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Abstract

Topic segmentation, in the context of natural
language processing, is the process of finding
boundaries in a sequence of sentences that sep-
arate groups of adjacent sentences at shifts in
semantic meaning. Currently, assessing the
quality of a segmentation is done by comparing
segmentation boundaries selected by a human
or algorithm to those selected by a known good
reference. This means that it is not possible to
quantify the quality of a segmentation without a
human annotator, which can be costly and time
consuming. This work seeks to improve assess-
ment of segmentation by proposing a reference-
free segmentation quality index (SegReFree).
The metric takes advantage of the fact that seg-
mentation at a sentence level generally seeks to
identify segment boundaries at semantic bound-
aries within the text. The proposed metric uses
a modified cluster validity metric with seman-
tic embeddings of the sentences to determine
the quality of the segmentation. Multiple seg-
mentation data sets are used to compare our
proposed metric with existing reference-based
segmentation metrics by progressively degrad-
ing the reference segmentation while comput-
ing all possible metrics; through this process, a
strong correlation with existing segmentation
metrics is shown. A Python library implement-
ing the metric is released under the GNU Gen-
eral Public License and the repository is avail-
able at https://github.com/evan-person/
reference_free_segmentation_metric.

1 Introduction

Text segmentation is a common task in language
processing, in which a text is split into segments.
Text segmentation is performed at different scales:
when it is used to split sentences into their parts, it
is referred to as elementary discourse unit (EDU)
separation, and when used to split larger documents
into topic based groups of sentences, it is known
as topic segmentation (Marcu and Echihabi, 2002;
Beeferman et al., 1999). This work focuses on

topic segmentation, which has many applications
from information retrieval (Dias et al., 2007) to
summarization of long documents (Gidiotis and
Tsoumakas, 2020; Zhang et al., 2022).

Segmentation is generally evaluated by compar-
ing a reference set of possible segment boundaries
with the boundaries chosen by a given segmen-
tation algorithm. This means that segmentation
evaluation can only be performed on a data set that
has already been segmented by a human evaluator
(or other accepted-as-truth segmentation). A vari-
ety of methods have been proposed for evaluating
segmentation, all of which focus on the reference
and candidate sets, rather than the content being
segmented. A review of these methods is included
in Section 2. We significantly push the state-of-
the-art in segmentation evaluation by proposing a
reference-free segmentation quality metric.

The rest of this paper is organized in the follow-
ing manner. A brief history of modern segmenta-
tion metrics and other related work is described in
Section 2. The proposed reference-free segmenta-
tion quality metric is developed, alongside design
choice explanations, in Section 3. Validation of the
method, by comparing results to existing segmen-
tation metrics on popular segmentation data sets
are described in Section 4 along with an ablation
study to demonstrate the behavior of the method
in several scenarios. Potential uses and impacts of
this work are presented alongside a summary in
Section 5.

2 Related Work

Existing segmentation evaluation metrics, proposed
by Beeferman et al. (1999); Pevzner and Hearst
(2002); Fournier and Inkpen (2012); Fournier
(2013) are reviewed, along with a brief introduc-
tion to cluster validity metrics. We include a re-
view of the Davies-Bouldin Index (Davies and
Bouldin, 1979), which was used as a starting point
for this work. A brief review of some unsupervised
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segmentation methods that use Sentence-BERT
(Reimers and Gurevych, 2019) is also presented.

2.1 Existing Segmentation Metrics

A variety of segmentation evaluation metrics have
been proposed (Beeferman et al., 1999; Pevzner
and Hearst, 2002; Fournier and Inkpen, 2012;
Fournier, 2013). To our knowledge, all currently
used metrics focus on comparing the set of bound-
aries generated by the segmentation algorithm to
some other set of boundaries, either a true reference
or another hypothesis boundary set. Additionally,
we are not aware of any existing segmentation qual-
ity evaluations that are based on cluster validity
metrics or the semantic representations of the seg-
mented text.

