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Abstract

Recently, aspect-based sentiment analysis
(ABSA) models have yielded promising results.
However, they are susceptible to learning spuri-
ous correlations between certain words of the
input text and output labels while modeling
the sentiment feature of the aspect. This spuri-
ous correlation will potentially undermine the
performance of ABSA models. One direct so-
lution for this problem is to make the model see
and learn an explanation of sentiment expres-
sion rather than certain words. Motivated by
this, we exploit explanations for the sentiment
polarity of each aspect from large language
models (LLMs) to reduce spurious correlations
in ABSA. First, we formulate a prompt tem-
plate that wraps the sentence, an aspect, and
the sentiment label. This template is utilized to
prompt LLMs to generate an appropriate expla-
nation that states the sentiment cause. Then, we
propose two straightforward yet effective meth-
ods to leverage the explanation for preventing
the learning of spurious correlations. We con-
ducted extensive comparative experiments on
five datasets by integrating them with some rep-
resentative ABSA models. Results show that
our methods can achieve performance gains
and enhance the performance and generaliza-
tion ability of ABSA models.

1 Introduction

Aspect-based sentiment analysis (ABSA) aims to
identify the sentiment polarity (e.g., positive, neu-
tral, and negative) of a specified aspect in a review
(Pontiki et al., 2014). For example, given a review
"great food but the service was dreadful!" and two
aspects "food" and "service", this task needs to infer
their sentiment polarities "positive" and "negative",
respectively.

Traditional ABSA methods primarily rely on
machine learning techniques, which incorporate
some handcrafted features to enhance performance,
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Training Samples Label

company provides UPS [shipping], fast, 

great!

positive

the [Final Cut Pro] on this laptop is so 

fast and easy.

positive

super fast [processor] and really nice 

graphics card.

positive

Testing Sample

the [battery life] was faster than expected.

(prediction: positive)

negative

Figure 1: Examples of the spurious correlation between
context words "fast" and label "positive" in the training
samples. This spurious correlation does not hold for the
testing sample. Aspect terms are marked in parentheses.

such as linguistic features (Negi and Buitelaar,
2014). However, feature engineering could be a
time-consuming process, requiring significant ef-
fort and expertise. To solve this dilemma, deep
learning solutions are utilized to address ABSA due
to their powerful contextual feature modeling capa-
bility. From conventional neural networks (Ruder
et al., 2016; Xue and Li, 2018; Ma et al., 2018) to
attention mechanisms (Tang et al., 2016a; Li et al.,
2018a; Gu et al., 2018; Fan et al., 2018), these
solutions focus on modeling the dependency rela-
tionship between an aspect and its corresponding
opinion expressions. With the emergence of fine-
tuning paradigm, the attention mechanism armed
with pre-trained language models (PLMs) (Devlin
et al., 2019; Song et al., 2019; Wang et al., 2020;
Tian et al., 2021; Nazir et al., 2022; Zhang et al.,
2022) further strengthens the connection between
the aspect and its context.

Despite their satisfactory results, most neural net-
work methods may indulge in learning statistically
spurious correlations while modeling the sentiment
feature of aspect on the context. Here, spurious
correlation (Wang and Culotta, 2020; Wang et al.,
2022b) refers to the dependence of the model on
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certain words of the input text without a deeper un-
derstanding of the contextual semantics, which has
a know-it-when-you-see-it character. Taking the ex-
ample in Figure 1 for illustration, the opinion word
"fast" expresses different sentiment polarities of the
aspect terms in distinct contexts. Here, 92% of as-
pect sentiment is "positive" in the training samples
when counting the proportion of aspect sentiment
polarity that co-occurs with "fast". Due to this
unbalanced distribution, in the training phase, the
neural models assume that there is a strong cor-
relation between "fast" and "positive", especially
for short texts. Consequently, when faced with a
testing sample containing a derivative "faster", the
trained models will predict the incorrect sentiment
label "positive" based on this spurious correlation
learned superficially before. Thus, most neural
models may encounter difficulty in navigating spu-
rious correlations because of a shallow understand-
ing. Besides, they lack the capacity to self-correct,
resulting in undermining their effectiveness and
generalization.

One straightforward solution to alleviate the spu-
rious correlation problem is to make models attend
to an explanation of sentiment expression rather
than certain words in the context. Here, explana-
tion refers to the reasons for the sentiment polarity
of aspect term obtained by deeply understanding
the contextual semantics. However, for each train-
ing sample, it is a tricky problem to derive the senti-
ment explanation given the aspect and its sentiment.
Recently, large language models (LLMs) (Brown
et al., 2020) have achieved remarkable success in a
wide range of NLP capabilities, including genera-
tion and contextual understanding. In addition, they
are knowledgeable due to the substantial linguis-
tic (Liu et al., 2019) and factual world knowledge
learned. Thus, LLMs can be exploited to gener-
ate an explanation toward the sentiment of aspect
through prompt-driven contextual understanding
(Bian et al., 2023). Taking the second training sam-
ple in Figure 1 as an example, LLMs can yield
an explanation, "The sentiment towards ’Final Cut
Pro’ is positive because the speaker praises its
efficiency and user-friendliness on the laptop, in-
dicating satisfaction and favorable feelings about
the software.".

