeal cookiesoatmeal cookiesoatmeal cookiesoatmeal cookiesoatmeal cookiesoatmeal cookiesoatmeal cookiesoatmeal cookiesoatmeal cookiesoatmeal cookiesoatmeal cookiesoatmeal cookiesoatmeal cookiesoatmeal cookiesoatmeal cookiesoatmeal cookies
IRandArg↑ Entail HelsinkiHelsinkiHelsinkiHelsinkiHelsinkiHelsinkiHelsinkiHelsinkiHelsinkiHelsinkiHelsinkiHelsinkiHelsinkiHelsinkiHelsinkiHelsinkiHelsinki exports tons of Granny SmithGranny SmithGranny SmithGranny SmithGranny SmithGranny SmithGranny SmithGranny SmithGranny SmithGranny SmithGranny SmithGranny SmithGranny SmithGranny SmithGranny SmithGranny SmithGranny Smith ⇒ HelsinkiHelsinkiHelsinkiHelsinkiHelsinkiHelsinkiHelsinkiHelsinkiHelsinkiHelsinkiHelsinkiHelsinkiHelsinkiHelsinkiHelsinkiHelsinkiHelsinki exports Granny SmithGranny SmithGranny SmithGranny SmithGranny SmithGranny SmithGranny SmithGranny SmithGranny SmithGranny SmithGranny SmithGranny SmithGranny SmithGranny SmithGranny SmithGranny SmithGranny Smith

Table 3: An original dev sample (I) is transformed by insertion of entity types (IGenArg); by real entities sampled
from the 5% least frequent in NewsCrawl (IRandArg↓); and also from the 5% most frequent (IRandArg↑).

Transformations involve first identifying the
types of entities in statements, in order to con-
strain entity or predicate replacements. We type
each entity with one of the 48 FIGER types (Ling
and Weld, 2012), such as “person,” “location,” etc.
First, an entity linker (Nguyen et al., 2014) identi-
fies the Freebase ID (Bollacker et al., 2008) for an
entity, from which we then obtain its FIGER type;
we assign a default type “thing” in failure cases.

The Random Premise Task (IRandPrem) re-
places the original premise predicate with a ran-
dom predicate, while maintaining the same entity
arguments. This manipulation produces a dataset in
which all samples are labeled No-Entail, since
two randomly paired predicates are very unlikely to
be related by entailment. Thus, positive decisions
by the model are false positive hallucinations.5

To maintain naturalness and grammaticality, we
constrain a new predicate to have argument slots
of the same types as the original premise. For ex-
ample, “[medicine] is indicated for patients with
[disease]” is swapped for “[medicine] does not
cure [disease]”. We source candidates from dev
set premises satisfying the target type-constraints,
and sample uniform randomly. We map the original
entities to their respective slots in the new premise.
Examples are shown in Table 2. IRandPrem is a
good test of model reliance on propositional mem-
ory, since we prevent entailments while maintain-
ing the attestedness of conclusions (hypotheses).

The Generic Argument Task (IGenArg) re-
places original entities with unique FIGER-typed

5We manually inspected the generated random premise
entries for the Levy/Holt dataset to verify this: we found
86.6% of entries are successfully non-entailing, 3.8% unde-
cided cases, and only 9.6% are unintended true entailments.

identifiers, e.g. “location X” and “food Y.” By
masking the identities of entities, this test is de-
signed to remove entity information while main-
taining the same entailment label, as a baseline
control setting. We append unique identifiers (e.g.
“X,” “Y”) to allow tracking of entity slots across
the premise and the hypothesis.

The Random Argument Task (IRandArg) re-
places original entities with other real, random en-
tities of the same FIGER-type. Like IGenArg, this
test is designed to create novel strings by modifying
statements without changing entailment labels. But
now we test model sensitivity to added extraneous
information. Examples are shown in Table 3.

We use entity type constraints here to ensure
polysemous predicates maintain the same sense.
For example, a different sense of run is used
in “[person] runs [organization]” vs. “[person]
runs [software]”, but between different entities of
the same type, the same senses are used, so the
exact entity IDs do not affect entailment labels
(Yarowsky, 1993). We source new entities from
NewsCrawl (Barrault et al., 2019), a decade-long
span of multi-source news text, in which entities
are typed as above. We sample new entities uni-
form randomly from the 5% least common entities
in NewsCrawl (IRandArg↓), and the 5% most com-
mon (IRandArg↑). We insert the sampled entities
while preserving the rest of each statement.

4 Querying Models with Prompts

4.1 Models

LLaMA is a recent LLM model family which
rivals or surpasses GPT-3 performance while being
open to scientific study. A range of model sizes
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are provided, and we test the largest LLaMA-65B
model. LLaMA is not fine-tuned. In preliminary
experiments on the Levy/Holt dataset, we found
two popular fine-tuned LLaMA variants, Alpaca
(Taori et al., 2023) and Vicuna (Chiang et al., 2023),
perform similarly to LLaMA base models and un-
derperform LLaMA-65B, so we leave them out of
further experiments.

GPT-3 Series models are closed to deep scien-
tific review (Brown et al., 2020), though they are a
widely-used comparison for their performance, and
have been reasonably well-studied. We evaluate on
text-davinci-003 (GPT-3.5), as it is the largest, and
has undergone instruction- and RLHF-finetuning,
enabling interesting comparisons.