Existing segmentation metrics can be split into
two categories, window-based and mass-based,
with Pk and WindowDiff being window-based and
Segmentation Similarity and Boundary Similarity
being mass-based. A simple visualization of these
two ways of considering segmentation boundaries
is presented in Appendix C. The SegEval (Fournier,
2013) implementation was used for the four classic
segmentation metrics used in this work.

2.1.1 Pk

The Pk metric was first proposed by Beeferman
et al. (1999) and is widely used for evaluating seg-
mentation quality (Arnold et al., 2019; Xia et al.,
2022). Pk is the conditional probability of a bound-
ary classification error occurring within a window
of k chunks (making this a window based metric),
given the reference and hypothesis boundary sets.
Errors can be either a missing boundary or an added
boundary within a moving window that goes across
the segmentation set. As an error rate, a score of
zero is the desirable score. Using Figure 8 as a
reference, with the example window in the position
shown, Pk would not consider there to be an error
present. The window is then transposed across the
entire segmentation set, with errors calculated at
each transposition position, and a combined score
is created to represent the full segmentation.

2.1.2 WindowDiff
The Pk metric, although widely used, has some
noted shortcomings that were raised by Pevzner
and Hearst (2002) in the development of their pro-
posed metric, WindowDiff (Pevzner and Hearst,
2002). They observed that Pk penalizes false neg-
atives more highly than false positives, tends to

penalize transposed boundaries (known as near
misses) too heavily, and is impacted by segment
size variation. WindowDiff is simple to implement
and compares the number of boundaries within a
moving window. This metric is also widely used
in the segmentation literature (Mota et al., 2019;
Zhong et al., 2022). Similar to Pk, a score of zero
is seen as desirable. Again, using Figure 8 as a
reference, with the window in the example position
shown, the number of boundaries present match
and this window position would return a score of
zero.

2.1.3 Segmentation Similarity
Fournier and Inkpen (2012) noted that WindowDiff
and Pk are both window-based metrics that depend
on a reference segmentation, which introduces
some issues. They noted that neither metric penal-
izes error types (missing or additional boundaries)
equally and that window size influences the met-
rics’ outcome greatly. They proposed a new metric
called segmentation similarity, which attempted to
improve upon existing metrics by approximating
the distance between segmentation sets in terms
of the number of edits required to make them the
same. This method has the advantage of being
symmetric (neither of the compared segmentation
sets are treated as the true reference) and can be ex-
tended to compare segmentations between multiple
annotators. Unlike Pk and WindowDiff, segmen-
tation similarity is a similarity measurement and a
score of 1 is considered to be a perfect match.

2.1.4 Boundary Similarity
Fournier (2013) observed that their proposed seg-
mentation similarity metric suffered from opti-
mistic values and proposed a new set of metrics
derived from the same motivations as segmentation
similarity in Fournier (2013). The primary metric
proposed is called boundary similarity, although
a boundary edit distance based confusion matrix
and metrics based on that confusion matrix are also
proposed in this work. Similar to segmentation
similarity, a score of 1 is considered optimal for
boundary similarity.

2.2 Alignment based similarity

Diaz and Ouyang (2022) propose a new method
of segmentation metrics based on the alignment
of segments between a reference and hypothesis
segmentation set. This method was not used as a
comparison method for this paper.
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2.3 Cluster validity metrics
Cluster validity metrics are a more generalized ap-
proach for assessing quality of segmentation in that
they were designed to assess the quality of parti-
tions found by unsupervised learning algorithms. A
variety of cluster validity metrics exist, but in order
to meet the design goal of not requiring a reference,
only cluster validity metrics that are reference-free
(known in clustering literature as internal evalua-
tion schemes) were considered. Three such metrics
considered were the Davies-Bouldin Index (Davies
and Bouldin, 1979), the Calinski-Harabasz Index
(Caliński and Harabasz, 1974), and the Silhouette
Score (Rousseeuw, 1987). All three of these met-
rics attempt to compare the relative distance (or
dissimilarity) of the members of a cluster to the
distance (or dissimilarity) between clusters, with
varying differences in how they are computed. Sil-
houette Score was rejected due to a lack of sensi-
tivity when overlapping clusters are present, which
is a common situation when considering groups of
textual semantic representations. Adaptations of
the Calinski-Harabasz Index and Davies-Bouldin
Index were both used in initial trials, but the adap-
tation of the Davies-Bouldin Index was found to
better demonstrate differences in segmentation per-
formance.