Inspired by this, we leverage explanations from
LLMs to reduce spurious correlations in ABSA.
Specifically, we first design a prompt containing
an aspect term and its sentiment to induce LLMs

to provide a relevant explanation according to the
context. In this way, the output explanation can
provide the reason for sentiment and may contain
some external knowledge thanks to the powerful ca-
pabilities of LLMs. Then, we propose two methods
to employ this explanation to improve the effective-
ness and generalization of ABSA models. One
is the augmentation-based method, which directly
treats these explanations containing the aspect term
as training samples. We mix these explanations
with the original training samples to train a more
robust ABSA model. This method can not only re-
lieve the statistical bias in original samples but also
learn a range of sample patterns. The other is the
distillation-based method, whose basic idea is to
distill the knowledge embedded in the explanation
into a student ABSA model. By the distillation loss,
the student ABSA model can mimic the two behav-
iors of the teacher, i.e., sentiment representation
and output logit. In this way, the explanation can
guide the learning of ABSA models and prevent
them from over-focusing on spurious correlations.

In summary, our contributions are as follows:

• To our knowledge, we are the first to induce
LLMs to generate an explanation for the as-
pect’s sentiment and use it to reduce spurious
correlations in the ABSA task.

• We devise two straightforward methods for
utilizing this explanation, which can be inte-
grated into most mainstream baselines.

• We conduct extensive experiments on five
benchmark datasets, showing that baselines
armed with the proposed methods can achieve
better performance on inference and general-
ization.

2 Related Work

Aspect-based Sentiment Analysis. ABSA aims
to identify the sentiment polarity of each aspect
mentioned in the text. To solve this task, vari-
ous neural networks with the attention mechanism
are utilized to find the semantic relation of an as-
pect and its context for capturing the corresponding
opinion expression (Tang et al., 2016b; Ma et al.,
2017; Li et al., 2018c; Fan et al., 2018; Tan et al.,
2019). For instance, Fan et al. (2018) exploited a
multi-grained attention mechanism to capture the
word-level interaction between the aspect and its
relevant context. The idea behind the attention

2931



L
a

rg
e L

a
n

g
u

a
g
e     

M
o

d
el

step 1. explanation generation

Sentence 𝑿:
the Final Cut Pro on this

laptop is so fast and easy.

Aspect 𝒂: Final Cut Pro

Label 𝒚: positive

In the following sentence, "the

Final Cut Pro on this laptop is so

fast and easy,", explain why the

sentiment expressed by aspect term

"Final Cut Pro" is "positive"?

Limit to forty words.

Copying adjectives from the

original sentence is not allowed.

Prompt 

Template

Explanation 𝑿 :

The sentiment towards 'Final

Cut Pro' is positive because the

speaker praises its efficiency

and user-friendliness on the

laptop, indicating satisfaction

and favorable feelings about

the software.

step 2. explanation exploitation

augmentation-based method distillation-based method

encoder

classifier

𝑿𝒊, 𝒂𝒊, 𝒚𝒊 𝒊=𝟏
𝑵 ∪ 𝑿𝒊, 𝒂𝒊, 𝒚𝒊 𝒊=𝟏

𝑵

ℒ𝑐𝑙𝑠

student

encoder

classifier

ℒ𝑐𝑙𝑠

teacher

encoder

classifier

ℒ𝑑𝑖𝑠

EMA

ℒℎ𝑖𝑑

𝑿𝒊, 𝒂𝒊, 𝒚𝒊 𝒊=𝟏
𝑵 𝑿𝒊, 𝒂𝒊, 𝒚𝒊 𝒊=𝟏

𝑵

L
a

rg
e L

a
n

g
u

a
g
e     

M
o

d
el

step 1. explanation generation

Sentence 𝑿:
the Final Cut Pro on this

laptop is so fast and easy.

Aspect 𝒂: Final Cut Pro

Label 𝒚: positive

In the following sentence, "the

Final Cut Pro on this laptop is so

fast and easy,", explain why the

sentiment expressed by aspect term

"Final Cut Pro" is "positive"?

Limit to forty words.

Copying adjectives from the

original sentence is not allowed.