PaLM is larger than GPT-3, which often claims
state-of-the-art on evaluation datasets. We use the
largest PaLM-540B base model, which is also only
pretrained, so it serves as a further comparison
point to LLaMA.

Later GPT models (like text-davinci-003 in our
experiments) have been pre-trained and fine-tuned,
while base LLaMA and PaLM have only under-
gone pre-training, so their contrast indicates what
stage of training is responsible for the phenomena
we study. Our aim is not to judge which LLM
is superior, but to show the common sources of
hallucination they share.

We also omit models superseded in performance
by LLaMA (e.g. OPT, GPT-J, etc.), as well as
products that are closed to scientific review (e.g.
GPT-4, Bard, etc.)6.

4.2 Prompt Design and Evaluation

Formatting of test samples is done by inserting
the premise and hypothesis into a prompt template,
which is used to query the model in natural lan-
guage. Following this, we append a three-way an-
swer choice: A) Entailment, B) Neutral, C) Contra-
diction, following the typical format in NLI (Bow-
man et al., 2015).

Selection of the prompt template used in test is
decided by the highest AUC obtained on the respec-
tive dev set. We try 8 promising templates includ-
ing 5 from Schmitt and Schütze (2021), also used
in other NLI work7 (Webson and Pavlick, 2022).

6We include an analysis of GPT-4 in Appendix F.
7See Appendix A for details on prompt template selection.

Ideally, an LLM with advanced language under-
standing ability could perform inference in zero-
shot without annotated examples, which would
raise confidence that this faculty is ready for down-
stream tasks. To this end, we examine each LLM in
zero-shot (detailed in Appendix A), but they exhibit
severely degraded, even near-random performance.

We turn to few-shot, and hand-annotate a mini-
mal 4 examples in the style of the template, with
added explanations about why the given answer
is correct for each example. These examples are
prepended before the query (see Appendix A for
an example). Our goal is to study model behavior
as conditions change, not to maximize the score on
any particular dataset. Therefore, we use a mini-
mal 4-example setup, which we find is capable of
evoking positive responses from all three LLMs on
each dev set, across most templates.

Scoring is done by converting choice A into
Entail and collapsing both B and C choices into
No-Entail to align with Levy/Holt and RTE-1
annotation. For behavioral experiments in §5, §6,
and §7, we score the model solely based on its tex-
tual response. All models successfully choose one
of A/B/C on all dev questions, showing compatibil-
ity with the QA format.

For the analysis in §8 which measures model per-
formance across confidence thresholds, we convert
the letter choice to a probability with the mapping:

Sent = 0.5 + 0.5 ∗ I[tok = A] ∗ Stok

− 0.5 ∗ I[tok ∈ {B,C}] ∗ Stok

Where I is the indicator function, and Sent esti-
mates the probability of Entail from a textual
output (0 ≤ Sent ≤ 1) with token probability Stok.
The linear transformation preserves the ordering of
model confidences, which is sufficient for calculat-
ing a precision-recall curve.

5 Experiment 1: Attestation Bias

We begin our experiments by assessing LLMs’ re-
liance on their propositional memory of training
text by conditioning each model’s entailment task
predictions I on its own predictions of attestation
Λ. We do this by comparing estimated probabilities
of predicting Entail conditioned on whether the
hypothesis is predicted Attested or not.

Further, we test a setting which controls for the
possibility that original Levy/Holt entailments may
coincidentally refer to attested facts, which could
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Figure 1: Exp-1. Estimated probability of predicting
Entail for original entries in Levy/Holt, conditioned
on LLMs’ attestation of hypotheses (Λ). This setting is
intuitive but may be subject to spurious correlations.

Figure 2: Exp-1. Estimated probability of predicting
Entail for Random-Premise entries in Levy/Holt,
conditioned on LLMs’ attestation of hypotheses (Λ).
Now, predicting Entail is false positive hallucination
(lower is better). Models are sensitive to attestation, and
hallucinate more when the hypothesis is attested.

lead to spurious correlation between inference and
attestation scores without clearly demonstrating use
of memory versus true entailment. This controlled
setting is the random premise task IRandPrem,
which converts entailments into non-entailments
without altering the hypothesis. An ideal model
capable of drawing inferences from information in
context should detect that in the IRandPrem task it
is no longer possible to infer the hypothesis based
on the premise (even if the hypothesis is itself
attested in training), and never predict Entail.
Thus, in IRandPrem, all Entail predictions are
assumed to be false positive hallucinations.

5.1 Results

With I , IRandPrem and Λ predictions acquired as
described in §3.1, we present the conditional proba-
bilities in Figures 1 and 2. It is clear that a model’s

memory about the hypothesis plays a part in its pre-
dictions of the hypothesis given a premise, either
related or random.

For I , we observe significantly higher proba-
bility of predicting Entail when the hypothe-
sis is Attested. In the random premise task
IRandPrem, this trend continues. LLaMA, GPT-
3.5, and PaLM, respectively, show a 1.9x, 2.2x,
and 2.0x higher chance of falsely predicting that a
random premise Entails the hypothesis if it al-
ready predicts the hypothesis is Attested. This
false positive hallucination and its impact on NLI
performance is investigated further in §8.

This behavior is observed across model families
(LLaMA, GPT, and PaLM), establishing that it is
due to pretraining rather than Instruction-tuning
or RLHF, since LLaMA and PaLM have only un-
dergone pretraining. This behavior is undesirable,
because model predictions on NLI tasks should be
based solely on general language understanding,
not prior knowledge. We may conclude that mem-
ory of training data is a significant contributor in
LLM inference, and may be an important source of
hallucination.