2.3.1 Davies-Bouldin Index
The Davies-Bouldin Index (Davies and Bouldin,
1979) is computed on a set of labeled points in
some n-dimensional space in the following way.
For each label i, a centroid of the members of that
label is computed and the average distance between
the segment centroid and the members of the seg-
ment are computed and stored as Si. Any distance
measure can be used, but Euclidian distance is seen
frequently in the literature.

The distances between all pairs of centroids are
computed and stored as Mij . A ratio of pairwise
intra-cluster distances and centroid distances is
then computed as the following.

Rij =
Si + Sj

Mij
(1)

The maximum value of Rij for each label i is taken,

R̂i = max{Rij},
and the average of these over all segments is re-
ported as the Davies-Bouldin index value,

DB =
1

N

N∑

i=1

R̂i,

where N is the number of labels. The maximum
term in R̂i means that the most similar cluster (in
other words, the worse case clustering) to label i
is included in the final Davies-Bouldin index. The
final score can be thought of as the ratio of intra-
cluster distance to inter-cluster distance, averaged
across the worse case pair of clusters for each label.
A low score indicates that clusters are relatively
compact and well-separated, whereas a high score
indicates that clusters are large and/or overlap.

2.4 Unsupervised segmentation methods

Although not a metric, unsupervised segmentation
methods are strongly related to the SegReFree met-
ric and could be used in some similar ways. For
example, an unsupervised segmentation method
could be used to create a reference segmentation
set, which could be then used with any of the seg-
mentation metrics previously discussed. It should
be noted that this would be a comparison between
two different segmentation methods and still sub-
ject to the shortcomings of whatever segmentation
metric was utilized.

Two specific segmentation methods that are
somewhat similar to our proposed method are
published by Solbiati et al. (2021) and Ghinassi
(2021). Solbiati et al. (2021) uses Sentence-BERT
(Reimers and Gurevych, 2019) to generate embed-
dings as an input for a modified TextTiling algo-
rithm that attempts to detect topic changes based on
variations in segment similarity. Ghinassi (2021)
uses a variety of different sentence embedding mod-
els along with a modified version of TextTiling that
is also based on segment similarity. In both cases,
they rely on Sentence-BERT embeddings to create
a semantic representation of the sentences to be
segmented and attempt to use that semantic infor-
mation to derive similarity based boundaries.

3 Method

Conceptually, our proposed metric seeks to quan-
tify segmentation quality by assuming that the de-
sired segmentation for a given text occurs at topical
boundaries. If the segmentation boundary separates
two different semantically different groups of text,
the semantic vector representations of the sentences
in those segments should generally be close to the
other sentences within the segment and separated
from the sentences in adjacent text segments.

At a high level, the proposed metric works by
splitting text into sentences or utterances (the term
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Figure 1: Metric computation flowchart

chunks is used as a synonym for both), generat-
ing embeddings of the chunks being segmented,
and using a modified cluster validity metric where
we treat segments as clusters. A block diagram is
shown in Figure 1. Explanations of each step are
elaborated upon in the rest of this section.

3.1 Text splitting
For the purposes of this paper and without loss of
generality, all text was split at the sentence level
following the previous usage of the data sets used
for validation. This work could be extended to
dialogue segmentation evaluation by splitting at
the utterance level or it could be used for multi-
document segmentation by splitting at a paragraph
level.