Prompt 

Template

Explanation 𝑿 :

The sentiment towards 'Final

Cut Pro' is positive because the

speaker praises its efficiency

and user-friendliness on the

laptop, indicating satisfaction

and favorable feelings about

the software.

step 2. explanation exploitation

augmentation-based method distillation-based method

encoder

classifier

𝑿𝒊, 𝒂𝒊, 𝒚𝒊 𝒊=𝟏
𝑵 ∪ 𝑿𝒊, 𝒂𝒊, 𝒚𝒊 𝒊=𝟏

𝑵

ℒ𝑐𝑙𝑠

student

encoder

classifier

ℒ𝑐𝑙𝑠

teacher

encoder

classifier

ℒ𝑑𝑖𝑠

EMA

ℒℎ𝑖𝑑

𝑿𝒊, 𝒂𝒊, 𝒚𝒊 𝒊=𝟏
𝑵 𝑿𝒊, 𝒂𝒊, 𝒚𝒊 𝒊=𝟏

𝑵

Figure 2: The overview of the proposed framework. This framework consists of two steps: explanation generation
and explanation exploitation.

mechanism is to focus on the context related to the
aspect and shield the irrelevant context. To further
pursue this idea, some studies (Song et al., 2019; Li
et al., 2020; Yan et al., 2021; Wang et al., 2022b,a)
applied pre-trained models (PLMs) such as BERT
(Devlin et al., 2019) to model the semantic rela-
tionship between the given aspect and its context.
The internal multi-head self-attention mechanism
in PLMs is more efficient than conventional atten-
tion techniques (Vaswani et al., 2017). As a result,
these studies consistently delivered better results.

Another research trend is to leverage syntactic
knowledge from syntactic trees to handle ABSA.
This syntactic knowledge helps to establish con-
nections between the aspect and opinion words and
learn syntax-aware feature representations of the
aspect (He et al., 2018; Sun et al., 2019; Phan and
Ogunbona, 2020; Wang et al., 2020; Tian et al.,
2021; Liang et al., 2022). The core idea of these
studies is to transform a constructed syntax depen-
dency tree into a graph for posing greater attention
to important words.

Although these methods obtained promising re-
sults by modeling semantic relationships between
aspects and contexts, they are inevitably plagued
by statistical spurious correlations. Unlike them,
in this paper, we aim to reduce spurious correla-
tions with explanations from LLMs. These expla-
nations can serve to guide ABSA models not to

focus on certain words in the context to prevent
being trapped in the spurious correlation trap.

Large Language Models. With the advent of
GPT-3 (Brown et al., 2020), LLMs break into the
limelight and draw enormous attention. They typ-
ically feature a vast array of model parameters
and undergo training on immensely large volumes
of raw data. By learning from data, they memo-
rize and understand vast amounts of knowledge
(Li et al., 2022) and learn to reason (Wei et al.,
2022). Knowledge and reason are crucial for build-
ing a satisfactory NLP system that can understand
and generate human-like language. Consequently,
LLMs like ChatGPT can achieve substantial perfor-
mance improvements in a wide range of NLP tasks,
including inference and dialogue, by profoundly
comprehending the contextual semantics. Inspired
by this, for the sentiment polarity of each aspect,
we here apply LLMs to generate an explanation to
explain its causes.

3 Our Approach

3.1 Problem Definition

Given an ABSA training set, each sample consists
of a sentence X , an aspect a, and a sentiment label
y. Here, the aspect is a sub-sequence token in the
sentence. ABSA aims to learn a sentiment classifier
that can precisely predict a sentiment polarity y ∈
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{positive, negative, neural} for each aspect term
according to the semantics of the sentence.1

3.2 Overview
As shown in Figure 2, our framework consists of
two steps. The first step is explanation generation.
Here, for each training sample, we use a prompt
template to encapsulate the sentence, the aspect,
and its sentiment to drive the LLMs to generate an
explanation to indicate the corresponding sentiment
cause. The second step is explanation exploitation.
Here, we propose two simple yet effective methods
to exploit explanations for alleviating the spurious
correlations in ABSA.

3.3 Explanation Generation
Spurious correlations are common in current
ABSA models, particularly in cases of over-
parameterization or insufficient training data
(Sagawa et al., 2020). The fundamental reason
is that these models might learn statistical corre-
lations between superficial textual cues and senti-
ment labels rather than achieving a profound com-
prehension of contextual semantics. Consequently,
this problem will hurt the performance and gener-
ality of the ABSA classifier.

In this work, we try to reduce spurious correla-
tions in ABSA using explanation. To achieve this,
we expect an explanation to have two functions: (i)
motivating ABSA models to infer the aspect’s senti-
ment by understanding the context rather than some
surface words. (ii) providing additional knowledge
as background information for better contextual
understanding, especially for short texts; Recently,
LLMs such as ChatGPT have exhibited incredible
contextual understanding and knowledge inference
on a wide range of NLP (Wei et al., 2022). It
inspires us to leverage LLMs to generate an expla-
nation for the aspect’s sentiment in each training
sample, which has not been explored in the litera-
ture. To this end, we design a prompt template to
trigger the understanding and inference ability of
LLMs, which wraps the sentence X , an aspect a,
and its sentiment y:

In the following sentence X, explain why
the sentiment expressed by aspect term
a is y. Limit to forty words. Copying

1For sentences with multiple aspects, we treat other non-
targeted aspects as normal context tokens when focusing on
the target aspect. In other words, a sentence will be processed
multiple times, which is equal to the number of aspects it
contains.

adjectives from the original sentence is
not allowed.