5.2 Implications for Real Applications

Using prior knowledge as part of language infer-
ence has bad implications for the use of LLMs in
real applications. We offer an example scenario
of a question-answering task where user questions
are answered from a Knowledge Base (KB). In
typical formulations of this task, if a statement in
the KB (premise) entails a user query (hypothe-
sis), the premise may be formulated into an answer.
Consider a KB such as a legal document or HR rule-
book. Assume that the text is prepended to the user
query and presented to the LLM, as in other works
(Srinivasan et al., 2022). Given our findings, we
might observe the LLM hallucinating answers to
questions using information which is not presented
in the KB, but may have been read by the LLM in
text from other sources during pretraining. These
answers could be illogical, contradictory, and could
misrepresent the views of the KB, or other harms.
Such poor use of in-context learning has already
been observed in specific domains like medicine
(Jimenez Gutierrez et al., 2022).

In general, this is a risk for LLMs which (a) are
deployed for tasks like QA by feeding novel text
(e.g. a legal document) in-context as part of the
user query, and (b) are trained on datasets which are
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Levy/Holt (Directional)

Model Task Precision Recall ∆-Recall

LLaMA

I 67.0 68.4 0
IGenArg 69.0 66.9 -1.5
IRandArg↓ 64.0 63.8 -4.6
IRandArg↑ 67.2 53.7 -14.7

GPT-3.5

I 62.4 92.3 0
IGenArg 65.1 75.7 -16.6
IRandArg↓ 65.5 66.5 -25.8
IRandArg↑ 68.8 55.3 -37.0

PaLM

I 72.8 76.2 0
IGenArg 79.8 50.8 -25.4
IRandArg↓ 69.5 58.7 -17.5
IRandArg↑ 70.8 52.4 -23.8

Table 4: Exp-2. Scoring model outputs in different
argument-replacement tasks. We indicate the highest
and lowest recall score across replacement settings. Re-
call decreases sharply across settings in all models.

private or otherwise infeasibly large to read man-
ually, containing many facts and human opinions
unknowable to both the user and modeler.

6 Experiment 2:
Entities are Indices to Memory

In §5, we have established that propositional mem-
ory explains a significant portion of false positives
in LLM inference predictions. In this section, we
continue by showing the importance of named enti-
ties in the process of LLMs’ memory recall.

As described in §3.3, we manipulate the enti-
ties with the IGenArg generic argument replace-
ment, and two random entity replacements, one
with infrequent-entities IRandArg↓ and one with
frequent-entities IRandArg↑ (examples in Table 3).

By replacing arguments constrained by type, en-
tailment labels are maintained; however, new sam-
ples should contain novel strings not attested in pre-
train corpora. We expect that an ideal, generalizing
model would maintain its predictions across all
conditions; a flawed model utilizing the attestation
bias would predict fewer Entail, since entities
no longer identify these statements in training.

6.1 Results

We report results across conditions in Table 4. We
observe two phenomena across all three models,
aligning with the above conjecture of “flaws.”

First, we observe that all models’ behavior signif-
icantly changes in the same way when original en-
tities are replaced by either entity types or random
real entities. Despite similar (or marginally increas-

ing) precision across conditions, recall degrades
sharply from original entities (I) (GPT-3.5 @92.3)
to random frequent entities (IRandArg↑) (GPT-3.5
@55.3). Generic-argument IGenArg performance
also degrades in this way, showing that this is not a
matter of poorly selected real entities, but rather a
loss of information from the original dataset which
models were using to answer questions.

Second, across the 3 models, we observe a sig-
nificant difference in recall between the two real
entity conditions IRandArg↓ and IRandArg↑, which
are both composed of unattested statements, but in-
volve entities that differ in typical corpus frequency.
Infrequent entities (IRandArg↓) yield better gener-
alization and a higher recall (GPT-3.5 @66.5) than
frequent entities (IRandArg↑) (GPT-3.5 @55.3).

These findings corroborate those from §5, that
LLMs use memory as part of language inference,
and additionally show that these memories are re-
called using named entities acting as indices. These
experiments demonstrate that too much prior expo-
sure to an entity may impede model generalization
when that entity is discussed in novel inferences:
the more a model has read about an entity during
pretraining, the less capable it is of drawing novel
natural language inferences involving it. This is
the case even though the inferences do not require
detailed knowledge of the entity.

Like §5, the effect is consistent across models,
indicating LLM pretraining is responsible.

We show similar results on RTE-1 in Appendix
B. Further, instructing LLMs to ignore proposi-
tional memory in Appendix C shows little change.

7 Experiment 3: Relative Frequency Bias

We continue the conditioning experiments from §5,
now exploring the relative frequency bias. Sam-
ple labels for this bias are denoted by the model-
agnostic Φ as described in §3.1. Φ labels the con-
formance of sample predicates to the bias: Φ<

means P is less corpus-frequent than H by a mar-
gin (positive class), Φ> means P more frequent
than H by the margin (negative class). To control
for differences between datasets, the margin is set
so that 1/3 of samples are classed as “roughly equal”
(Φ≈), which we discard.