3.2 Sentence embeddings
Sentence embeddings were generated using
Sentence-BERT using the pre-trained ‘all-mpnet-
base-v2’ model, which was trained on over one
billion pairs of sentences from a variety of sources
(Reimers and Gurevych, 2019). Sentence-BERT
is a modification of the pretrained BERT network,
which derives sentence embedding from semantic
meanings and seeks to improve the vector space em-
bedding over other methods of generating sentence
level BERT embeddings. The goal of Sentence-
BERT is to improve semantic textual similarity
comparisons between sentences, which provides a
necessary input for our proposed method. Sentence-
BERT is passed sentences, from the text splitting,
and returns 768 dimension embeddings, which are
used in conjunction with labels as the input to the
modified Davies-Bouldin Index discussed in 3.3.
Other sentence embedding models could be used
with the proposed method, as the SegReFree qual-
ity index can be used with any embedding that pro-
vides semantic representation of the content being
segmented.

3.3 Modifications to the Davies-Bouldin Index
Two main modifications were required for the
Davies-Bouldin Index to be used for assessment
of segmentation quality. The first was restricting
centroid distance calculations to adjacent segments.

This helps preserve the temporal aspect of segmen-
tation, as assessing the quality of a boundary is
best done by analyzing the adjacent segments to
that boundary. Initial experiments found that the
adjacent segment restriction improved sensitivity
of the final SegReFree score. This effect can be
conceptually explained quite easily: the quality of
a boundary only depends on the segments being
separated; a topically similar segment that isn’t ad-
jacent should not influence a descriptive score of
segmentation quality. The impact of this change is
most apparent when considering the error mode of
missing boundaries, where adjacent segments get
combined, which is presented in Section 4.1.1 and
the impact of this modification is presented in the
ablation study in Appendix D.

The second modification required was adding an
exponential penalty term to the intra-segment dis-
tance computation. This was necessary due to the
likelihood of adjacent chunks having a higher se-
mantic similarity than non-adjacent chunks within
a segment. Additionally, a segment that has a sin-
gle sentence will have an intra-cluster distance of
zero (ie. the centroid is the single point). This
was found to be problematic during initial inves-
tigations where we created artificially low (good)
scores by segmenting very frequently. The expo-
nential penalty term was empirically created as a
way to counteract this effect. We present this error
mode in Section 4.1.2 and show the impact of this
modification on smaller-than-desired segments in
the ablation study in D. It is still possible to get a
score of zero by treating each sentence as an inde-
pendent segment, however this is an edge case and
not an expected segmentation result. Our imple-
mentation of SegReFree will allow a user to score
a segmentation with single sentence segments, but
will warn them that it may cause an artificially low
score. Multiple distance measures were considered
(Euclidian, L1, and Cosine), with Euclidian being
selected. Data supporting our choice of Euclid-
ian distance is presented in the ablation study in
Appendix D.

The SegReFree Index algorithm works as fol-
lows. Embeddings of all sentences and correspond-
ing segment labels for all sentences are used as the
input. For each segment, a centroid of the embed-
dings of the members of that segment is computed
and the average Euclidian distance between the seg-
ment centroid and the members of the segment are
computed; this average intra-cluster distance for
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segment i is referred to as dispersion Si. These
intra-cluster distances are then modified by

Si =
Si

1− 1√
ni

(2)

for all segments containing more than one mem-
ber, where ni is the number of members in the ith
cluster. To prevent infinite values, the correction
factor is set to 4 for segments where ni is equal to
1. The distances between centroids of temporally
adjacent segments (e.g., between segment i and
both i − 1 and i + 1) are computed and stored as
Mij , j ∈ {i− 1, i+ 1}. Non-temporally adjacent
segment distances are not computed or compared,
as they are not relevant to the segmentation bound-
aries. A ratio of pairwise intra-cluster distances
and centroid distances is then computed as

Rij =
Si + Sj

Mij
, j ∈ {i− 1, i+ 1}, (3)

for both adjacent segments to i. The maximum
value of Rij for each segment i is taken,