We can see that this prompt consists of three
components: task description, training sample, and
output limitation. They describe the task precisely
and form a good output guide, which helps to en-
hance the generation performance. As shown in
the example in Figure 2, LLM is tasked with gener-
ating a friendly explanation X̂ for the aspect senti-
ment. This explanation not only explains why the
sentiment occurs based on contextual semantics
(i.e., "user-friendliness") but also includes some
background knowledge (i.e., "software").

3.4 Explanation Exploitation

The explanation generated by the LLM provides us
with a comprehensive view of the original text from
the perspective of contextual semantics and back-
ground knowledge. Furthermore, the explanation
does not have high-frequency adjectives (e.g., fast)
due to the limitation in the prompt, which further
provides a sufficient condition to mitigate statisti-
cal spurious correlations. Thus, we can use them
to aid the learning of ABSA models and improve
the performance of the model. Here, we present
two straightforward and model-agnostic methods
to achieve this.

Augmentation-based Method. In a sense, the
explanation can be considered as a paraphrase of
the original sentence, which has the same seman-
tic meaning and label but a different description.
This different description not only facilitates the
alleviation of statistical bias in the original sen-
tences but also diversifies the expression of the
same sentiment. Thus, mixing the original train-
ing data {(Xi, ai, yi)}Ni=1 with their explanations
{(X̂i, ai, yi)}Ni=1 can allow for training a more ro-
bust ABSA classifier:

Lcls = − 1

2N

2N∑

i=1

CE(y, P (X ′
i, a)) (1)

where P (X ′, a) is the predictive probability distri-
bution of sentiment; X ′ can be either X or X̂; CE
denotes the cross-entropy loss function.

The explanation is more effective than conven-
tional data augmentation methods (Wei and Zou,
2019) as it interprets the contextual semantics and
contains some knowledge.
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Distillation-based Method. Direct mixing can-
not align the original sentence with the correspond-
ing explanation, which results in trouble providing
customized guided learning. To this end, we use a
guidance strategy to encourage ABSA models to
reduce spurious correlations in fitting each sample.
This strategy can be viewed as a knowledge distil-
lation (Hinton et al., 2015), which aims to leverage
the teacher to guide the student’s training with the
help of explanations.2 To achieve this guidance, we
here make the student model mimic two behaviors
of the teacher one via the following two losses:

Ldis =
1

N

N∑

i=1

KL(gs(X
′
i, a), gt(X

′
i, a)) (2)

Lhid =
1

N

N∑

i=1

MSE(hsX′
i
, htX′

i
) (3)

where gs(X
′
i, a) and gt(X

′
i, a) (hsX′

i
and htX′

i
) re-

fer to the logits (hidden states), which come from
student and teacher networks, respectively; KL
denotes the Kullback-Leibler divergence loss func-
tion; MSE denotes the mean squared error loss
function. By two losses, the explanation is utilized
to facilitate the learning process of ABSA mod-
els and mitigate overly concentrated on shortcut
features.

To yield better guidance, the teacher network
tracks an exponential moving average (Tarvainen
and Valpola, 2017) of the student network weights.
At the time step t, the parameters of the teacher θ
are updated as follows:

θt = λ · θt−1 + (1− λ) · ϕt (4)

where ϕt represents all parameters in the student
network at time step t; λ is a smoothing coefficient.
With this moving average, the teacher’s output is
more reliable.

3.5 Training and Testing

For the augmentation-based method, we train the
parameters of the ABSA model directly by optimiz-
ing Lcls (Eq. 1). For the distillation-based method,
we update parameters of the student model by opti-
mizing the sum of Lcls (Eq. 1), Ldis (Eq. 2), and
Lhid (Eq. 3). In the test phase, the sentence and
aspect are fed into the student network to predict
the label.

2In this work, the teacher model and the student model
have the same framework.

4 Experiment

4.1 Datasets and Settings
Datasets. We use five benchmark datasets to eval-
uate the proposed methods: Lap14 and Rest14
from Pontiki et al. (2014), Rest15 from Pontiki
et al. (2015), Rest16 from Pontiki et al. (2016),
and MAMS from Jiang et al. (2019). All datasets
only involve three sentiment labels, positive, neu-
tral, and negative. Each sample in these datasets
is annotated with aspects and their corresponding
sentiment polarities. Here, we adopt the official
data splits as done in the original papers. The basic
statistics are shown in Table 1.

Dataset #Pos #Neu #Neg Total

Lap14 train 994 464 870 2,328
test 341 169 128 638

Rest14 train 2,164 637 807 3,608
test 728 196 196 1,120

Rest15 train 912 36 256 1,204
test 326 34 182 542

Rest16 train 1,240 69 439 1,748
test 469 30 117 616

MAMS
train 3,380 5,042 2,764 11,186
dev 403 604 325 1,332
test 400 607 329 1,336

Table 1: The detailed statistics of datasets.