Following the observations in §6, we further ap-
ply a generic-argument transformation to control
for attestation, yielding IGenArg

RandPrem. With the en-
tities masked, models cannot recall propositional
memory for this task: by re-calculating the Λ mea-
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Figure 3: Exp-3. Estimated probability of predicting
Entail for random-premise Levy/Holt conditioned
on relative frequencies (Φ), with original (IRandPrem)
or generic (IGenArg

RandPrem) entities. Predicting Entail
is false positive hallucination (lower is better). Models
hallucinate more often when test samples conform to
the relative frequency bias (Φ<) than when not (Φ>).

sure with generic arguments, only 2 hypotheses are
still predicted as Attested by GPT-3.5, whereas
for LLaMA and PaLM, the numbers are also only
6.2% and 3.9%. Additionally, as with IRandPrem,
here the entailment label of each sample remains
No-Entail, so any Entail prediction is false
positive hallucination.

7.1 Results

We estimate the probabilities of models predict-
ing Entail conditioned on the frequency label Φ,
between IRandPrem and IGenArg

RandPrem settings, and
present the results in Figure 3. We observe a clear
and consistent rise of hallucination when samples
conform to the bias. Namely, in case of Φ<, models
are more likely to predict Entail, even though
no semantic relation exists between P and H .

Between the two settings, with IRandPrem, when
entities are available, this effect is moderate. On
the other hand, with IGenArg

RandPrem when entity-based
memory is blocked, we observe a decrease in the
overall level of hallucination, but the separation be-
tween Φ< and Φ> becomes more drastic, to 1.6x,
1.8x and 2.0x for LLaMA, GPT-3.5 and PaLM
respectively. This indicates a tension between Λ
and Φ: propositional memory may be used when
available, and if not, the predicate pairing may be
attended to more closely. Again, the Φ effect is
observed across the three model families, reveal-
ing its root in the large-scale pre-training process,
rather than model peculiarities or fine-tuning.

8 Impact of Bias on Performance

We have demonstrated two sources of hallucination
by LLMs on inference tasks. We now assess their
impact on model performance to quantify their risk.

We compare LLMs’ performance between NLI
subsets that are consistent or adversarial to each
bias. A sample P ⊨ H? is consistent with a bias
when the prediction by the bias agrees with the
gold entailment label; conversely, it is adversarial
to a bias when the prediction by the bias disagrees
with the label.

For example, “Google bought YouTube ⊨
Google owns YouTube” is consistent with the attes-
tation bias of every model, because the conclusion
Google owns YouTube is attested in every LLM’s
training data, and the sample label is Entail;
“Apple owns Samsung ⊭ Apple bought Samsung”
is also consistent, because its conclusion is not at-
tested and the sample label is No-Entail. The
reverses of these two samples are adversarial, since
their respective attestedness (unchanged) does not
agree with the entailment labels (now flipped). For
each subset, there is substantial representation in
both Levy/Holt and RTE-1 (see appendix Table 9).

While earlier experiments inspected model tex-
tual responses to characterize behavior change,
we now use area under the precision-recall curve
(AUC) to summarize model performance over a
tunable confidence threshold (scoring described in
§4.2), which is better for measuring practical dis-
criminative power. Following Li et al. (2022), we
re-scale AUC values to normalize over the label
distribution, yielding AUCnorm values that assign
random classifiers 0% and perfect classifiers 100%.

We report results in Table 5. Under the stan-
dard inference task I , the performance drop from
ΛCONSISTENT to ΛADVERSARIAL is severe for all 3
LLMs: they deteriorate from very good classi-
fiers to poor or even near-random ones.8 This
fragility from the attestation bias can be alleviated
by masking entities with type-identifiers (condition
IGenArg), which reduces the performance drop.

On the other hand, with the generic arguments
in IGenArg, LLMs are forced to focus on the predi-
cates in each proposition. As a result, the impact
of the relative frequency bias is intensified. From
the standard inference task I to IGenArg, the av-
erage performance drop from the cons. to adv.

8We note Λ predictions could possibly be influenced by
model-specific idiosyncrasies in prompt format. We provide
an analysis in Appendix E, where we find no significant effect.
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Levy/Holt RTE-1

Attestation (Λ) Rel. Frequency (Φ) Attestation (Λ) Rel. Frequency (Φ)

Model Task cons. adv. diff. cons. adv. diff. cons. adv. diff. cons. adv. diff.

LLaMA I 65.5 8.1 -57.4 42.1 32.3 -9.8 62.1 37.4 -24.7 55.5 51.7 -3.8
GPT-3.5 I 85.0 10.8 -74.2 53.5 43.2 -10.3 84.6 47.5 -37.1 77.6 43.4 -34.2
PaLM I 79.1 31.5 -47.6 63.3 53.0 -10.3 87.1 83.4 -3.7 87.5 81.0 -6.5

LLaMA IGenArg 52.1 34.4 -17.7 55.3 34.9 -20.4 59.2 30.4 -28.8 51.7 39.4 -12.3
GPT-3.5 IGenArg 67.1 18.8 -48.3 50.4 35.0 -15.4 80.1 56.4 -23.7 79.6 49.1 -30.5
PaLM IGenArg 58.1 46.6 -11.5 59.9 47.3 -12.6 78.1 84.4 +6.3 85.4 78.7 -6.7

Table 5: LLM performance on subsets where Λ/Φ is consistent/adversarial to entailment labels, measured with
AUCnorm (0% = random chance performance). Decrease from cons to adv subsets are shown in the diff. columns.

subsets w.r.t. Φ is widened from 10.1% to 16.1%
for Levy/Holt and from 14.8% to 16.5% for RTE-
1. The differences for Φ-consistency subsets are
generally narrower than Λ-consistency subsets, pos-
sibly because the relative frequencies require gen-
eralizing from instances, and may be more difficult
to capture, and potentially because frequency mea-
sures with Google N-gram are a crude estimate of
the actual frequencies in LLM pre-train corpora.