R̂i = max{Ri,i−1, Ri,i+1},

and the average of these over all segments is re-
ported as the quality index value,

DB =
1

N

N∑

i=1

R̂i,

where N is the number of segments.
Essentially, Rij in (3) is the ratio of the added

distances of segments i and j and Mij , the distance
between centroids of segments i and j. If Rij has
a low value then the segments are small compared
to the distance between them. If Rij is large then
the intra-cluster distances are large compared to
the distance between them. Hence, the average of
the maximum Rijs for each segment i represents
a measure of the relative semantic dissimilarity of
the the temporally adjacent segments are in a given
segmentation.

3.4 Data sets

Two data sets commonly used in segmentation
work were used to validate this metric. The first is
the Choi data set, introduced by Choi (2000) and
used to demonstrate the C99 segmentation algo-
rithm. The Choi data set is constructed by taking
paragraphs from different files in the Brown corpus

(Francis and Kucera, 1979), which creates substan-
tial topical shifts between boundaries. The ’3-11’
subset of the Choi data set was used for this work,
which includes paragraphs with three to eleven sen-
tences each. Two files that included repeating para-
graphs were excluded, as they show a very poor
(high) score on the given segmentation boundaries
between them and throw off average results. It
should be noted that this is an artificially created
data set that has strong topical shifts between seg-
ments and the results reported from this data set
can be interpreted as close to ideal behavior of our
proposed metric.

The second data set used is the newer Wiki-50
data set, which is scraped from Wikipedia and uses
sections and subsections as topical segment bound-
aries (Koshorek et al., 2018). A larger Wiki-727k
data set is also available from the same paper, how-
ever the Wiki-50 data set is sufficient to demon-
strate the strengths and limitations of our proposed
metric. Both data sets used in this work are freely
shared for research purposes and the authors do
not anticipate any issues with their inclusion in this
work. Three other data sets derived from Wikipedia
were also considered: the WikiSection (Arnold
et al., 2019) and the Cities and Elements data sets
(Chen et al., 2009). However, due to the similarity
to the Wiki-50 data set they were not included in
this work.

3.5 Computational infrastructure and budget

Sentence-BERT models were evaluated on either
one or two A100 40GB GPUs and cluster metric
computations were performed on CPU. The pre-
trained ’all-mpnet-base-v2’ Sentence-BERT model
contains 109.5 million parameters. No models
were trained for this work. Total computation time
for this paper and related experimentation was less
than 100 GPU hours.

4 Experiments

A variety of tests were devised to evaluate the per-
formance of our metric. Tests were designed to
mimic segmentation errors that could be encoun-
tered in realistic scenarios.

4.1 Metric performance on degraded
segmentation sets

This series of trials all follow the same philosophy:
to demonstrate how the metric reflects changes
in an existing segmentation set as it is degraded
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Figure 2: Proposed metric and classic metrics as a func-
tion of number of random boundary removals using the
Choi 3-11 data set

through different operations. For comparison, the
four segmentation metrics described in Section 2
are included. All of these trials for each data set
were performed in the same way, with the entire
corpus being used and the results reported are the
mean of all trials across the entire corpus. The
Choi 3-11 corpus experiments were repeated five
times and averaged to better sample the possible
random outcomes and the Wiki-50 corpus exper-
iments were repeated 30 times due to the smaller
number of files. This brought the total number of
averaged files for each corpus to be roughly the
same (1500 for Wiki-50 and 1490 for Choi 3-11
due to the two excluded files).

4.1.1 Boundary removal

The first test performed was the removal of existing
boundaries from a segmentation set. The existing
boundaries were randomly selected and removed
from each segmentation set. Classic reference-
based metrics were computed using the original
‘truth’ and altered segmentation sets and the pro-
posed metric was computed using only the altered
segment labels (as ours is reference-free). Results
for all 30 trials for the entire data set were averaged
for each set of boundary deletions. If the metrics
are effective, they should show that as boundaries
are deleted and the segmentation changes from that
of the ‘truth’ segmentation that the metric shows
this degradation in segmentation quality.