Settings. If not otherwise specified, we use Chat-
GPT and the pre-trained uncased BERT-base3 as
LLM and encoder in the framework4, respectively.
For the classifier, the weight matrix is randomly
initialized by a uniform distribution. To avoid
over-fitting, we apply the dropout (Srivastava et al.,
2014) with a probability of 0.1. Besides, we also
replace the label words (i.e., positive, neutral, and
negative) in the explanation with [MASK] token.
We employ the AdamW optimizer to optimize pa-
rameters. The epoch, batch size, learning rate, and
smoothing coefficient are set to 8, 24, 3e-5, and
0.95, respectively. We limit the maximum length
of the token sequence to 256.

We run the experiments five times with ran-
dom initialization and report the averaged results.
The accuracy (Acc.) and macro-averaged F1 (F1)
scores are used as the evaluation metric.

4.2 Baselines
To evaluate the effectiveness and generalization
of the proposed methods, we integrate them with

3https://github.com/google-research/bert
4The proposed framework only loads the LLM for infer-

ence without involving training.
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Models
Datasets Lap14 Rest14 Rest15 Rest16 MAMS

Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1

Large Language Models

MOSS (zero-shot) 68.34 51.18 75.89 52.22 81.55 58.40 85.06 58.35 41.92 36.21
MOSS (few-shot) 70.85 61.21 77.59 61.81 82.29 59.04 87.18 64.04 43.71 42.43
ChatGPT (zero-shot) 78.64 70.70 80.39 71.33 77.01 63.21 83.39 68.75 63.67 64.08
ChatGPT (few-shot) 78.90 75.61 83.74 77.08 82.80 71.31 84.83 69.90 60.18 60.57

the PLMs-based Models

BERT 75.80 71.67 82.59 74.10 80.97 63.52 88.47 71.16 82.68 82.37
+ augmentation 77.74 73.11 84.29 76.07 82.03 65.80 89.96 73.06 84.51 84.11

+ distillation 78.68 75.19 84.66 76.18 82.63 65.97 90.12 73.69 83.68 83.38
BERT+PT 77.59 73.14 84.16 76.62 82.83 65.81 91.73 73.93 83.48 83.10

+ augmentation 77.90 74.66 85.71 78.37 83.50 67.48 92.75 75.48 83.86 83.73
+ distillation 77.54 73.71 85.96 78.93 84.14 68.05 92.02 74.45 84.43 83.92

the Attention-based Models

TNet 76.63 72.00 82.68 74.33 81.55 64.99 88.80 71.41 82.84 82.42
+ augmentation 77.82 73.24 84.30 75.96 82.48 66.28 90.12 73.22 83.73 83.15

+ distillation 78.04 73.32 84.75 76.68 82.97 66.17 90.30 73.81 83.98 83.42
AEN 77.27 72.68 83.66 76.02 82.00 67.27 89.45 73.61 82.86 82.58

+ augmentation 78.37 74.25 85.54 79.58 83.03 69.85 90.42 75.04 83.34 83.03
+ distillation 78.40 73.96 84.20 77.20 82.47 67.84 91.05 75.45 83.19 82.70

the Graph-based Models

RGAT 77.45 72.70 86.02 80.74 81.80 68.21 89.51 75.81 82.93 82.75
+ augmentation 80.31 75.73 87.45 82.41 83.86 70.42 91.61 77.44 84.61 84.03

+ distillation 78.11 74.06 86.30 81.12 82.55 69.29 90.47 77.05 83.78 83.18
DualGCN 80.62 74.67 85.20 80.16 82.33 68.12 90.91 77.86 83.83 83.47

+ augmentation 81.56 75.92 86.18 80.50 83.98 70.86 91.12 77.97 84.28 83.94
+ distillation 81.22 75.43 86.37 80.63 82.69 69.43 91.45 78.12 84.68 84.23

Table 2: Main experimental results (%) on five ABSA datasets. The zero-shot and few-shot indicate that LLM uses
0 and 4 demonstrations in the in-context learning paradigm (Dong et al., 2022), respectively. All the results are the
average of five seeds. For each baseline, the best scores are in bold.

some representative ABSA models and compare
performance. These ABSA models could be cat-
egorized into three groups. (1) the PLMs-based
models, which includes BERT (Devlin et al., 2019)
and BERT-PT (Xu et al., 2019). (2) the attention-
based models, which includes TNet (Li et al.,
2018b) and AEN (Song et al., 2019). (3) the graph-
based models, which includes RGAT (Wang et al.,
2020) and DualGCN (Li et al., 2021).

In addition to the ABSA models mentioned
above, we also introduce two LLMs (MOSS5 and
ChatGPT6) as strong competitors.