9 Conclusion

Across several major LLM families and experimen-
tal settings, we demonstrate two important biases
in the performance of LLMs on natural language
inference tasks, which may also manifest in applied
tasks as hallucination. Contrary to claims of LLM
general reasoning capabilities, we show that much
of this performance is achieved by (1) recall of rel-
evant memorizations and (2) corpus-based biases
like term frequency. Since these factors are repro-
duced in all models, we establish that they originate
in LLM pre-training, and are not corrected during
GPT-3.5 fine-tuning.

We conclude that LLMs, though powerful, use
unsatisfactory tools for the basic tasks of language
understanding and inference. We propose several
approaches to control for these biases in evaluation,
and ultimately conclude that further attention on
alleviating these biases are needed, before LLMs
may be trusted to reason robustly about language.

Limitations

In this paper, we have discussed two prominent
sources of hallucination for LLMs in natural lan-
guage inference tasks. We acknowledge that this is
not an exhaustive search of all the sources, where
further exploration should be done in future work.

We also note that after controlling for the factors

discussed in this paper, there remains residual, un-
explained performance on NLI tasks. This residual
might be due to other undiscovered biases or pos-
sibly generalising inference capability. We leave
further exploration of this residual to future work.

As discussed in Appendix A, we compared a
range of popular LLM prompting techniques and
selected the most promising approach. We ac-
knowledge that there could potentially be other
novel prompting techniques that could help the
LLMs resist the influence of the biases discussed
in this paper. We identify this as an open question
and advocate for future research.

Ethical Considerations

This paper discusses two major sources of hallu-
cination in LLM output when asked to perform
natural language inference, which we note is a ca-
pability required of many downstream tasks such
as summarization, question answering, etc. We
show that users of LLMs may be subjected to faulty
judgements if the content of their request overlaps
with data in pretraining. However, it is difficult to
ascertain for both a user or modeler exactly what
is contained in pretraining data, or how this will
interact with a user’s query. Our proposed attes-
tation query shows promise in detecting potential
overlaps, but model responses in applications of
these cases are not explored. Further, the relative
frequency bias demonstrates a much more subtle
problem of corpus distribution that is naturally in-
herent to model pretraining on human generated
text.

In light of these, the potential harms of LLM use
for drawing natural language inferences may in-
clude: offering inaccurate or irrelevant information
to a user’s query or contradiction of information
provided in-context with a user’s query.
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A Prompt Format Selection

In prompt-based interactions with the LLMs, sev-
eral types of context information could be added
to help models produce accurate and robust predic-
tions. We attend to two design choices in prompt
engineering: prompt templates and in-context ex-
amples.

Prompt templates are known to have a direct
and sometimes decisive impact on LLM behavior.
As such, we carefully select a range of clear and
concise templates as promising candidates. As
discussed in §4.2, we run each template through
the dev sets of each dataset, and select the template
with the best discriminative power according to
AUC scores (similarly to §8). The candidate set of
templates includes 3 concise templates we wrote:

1. If [PREMISE], then [HYPOTHESIS].

2. [PREMISE], so [HYPOTHESIS].

3. [PREMISE] entails [HYPOTHESIS].

We also considered the 5 prompt templates
used in bias work on LMs for textual entailments
(Schmitt and Schütze, 2021):

4. [PREMISE], which means that [HYPOTHESIS].

5. [HYPOTHESIS], because [PREMISE].

6. It is not the case that [HYPOTHESIS], let alone
that [PREMISE].

7. [HYPOTHESIS]NEG, which means that
[PREMISE]NEG.

8. [PREMISE]NEG, because [HYPOTHESIS]NEG.

In preliminary experiments with GPT-3.5, we ob-
served that LLMs are not responsive to the 3 contra-
positive prompts from Schmitt and Schütze (2021)
(colored gray), performing at random. We also
observed that prompt number 5 from Schmitt and
Schütze (2021) also consistently underperforms the
other 4 templates, so we use the remaining 4 tem-
plates (namely, template no. 1, 2, 3, 4) as our final
candidate set.

In-Context Examples have been widely used for
interactions with LLMs since Brown et al. (2020).
Further, Wei et al. (2022) has demonstrated that
including chain-of-thought explanation, namely
step-by-step explanations, in the in-context exam-
ples, helps LLMs perform reasoning tasks. On the
other hand, Ouyang et al. (2022) has suggested
that instruction-tuned LLMs are also capable of
performing tasks in zero-shot, without exposure to
any in-context examples.

We compared zero-shot and few-shot in our pre-
liminary experiments with LLaMA and GPT-3.5 on
Levy/Holt directional dev set. Following Touvron
et al. (2023), for zero-shot, we prepend a textual
description of the task to each test sample; for few-
shot, we prepend a minimal 4 examples with ex-
planations. Instantiated prompts in the two settings
are demonstrated in Table 13. Here we report the
dev set results with the best-performing templates.