Plots of mean proposed and classic metric values
as a function of boundary removals are shown in
Figures 2 and 3 for the Choi 3-11 and Wiki-50 data
sets, respectively. To maintain vertical-axis consis-
tency, the two similarity metrics are presented as
one minus the metric; hence, higher values indicate

Figure 3: Proposed metric and classic metrics as a func-
tion of random boundary removals using the Wiki-50
data set

poorer segmentation quality. The strong correlation
between existing metric values and SegReFree, as
a function of increasingly degraded segmentation,
can be clearly seen. The vertical-axis scales for the
SegReFree index are set to make the most most effi-
cient use of space and are therefore using different
scales between Figures 2 and 3. The SegReFree in-
dex is not bounded to a consistent maximum value
and should not be used to compare between models
and datasets simultaneously. We suggest using it
primarily for comparing segmentation methods on
a consistent data set, although there may be appli-
cations where it is appropriate to use it to compare
data sets. Conceptually, this can be explained by
considering how different data sets use different
parts of the embedding space.

Pearson correlation coefficients computed be-
tween classic reference-based metrics and our pro-
posed reference-free metric are presented in Ta-
ble 1. Note that the similarity metrics were con-
verted to dissimiliarity metrics for consistency: low
score indicates good segmentation quality. It can
be seen that there is a very strong agreement be-
tween the classic metrics and our reference-free
metric, with correlation coefficients all 0.95. The
trend is stronger with the Choi 3-11 data set than
the Wiki-50, but this is expected due to the consis-
tently larger topical shifts found in the Choi 3-11
data set.

4.1.2 Segment splitting

For our second experiment, we demonstrate the
behavior of the segmentation quality indices when
segments are randomly split, thus degrading the
segmentation quality by adding boundaries. Seg-
ment splitting was performed by randomly select-
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Data
Set

Pk Window-
Diff

Seg.
Sim.∗

Bound.
Sim.∗

Choi
3-11

0.998 1.000 0.984 0.984

Wiki-
50

0.982 0.987 0.970 0.968

Table 1: Correlation Between Proposed Reference-Free
Index and Reference-Based Indices in Boundary Re-
moval Experiment
∗Seg. Sim. and Bound. Sim. are converted to dissimilarity
metrics for consistency.

Figure 4: Proposed metric and classic metrics as a func-
tion of random segment splits using the Choi 3-11 data
set

ing existing segments and splitting at the midpoint
(rounding down in cases of odd numbers of sen-
tences). As with the boundary removal experiment,
the segmentation set was altered and the reference-
based metrics were computed by comparing the
altered segmentation with the original ‘truth’ seg-
mentation. Only the altered segmentation was used
to compute the proposed reference-free metric. The
results of each were averaged and shown in Figures
4 and 5 for the Choi 3-11 and Wiki-50 data sets,
respectively. Again, the two similarity metrics are
presented as one minus the metric to maintain verti-
cal consistency; where higher scores for all metrics
indicate a lower quality segmentation. As with the
boundary removal experiment, a strong correlation
between existing metrics and SegReFree, as a func-
tion of increasingly degraded segmentation, can be
clearly seen.

A table of Pearson correlation coefficients com-
puted between the proposed metric and each of
the classic metrics is presented in Table 2. A very
strong correlation is observed for the Choi 3-11
data set: all > 0.99. The correlation between our
proposed metric and the reference-based metrics

Figure 5: Proposed metric and classic metrics as a func-
tion of random segment splits using the Wiki-50 data
set

Data
Set

Pk Window-
Diff

Seg.
Sim.∗

Bound.
Sim.∗

Choi
3-11

0.998 0.999 0.989 1.000

Wiki-
50

0.939 0.924 0.946 0.902

Table 2: Correlation Between Proposed Reference-Free
Index and Reference-Based Indices in Segment Splitting
Experiment
∗Seg. Sim. and Bound. Sim. are converted to dissimilarity
metrics for consistency.

with the Wiki-50 data set is also good, although it
is more inconsistent and almost completely insen-
sitive to a single segment split. Thus, the overall
correlation is not as strong in the Wiki-50 segment
splitting experiment.