4.3 Main Results

Table 2 shows the experimental results of ABSA
models on five datasets. We can draw the following
conclusions from this table:

5The snapshot version and parameters of the MOSS are
MOSS-moon-003-sft and 16B, respectively. Please refer to
https://moss.fastnlp.top/

6The snapshot version and parameters of the ChatGPT
are text-davinci-003 and 175B, respectively. Please refer to
https://openai.com/blog/chatgpt

First, ABSA models equipped with our meth-
ods (i.e., + augmentation and + distillation)
achieve better performance than peer competi-
tors on both accuracy and F1. Among them,
the bigger improvements in accuracy and F1 are
2.88% (BERT+distillation on the Lap14) and
3.56% (AEN+augmentation on the Rest14), respec-
tively. These improvements show that (i) the pro-
posed explanation can effectively mitigate spurious
correlations, and (ii) our methods can be seamlessly
compensated to existing ABSA models.

Second, the graph-based ABSA models perform
better than the attention-based ones. For exam-
ple, DualGCN improves performance by 3.99%
in accuracy and 3.67% in F1 over TNet on the
Lap14. Although the graph-based models have ob-
tained satisfactory results, we can observe a boost
of 0.28∼2.86% in accuracy and 0.38∼3.03% in
F1 when integrated with our methods. It indicates
that while exploiting the syntactic knowledge con-
necting aspects and opinion words to improve per-
formance, they may still model shortcut features
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Models
Datasets Lap14 Rest14 Rest15 Rest16 MAMS

Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1
BERT 75.80 71.67 82.59 74.10 80.97 63.52 88.47 71.16 82.68 82.37

+ SWAP 77.03 72.33 83.24 75.15 81.32 64.68 89.58 72.42 82.76 83.00
+ ADD 77.21 72.46 83.80 75.71 81.55 64.81 89.10 72.59 83.31 82.85

+ DELETE 76.84 72.56 82.95 73.22 80.63 63.02 89.26 71.57 83.03 82.88
+ MASK 76.65 72.64 83.57 74.70 79.15 60.50 89.12 71.58 83.06 82.80

+ TRANSLATION 77.27 72.80 84.08 74.90 81.52 65.18 89.49 72.75 82.91 83.07
+ augmentation 77.74 73.11 84.29 76.07 82.03 65.80 89.96 73.06 84.51 84.11

+ distillation 78.68 75.19 84.66 76.18 82.63 65.97 90.12 73.69 83.68 83.38

Table 3: Comparison of our methods with five popular data augmentation baselines on the ABSA task. SWAP:
randomly swap two tokens; ADD: randomly insert some sampled tokens; DELETE: randomly remove some tokens;
MASK: first replace some tokens with [MASK] token and then use BERT to complete the mask language task
(Devlin et al., 2019); TRANSLATION (Sennrich et al., 2016): first translate the text into Chinese and then translate
the output into English. The best scores are in bold.

because of a shallow understanding of some words.
Third, LLMs can yield impressive results using

few demonstrations. Compared with PLMs, they
are scaling up in depth and width. It causes them to
become increasingly computationally and storage-
intensive, making deployment difficult. This is why
we leverage explanations from LLMs to reduce the
spurious correlations in ABSA rather than using
them directly to solve it.

Fourth, we find that the augmentation-based
method and distillation-based one could not tell
who wins and who loses. Each has its own ad-
vantages and merits. For example, although the
distillation-based method yields higher results than
the augmentation-based method in some cases, the
latter is superior with respect to efficiency. In ad-
dition, the augmentation-based method is more ap-
plicable in different ABSA models. Therefore, we
will subsequently focus more on the augmentation-
based method for future research.

Lap14 Rest14
BERT 14.8 14.5
+ augmentation 12.7 11.6

+ distillation 13.0 11.4
AEN 16.3 16.4
+ augmentation 15.2 14.8

+ distillation 15.3 15.0

Table 4: The proportion (%) of spurious correlations
present in the dataset. The lower the better.

5 Discussion

Percentage of Spurious Correlations in the
Dataset. In this work, spurious correlation (Wang
et al., 2022b) refers to the dependence of the model
on certain words in the input text without a deeper
understanding of the contextual semantics. A ques-
tion naturally arises how much of the correlation

actually is in used datasets? To answer this ques-
tion, we conduct a simple probe experiment on the
Aspect Robustness Test Set (ARTS) (Xing et al.,
2020). ARTS enrich the initial test sets from Lap14
and Rest14 by employing three adversarial strate-
gies7. Here, if a model predicts the same sentiment
labels for an original sample as well as its adver-
sarial samples (their true labels are different), we
will assume that there is a spurious correlation be-
tween certain contextual words and the predicted
label for this original sample. In other words, the
predicted label does not change with the contextual
semantics because the model only focuses on cer-
tain words. Based on this assumption, we count the
percentage of original samples in the test set that
contain spurious correlations.8 According to Table
4, we can see that spurious correlations do exist
in the Lap14 and Rest14 datasets. Moreover, we
can observe that the proposed methods reduce the
percentage of original samples containing spurious
correlations. This may suggest that the generated
explanations can alleviate the spurious correlations
problem in the ABSA task.