We found that for the two pre-trained LLMs,
namely, LLaMA and PaLM, zero-shot performance
on the Levy/Holt directional dev set is near-random,
at 56.6% and 61.5% AUC respectively (random is
50%); with 4 in-context examples, the models be-
gin to exhibit non-trivial behavior, with 65.0% and
80.2% AUC, respectively. This is not surprising,
since pre-trained LLMs without instruction fine-
tuning should not be expected to perform complex
tasks zero-shot. For GPT-3.5, the performance is
still much lower in zero-shot, at 64.5%, compared
to 74.6% in few-shot.

As discussed in §4.2, ideally we would like
LLMs to have zero-shot natural language abili-
ties readily available for downstream tasks. How-
ever, in light of this observation, our primary ex-
periments are conducted in the few-shot setting
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Model Task Precision Recall ∆-Recall

LLaMA

I 74.5 52.5 0
IGenArg 70.9 57.3 +4.8
IRandArg↓ 66.9 60.5 +8.0
IRandArg↑ 70.6 51.5 -1.0

GPT-3.5

I 80.6 96.5 0
IGenArg 79.7 91.3 -5.2
IRandArg↓ 80.1 82.5 -14.0
IRandArg↑ 81.9 80.5 -16.0

PaLM

I 90.3 84.0 0
IGenArg 92.3 71.5 -12.5
IRandArg↓ 87.8 82.5 -1.5
IRandArg↑ 88.2 82.0 -2.0

Table 6: Scoring model outputs in different conditions
of RTE-1. We indicate the highest and lowest recall
score across replacement settings.

throughout, in order to better explore the abilities
of these LLMs.

B RTE-1 Results For Experiment 2:
Entities are Indices to Memory

The RTE-1 dataset contains complex natural lan-
guage statements with varied linguistic features,
so predictions about entailment are not decidable
only on the basis of contained predicates. However,
RTE-1 is a difficult challenge set for models, and
interesting to compare to in the broader domain of
NLI. Though the sentences are much more com-
plex, we are able to conduct an analogous experi-
ment as in §6 by first identifying spans of named
entities and their respective entity types, then re-
placing the entities with new ones. As before, we
compare model scores on the original dataset to
three test conditions: generic arguments (“location
X”, “person Y”, etc.), sampled low-frequency en-
tities constrained to the same type, and the same
for high-frequency sampled entities. Since only
the entities in each statement have been altered,
the entailment labels between premise/hypothesis
pairs remain unchanged, and an ideal model capa-
ble of generalizing inference would make the same
predictions across dataset conditions. Results are
shown in Table 6.

We observe similar trends to those reported on
Levy/Holt. GPT-3.5 performs very consistently be-
tween Levy/Holt and RTE-1 in terms of degrading
recall when information is changed in each sample.
We observe that model performance is worse than
the original dataset when using generic arguments,
and worse still using type-constrained random ar-

guments. We further observe that across all three
LLMs across both datasets, models consistently
achieve worse recall using high-frequency entities
than low-frequency entities, supporting the claim
that increasing the frequency of entity occurrence
in training data impedes generalization.

Different from in Levy/Holt, we observe some
noise in LLaMA’s predictions; the recall on the
original task is actually lower than the generic argu-
ment condition and the low-frequency entity condi-
tion. We note that overall, LLaMA is the weakest
LLM tested in this experiment on both Levy/Holt
and RTE-1, and that its performance on RTE-1 is
particularly low. We suggest that the increased dif-
ficulty of RTE-1 over Levy/Holt (due to having
much more linguistic variation) is simply too com-
plex for LLaMA, which is neither the largest LLM
tested, nor instruction-finetuned.

We also observe a smaller gap between PaLM’s
recall rates across dataset conditions, though the
gaps are consistent with our claims. While the
model appears able to generalize to conditions in
which random real arguments are inserted, recall
on the generic argument condition is significantly
degraded. Failure on this control condition indi-
cates that the model may not be generalizing as
well as the other conditions would imply.

C The Ineffectiveness of Instructing
LLMs to Stop Conditioning on
Attested Information

In §5 and §6, we showed that entailment predic-
tions from LLMs are strongly biased by their pre-
dictions on the attestation of hypotheses. We won-
dered whether there are intuitive prompt engineer-
ing techniques to steer its behavior away from at-
tending to attestation.

Towards this goal, we experimented with
prepending a brief task description to the few-shot
prompts in part B of Table 13, explicitly instructing
the models to ignore the attestedness of individual
statements: Please check the entailments between
the following hypothetical statements. Ignore the
veracity of these statements.

We replicated the experiments in §5 and §6 with
GPT-3.5, since GPT-3.5 is an instruction-finetuned
model trained to be responsive to prompts, where
the other two LLM families are only pre-trained.
Despite having been instruction-finetuned, the re-
sults with GPT-3.5 show only marginal improve-
ments in model behavior.
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task GPT-3.5 Instructed to Ignore Attestedness Not Instructed

I P (Entail | Attested) 74.3 77.6
I P (Entail | ¬Attested) 57.8 63.6

IRandPrem P (Entail | Attested) 39.0 41.3
IRandPrem P (Entail | ¬Attested) 17.6 18.8

Table 7: We estimate the probability of positive predictions of Entail in I and IRandPrem tasks respectively
given that the hypothesis is attested, namely Λ = Attested. Not instructed results are copied from Figure 2 and
listed here for ease of comparison; also note that all IRandPrem = Entail predictions are false positives.

Levy/Holt (Directional)

GPT-3.5 Condition Task Precision Recall ∆-Recall

Few-shot, instructed to ignore attestedness.