4.1.3 Boundary transposition
To simulate the condition of a ’near miss’, as
described in the segmentation metric literature,
boundary transposition was also performed. In this
experiment, an existing boundary was randomly se-

Data
Set

Pk Window-
Diff

Seg.
Sim.∗

Bound.
Sim.∗

Choi
3-11

0.906 0.904 0.785 0.800

Wiki-
50

-0.320 -0.316 0.423 0.361

Table 3: Correlation Between Proposed Reference-Free
Index and Reference-Based Indices in Boundary Trans-
position Experiment
∗Seg. Sim. and Bound. Sim. are converted to dissimilarity
metrics for consistency.
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Data Set SegReF ’truth’ SegReF-TT Pk Win. Diff Seg. Sim. B. Sim. % correct
Choi 3-11 3.02 4.72 0.582 0.719 0.856 0.071 (98%)

Wiki-50 4.27 4.84 0.485 0.494 0.819 0.161 (68%)

Table 4: Comparison of Segmentation Quality Metrics for Segmentation Found By the TextTiling Algorithm. Pk,
WindowDiff, Segmentation Similarity, and Boundary Similarity are all presented between reference segmentation
sets and segmentation sets chosen by TextTiling. The column labeled ’% correct’ is the percentage of files where
SegReFree is directionally correct.

Figure 6: Proposed metric and classic metrics as a func-
tion of single random boundary transposition using the
Choi 3-11 data set

Figure 7: Proposed metric and classic metrics as a func-
tion of single random boundary transposition using the
Wiki-50 data set

lected and shifted by varying numbers of sentences.
As described in Section 2, this is a more challeng-
ing problem and is handled in different ways by
different classic segmentation metrics. Diaz and
Ouyang (2022) also notes that boundary transpo-
sition is poorly handled by other existing segmen-
tation metrics as they treat all boundary shifts as
equally bad. The mean metrics as a function of
transposition distance are displayed in Figures 6
and 7 for the Choi 3-11 and Wiki-50 data sets, re-
spectively.

A table of Pearson correlation coefficients com-
puted between the proposed metric and classic met-
rics is displayed as Table 3. Our proposed met-
ric shows strong agreement with classic metrics
with the Choi 3-11 data set and directionally cor-
rect agreement for the majority of transposition
distances tested on the Wiki-50 data set. We hy-
pothesize that the degraded performance on this
experiment with the Wiki-50 data set comes from
the inconsistent size of segments. Because sec-
tion and subsection headings are given their own
segments, there are many single sentence or even
single word segments within this data set. The se-
mantic meaning of a section and an adjacent subsec-
tion heading is often quite similar and when these
are combined, it would likely improve (lower) the
SegReFree score.

4.2 Using existing segmentation methods

To provide an additional demonstration of the met-
rics use, an older text segmentation method, Text-
Tiling (Hearst, 1997) is used to segment the Choi
3-11 and Wiki-50 data sets. This method is inten-
tionally chosen as a lower quality, but still purpose-
ful method of segmentation. The NLTK (Bird et al.,
2009) implementation of TextTiling was used for
this section. Window sizes for TextTiling were
chosen arbitrarily to ensure at least two segments
per file, with a value of 100 words used for the
Choi 3-11 data set and a window of 20 words used
for the Wiki-50 data set. Results of this test are
presented in Table 4 along with classic metrics
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provided for reference. To interpret these results,
we assume that the quality of segmentation per-
formed by TextTiling is lower than that of the orig-
inal source segmentation, and therefore, we should
expect a higher (worse) SegReFree score for the
TextTiling segmentation. It can be observed that
our proposed metric is directionally correct the ma-
jority of the time, showing a higher (worse) score
for the lower quality segmentation 98% of the time
for the Choi 3-11 data set and 68% of the time for
the Wiki-50 data set.