Comparison with Data Augmentation Baselines.
This work aims to exploit the explanation from
LLMs to reduce spurious correlations, which could
be viewed as an augmented instance of the original
sentence. To evaluate its effectiveness, we compare
the proposed methods with five data augmentation

7They are (1) reversing the original sentiment of the tar-
geted aspect; (2) reversing the sentiment of the non-targeted
aspects; and (3) generating more non-targeted aspects with
opposite sentiment polarities from the targeted aspect.

8It is worth reminding that this percentage is not the actual
percentage of spurious correlations in the dataset, which is
only an estimate under this assumption.
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Models
Datasets L ⇒ R R ⇒ L

Acc. F1 Acc. F1
BERT 77.02 63.83 73.82 68.74

+ augmentation 78.93 66.33 76.33 72.02
+ distillation 79.11 64.93 75.55 70.99

BERT+PT 78.82 70.74 74.55 68.62
+ augmentation 81.25 71.42 75.55 69.91

+ distillation 82.68 75.37 73.20 66.53

Table 5: The generalization results of ABSA models.
L ⇒ R (or R ⇒ L) refer to that the model is trained
on Lap14 (or Rest14) training data and then tested on
Rest14 (or Lap14) test data. The best scores for each
baseline are in bold.

baselines.9 Table 3 reports the experimental results.
It can be seen that our methods perform better than
all baselines, achieving the biggest improvements
of 3.48% and 5.47% in accuracy and F1, respec-
tively. This shows that the explanation from LLMs
is more effective because of including not only a
contextual understanding of sentiments but also
external knowledge. Besides, we find that these
augmentation baselines often consistently improve
the performance of BERT, showing that modifying
the original text may bring gains, despite the noise.

Generalization Analysis. We evaluate the pro-
posed methods in the cross-domain scenario to
check their effectiveness on generalizability. The
experimental results are presented in Table 5. We
can observe that: (1) Our methods significantly
enhance the generalization ability of the peer base-
lines by a substantial margin. We attribute it to the
explanations of aspect sentiment that can reduce
the spurious correlations in ABSA. (2) Overall,
the augmentation method is more effective than
the distillation one. A possible reason for this is
that explanations containing external knowledge
are directly involved in the training, allowing the
learning of better transfer features.

Effectiveness in Low-Resource Scenario. Here,
we carry out an experiment to observe the perfor-
mance improvements achieved by our proposed
methods in low-resource settings. To this end, we
vary the percentage of training data from 10% to
100% in increments of 10% and depict results in
Figure 3. We can see that: (1) Overall, being armed
with our methods can improve the performance of
BERT. It shows that introducing an explanation for
sentiment is useful in low-resource scenarios. (2)
The performance gradually improves as the per-

9We add augmented versions directly to the existing set.
Thus, the training set size will be doubled after this operation.
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Figure 3: Experiments in low-resource scenarios. We
limit the percentage of training data when fine-tuning.

centage increases before the training size surpasses
50%, indicating that the more training data, the
better the model is trained. Nevertheless, upon
surpassing this point, the performance fluctuates
moderately.
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Figure 4: Length-wise performance comparison. Here,
[20, 40) indicates that the token number of the sample
satisfies the condition of greater than or equal to 20 and
less than 40. The other meanings are similar.

Length-wise Performance Analysis. Spurious
correlations are prone to occur when predicting the
short text as the model tends to resort to the learned
statistical bias facing a low-informative context.
Here, we test length-wise performance to reveal
the noticeable advantages of the proposed methods
on short texts. Figure 4 provides the test results.
We can see that the proposed methods significantly
improve the performance of BERT, especially on
short texts. It shows that the explanation provided
by LLMs for the training samples motivates the
ABSA model to be trained effectively, thus allow-
ing for a better contextual understanding of short
texts at testing.
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The Appendix has more discussion and anal-
ysis, i.e., Quality of the Automatically-Generated
Explanations, Effect of Different Prompt Templates
on Performance, and Error Analysis.

6 Conclusion

In this paper, we introduce an effective two-step
framework to mitigate spurious correlations in
ABSA. First, we formulate a prompt template to in-
duce LLMs to generate an appropriate explanation
that states the sentiment cause. Subsequently, we
propose two straightforward methods that utilize
the generated explanation to prevent the assimila-
tion of spurious correlations. Our comprehensive
experiments on five ABSA datasets show that base-
lines armed with our methods outperform peers in
prediction performance and generalization.

Limitations

In this section, we list two limitations to understand
this work more comprehensively:

1. The prompt template designed in this work
consists of three components: the task descrip-
tion, the training sample, and the output limi-
tation. Generally speaking, a prompt-rich tem-
plate allows LLMs to generate more helpful
explanations about sentiment and richer rele-
vant external knowledge. In this work, we did
not design a prompt-rich template because this
manual design process is time-consuming and
cumbersome. In addition, designing a com-
plex and information-rich prompt template is
not the research focus of this work.