I 64.9 90.8 0
IGenArg 73.5 69.3 -21.5
IRandArg↓ 64.6 68.4 -22.4
IRandArg↑ 67.5 58.1 -32.7

Few-shot, no instructions.
I 62.4 92.3 0
IGenArg 65.1 75.7 -16.6
IRandArg↓ 65.5 66.5 -25.8
IRandArg↑ 68.8 55.3 -37.0

Table 8: GPT-3.5 predictions when models are explicitly instructed to avoid taking the attestedness of individual
statements into account. In the upper half are the instructed behavior, and in the lower half are the regular few-shot
behavior as in Table 4. Differences in recalls remain at a similar scale, with precision again stable, where the benefit
from the explicit instruction is marginal.

In Table 7, we show that instructing GPT-3.5
to ignore attestation does not help narrow the gap
between Λ = Attested and Λ = ¬Attested;
instead, probabilities of predicting Entail went
down by similar amounts, indicating that the model
is becoming slightly more conservative in predict-
ing positives when instructed to ignore attestation,
but not in a principled manner.

Further, as shown in Table 8, despite the ex-
plicit instruction, recall still drops at similar scales
when arguments are randomly replaced with the
same sets of frequent/infrequent replacement enti-
ties as before. Since GPT-3.5 has been instruction-
finetuned to respond to prompts, its failure means
eradicating such biases from model outputs is a
difficult task, one that needs further research atten-
tion.

D Statistics of Consistency Subsets

The statistics of consistency subsets are presented
in Table 9.

E The Reliability of Λ Measure and Its
Relation to Consensus of Attestation

The Λ-consistency subsets most directly capture
the impacts of the attestation bias. However, these

subset separations are based on Λ predictions from
individual models, which can be noisy, subject to
model-specific idiosyncracies such as trigger words
or certain syntactic structures in the prompt, etc.

To verify that the performance gaps in Λ-
consistency subsets that we observe in §8 comes
from predicted attestedness and not some idiosyn-
crasy, we experiment with another pair of subsets
based on consensus attestation instead of individu-
ally predicted attestation.

We use a majority vote among the three
independently-trained LLMs to approximate con-
sensus attestation. The approximation is denoted
as Λ̃. This is because any model-specific idiosyn-
crasies should not be shared between LLMs in-
dependently trained from different source corpora
in general. Therefore, with the majority vote, we
reduce this noise and acquire predictions on the
consensus attestation of statements.

Performances of LLMs between Λ̃-consistency
subsets are listed in Table 10. Gaps between
the Λ̃-consistency subsets that are larger than Λ-
consistency gaps are colored red; those narrower
than Λ-consistency gaps are colored green. It is
clear that the gaps are consistent between Λ/Λ̃-
consistency experiments, where the gaps are even
larger on many occasions. This confirms that the
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# of Entries Levy/Holt RTE-1

LLaMA GPT-3.5 PaLM LLaMA GPT-3.5 PaLM

VCONSISTENT 955 947 999 479 447 480
VADVERSARIAL 829 837 785 321 353 320

FCONSISTENT 972 286
FADVERSARIAL 220 247

Table 9: Subsets defined by the consistency between entailment label L and either Λ (hypothesis attestation
prediction from each LLM) or Φ (model-agnostic relative frequency bias). CONSISTENT subsets are where L agrees
with Λ/Φ. ADVERSARIAL subsets are where L disagrees with Λ/Φ.

Levy/Holt

Model Task Λ̃cons. Λ̃adv. diff.

LLaMA I 65.3 6.5 -58.8
GPT-3.5 I 70.8 23.5 -47.3
PaLM I 80.7 28.3 -52.4

LLaMA IGenArg 54.4 29.6 -24.8
GPT-3.5 IGenArg 56.2 35.5 -20.7
PaLM IGenArg 59.3 40.1 -19.2

Table 10: LLM performance on Levy/Holt subsets
where Attestation Λ̃ is Consistent/Adversarial to the
labels, measured with AUCnorm (0% = random chance
performance). Performance drops from Λ̃cons to Λ̃adv

are presented in the diff. columns, sharper decreases
than Λ-comparisons in Table 5 are colored red, milder
ones are colored green.

performance gaps in Λ-consistency experiments
can be credited to the attestation bias, rather than
model-specific idiosyncrasies.

It is also to be noted that, since the Φ-consistency
subsets are separated based on the model-agnostic
criterion Φ, model-specific idiosyncrasies are not a
problem for Φ-consistency comparisons.

F Impacts of Bias on GPT-4 Performance

GPT-4 (OpenAI, 2023) is a recent, strong LLM
claiming SOTA performance on various NLP tasks.
Due to its closed-source nature and the impossibil-
ity of fully tracking the sources of its behaviors, we
refrain from reporting results with it in the main
content of this paper.

However, in order to provide a richer con-
text for the attestation bias and the relative fre-
quency bias, in this section we report the perfor-
mance differences of GPT-4 between subsets con-
sistent/adversarial to the two biases.

As a light-weight experiment, we elicit GPT-4
predictions in the original I task in the zero-shot
setting, and re-use subsets from experiments in
§8. Specifically, for the attestation bias, we use

the majority vote Λ̃ among LLaMA, GPT-3.5 and
PaLM, to approximate Λ predictions from GPT-4
itself; for the relative frequency bias, we keep the
Φ measure for approximating corpus-frequency of
terms.