2. We leverage explanations to reduce spuri-
ous correlations in the ABSA task. In this
work, we generate an explanation for the sen-
timent label in each training sample, which
subsequently participates in the model train-
ing process. Although spurious correlations
are caused by statistical bias during training,
not all training samples bring bias interference
to the model. Therefore, the participation of
all explanations in model training is an exten-
sive operation, which somehow results in a
waste of training resources. How to identify
whether a training sample potentially brings
spurious correlation interference can be a di-
rection for subsequent research.
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7 Appendix

Quality of the Automatically-Generated Expla-
nations. Large language models may generate
less accurate or even irrelevant explanations for the
sentiment of the aspect. Such explanations may

have negative effects if they exist and are involved
in training. In this work, we only randomly selected
nearly fifty explanations for hand-checking. We
find that the quality of the generated explanations
is accurate and comprehensive (see examples in
Table 6). In addition, We observe that these expla-
nations are richly expressive (e.g., "not reasonable
or affordable").

Effect of Different Prompt Templates on Perfor-
mance. In this work, the prompt template is de-
signed based on two points: (1) including a task de-
scription (i.e., "explain the sentiment expressed by
aspect term"), which is used to trigger the LLM’s
ability to understand the task; (2) including the
output limitation (i.e., "Limit to forty words. Copy-
ing adjectives from the original sentence is not
allowed."), which is used as an output guide and
prevents LLM from rephrasing the sentiment ex-
pression. Here, to explore the effect of different
prompt templates on performance, we try other
well-designed templates and perform comparison
experiments. These prompt templates are described
in detail below:

• Prompt 1 (used in this paper): In the follow-
ing sentence X , explain why the sentiment
expressed by aspect term a is y. Limit to forty
words. Copying adjectives from the original
sentence is not allowed.

• Prompt 2: In the following sentence X , ex-
plain why the sentiment expressed by aspect
term a is y.

• Prompt 3: In the following sentence X , the
sentiment expressed by aspect term a is y.
Based on this prompt, explain its reasoning.
Limit to forty words. Copying adjectives from
the original sentence is not allowed.

Here, for simplicity, we choose BERT as the
baseline model and BERT+augmentation as our
method. Table 8 presents the experimental results.
From this table, we can find that although the tem-
plate used in this paper yields the best results, there
is not much difference between the scores of the
different templates (see Prompt 1 vs. Prompt 3).
Moreover, we observe that imposing an output con-
straint in the template favors the performance (see
Prompt 1 vs. Prompt 2).

Error Analysis. An error analysis can provide
readers with a deeper understanding of whether our
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Dataset Sample Aspect Sentiment Explanation

Lap14
The machine is slow to boot up and occa-
sionally crashes completely.

boot up negative The phrase "boot up" implies that the ma-
chine is taking a long time to start, which
is a negative experience.

Rest14 Even though its good seafood, the prices
are too high.

prices negative The prices are too high, which implies that
they are not reasonable or affordable.

MAMS
USC has a cold smoker and smoked the
avocado in order to make the dish more
complex.

dish negative The dish is negative because the avocado
was smoked, which could make the dish
taste unpleasant or unappetizing.

Table 6: Examples of generating explanations. We can see that the explanation elucidates the reason (italicized
content) for the sentiment of the aspect, grounded in contextual semantics.

Sample BERT BERT+augmentation
The [staff ]negative should be a bit more friendly. positive(✗) negative(✓)
I needed a laptop with big [storage]neutral, a nice screen and fast so I can Photoshop
without any problem.

positive(✗) positive(✗)

Table 7: A simple error analysis. Aspect terms are marked in parentheses, and the subscript indicates the corre-
sponding sentiment polarity.

Models
Datasets Lap14 Rest14

Acc. F1 Acc. F1
BERT 75.80 71.67 82.59 74.10
BERT + augmentation

+ Prompt 1 77.74 73.11 84.29 76.07
+ Prompt 2 77.46 72.60 83.78 75.60
+ Prompt 3 77.50 72.94 84.08 75.72

Table 8: Performance comparison of
BERT+augmentation using different prompts.
The best scores are in bold.

methods have successfully reduced errors arising
from statistical spurious correlations. Thus, we
present a simple error analysis in Table 7. Taking
the first sample as an example, BERT makes an
incorrect prediction possibly because of focusing
on the word "friendly" only. We suspect this is
because, in the training samples which contain the
word "friendly", 94.6% of aspect sentiments are
"positive", i.e., statistically spurious correlation.
Moreover, we find that the proposed method also
makes a few wrong predictions, especially when
the true label is neutral, as shown in the second
sample. The potential reason may be that when
the label is neutral, the language model generates
explanations with slight sentiments due to its own
bias, which would mislead the model.
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