Because GPT-4 is a commercial service and does
not provide logit confidence with their discrete pre-
dictions, AUCnorm values could not be calculated.
Therefore, we are forced to report the F-1 scores
at the binary prediction point of confidence. As
results in Table 12 show, we observe the same trend
as in §8: for the subset adversarial to each factor,
GPT-4 performance also drops substantially.

This experiment is designed to provide more con-
text for the two biases discussed in the paper and
NOT to compare GPT-4 with other models; how-
ever, we can conclude that GPT-4 is subject to the
same fragilities as the other LLMs w.r.t. the two bi-
ases, where our conclusions and recommendations
also apply.

G Dataset Statistics and Dev Set
Performance

In the paper, we have examined the behavior and
performance of three major LLM families on two
NLI datasets: Levy/Holt and RTE-1.

The directional portion of Levy/Holt dataset9

contains 630 entries in its dev set, and 1784 entries
in its test set; the RTE-1 dataset10 contains 567
entries in its dev set, and 800 entries in its test
set. Each dataset has a 50%/50% class distribution
between Entail and No-Entail (for RTE-1
dev set, the numbers of entries in the two label
classes differ by 1).

In Table 11, we report dev set performance and
the best prompt template used for each model on
each dataset. Note that no training is involved in

9https://github.com/mjhosseini/
entgraph_eval/tree/master/LevyHoltDS

10https://www.kaggle.com/datasets/
nltkdata/rte-corpus?resource=download
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Levy/Holt RTE-1

Model Task Best tplt. ID DEV set AUCnorm Best tplt. ID DEV set AUCnorm

LLaMA

I #4 30.0 #3 62.5
IGenArg #1 34.6 #3 52.3
IRandArg↓ #1 31.8 #1 51.3
IRandArg↑ #1 26.3 #3 43.8

GPT-3.5

I #1 49.2 #3 74.8
IGenArg #1 39.8 #3 64.8
IRandArg↓ #1 43.4 #3 63.6
IRandArg↑ #1 34.2 #3 66.0

PaLM

I #1 60.9 #4 84.5
IGenArg #1 48.1 #4 79.4
IRandArg↓ #1 43.6 #3 79.8
IRandArg↑ #1 35.3 #3 78.3

Table 11: LLM dev set performance on the two datasets, measured with AUCnorm (0% = random chance
performance). AUC is calculated using estimated model scores as in §4.2 and then normalized into AUCnorm. We
select the highest scoring template on each dev task (shown in this table) and use this in the corresponding test set
evaluation (shown in the main text).

F-1 score Task Levy/Holt

Λ̃Cons Λ̃Adv

random baseline I 70.3 62.0
GPT-4 I 85.1 (+14.8) 67.6 (+5.6)

ΦCons ΦAdv

random baseline I 66.7 66.7
GPT-4 I 74.6 (+7.9) 69.7 (+3.0)

Table 12: LLM performance on Levy/Holt subsets
where Attestation Λ̃ is Consistent/Adversarial to the
labels, measured with F-1 score. random baseline is the
highest F-1 score from a random classifier, by reaching
random precision and 100% recall. For each GPT-4
score, we also show the improvement over random (in
parentheses).

this paper, and prompt template selection is the
only hyper-parameter tuned on the dev sets. These
selected best prompt templates are then used on the
respective test sets, where the results are used for
the analysis throughout the paper.

For random-premise experiments, AUC values
cannot be meaningfully calculated because gold
labels are always No-Entail. For these ex-
periments, we use the most frequently-selected
prompt template on each dataset, namely template
#1 for Levy/Holt dataset, and template #3 for RTE-
1 dataset.
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A. Zero-shot Example Instantiated Prompt

Please check the entailments between the following statements.

If kanamycin kills infections, then kanamycin is useful in infections.
A) Entailment
B) Neutral
C) Contradiction

B. Few-shot Example Instantiated Prompt

If Google bought Youtube, then Google owns Youtube.
A) Entailment
B) Neutral
C) Contradiction
Answer: A) Entailment. Owning is a consequence of buying.
If Google owns Youtube, then Google bought Youtube.
A) Entailment
B) Neutral
C) Contradiction
Answer: B) Neutral. Owning does not imply buying, the ownership may come from other means.
If John went to the mall, then John drove to the mall.
A) Entailment
B) Neutral
C) Contradiction
Answer: B) Neutral. John may have gone to the mall by other means.
If John drove to the mall, then John went to the mall.
A) Entailment
B) Neutral
C) Contradiction
Answer: A) Entailment. Driving is a means of going to the mall.
If ephedrine is widely used in medicine, then ephedrine is used in medicine.
A) Entailment
B) Neutral
C) Contradiction
Answer:

C. Hypothesis-only Example Instantiated Prompt

Google bought Youtube.
A) True
B) Unknown
C) False
Answer: A) True.
Yoshua Bengio likes oak trees.
A) True
B) Unknown
C) False
Answer: B) Unknown.
The sun rises from the west.
A) True
B) Unknown
C) False
Answer: C) False.
ephedrine is used in medicine.
A) True
B) Unknown
C) False
Answer:

Table 13: Example instantiated prompts in Zero-shot / Few-shot settings, for the sample “PREMISE: [ephedrine
is widely used in medicine], HYPOTHESIS: [ephedrine is used in medicine]”. The few-shot prompts in part B are
used throughout the main experiments in this paper. We also present an example of the prompts we use for the
hypothesis-only Λ measure as described in §3.1.
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