5 Conclusions

In this work, a new topical text segmentation eval-
uation metric that requires no reference segmenta-
tion set is proposed and evaluated. To our knowl-
edge, this is the first reference-free segmentation
quality metric that has been proposed. Strong cor-
relation to existing reference-based metrics was
demonstrated for the worst case errors of missing
boundaries and boundary insertion in the middle of
a coherent segment. A weaker, yet present correla-
tion is demonstrated for the harder case of bound-
ary transposition (so-called “near misses"). The
use of our reference-free metric can help enable
future segmentation efforts on data that do not have
existing human annotation.

Limitations

This work was performed using a somewhat limited
set of data, as the majority of text segmentation data
sets found also derived from Wikipedia and were
very similar to the Wiki-50 data set. It is likely that
this metric may not be the best possible metric for
certain segmentation use cases, such as situations
where the ’ideal’ segmentation has boundaries that
do not correlate to semantic shifts in topic.

It is also likely that for data sets that have seg-
ments including many chunks with varying seman-
tic meaning, such as a transcription that includes
every small interjection, that this metric will lose
some sensitivity and be less useful. The Wiki-50
data set is closest to this, with the inclusion of
short section titles, which is why we believe we
see worse performance with that data set. How-
ever, due to the lack of data sets clearly represent-
ing these specific cases, the exact impact of non-
existant semantic shifts and semantically-scattered
inclusions is not quantified.

It should also be noted that because this metric
relies on computing distances based on semantic

meaning, the SegReFree score between two dif-
ferent texts has no particular meaning or use. It
should be used as a way to compare segmentations
between consistent text or sets of texts rather than
comparing segmentations on dissimilar texts.

Ethics Statement

As this is not a generative task, the authors have no
concerns about the content created by this metric.
Misuse of the metric is still a possibility, such as
blind reliance upon it when used for important de-
cisions. Additionally, there may be ways for the
metric to introduce bias in its usage, particularly
if the training of the embedding model is not ap-
propriate for the domain. It has been shown that
contextual word representations, such as BERT,
can carry biases (Kurita et al., 2019); so it is also
likely that bias present in Sentence-BERT would
propagate into models dependent on it, such as this
one.
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A Appendix A: Human segmentation
comparison with Stargazer Data Set

To provide an additional demonstration of the util-
ity of the proposed metric, the Stargazer segmen-
tation data set is evaluated. The Stargazer article
(Baker, 1990) was selected as a challenging seg-
mentation task for human annotators and (Hearst,
1997) collected seven different human segmenta-
tion’s with the intent of developing segmentation
agreement metrics. Our proposed metric can be
used to evaluate the topical segmentation of the dif-
ferent individual metrics. To provide a reference,
the best scoring annotation found with SegReFree
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Annotator SegReFree
Score

Pk relative
to annot. 4

1 3.15 0.42
2 3.82 0.47
3 2.32 0.26
4 2.23 0
5 3.66 0.37
6 3.67 0.47
7 3.52 0.32

Table 5: Proposed metric computed for Stargazer seg-
mentation data set

is chosen as a hypothesis and compared with each
of the other annotations using the Pk metric. The
two metrics correlate fairly well, with the highest
Pk score aligned with the two largest SegReFree
scores found.

B Appendix B: Justification for data set
selection

Our choice to only use two segmentation data sets
is based on similar numbers of real language data
sets (or fewer) used in the literature that we cite in
this work. Fournier and Inkpen (2012) 2012 used
one natural language data set for one subsection,
Pevzner and Hearst (2002) did not include any nat-
ural language data sets; Both Solbiati et al. (2021)
and Ghinassi (2021) used two data sets for evalu-
ation of their segmentation methods. Instead of a
wide diversity of data sets as may be found in other
research topics, we focus on presenting a diverse
set of experiments in Section 4.

C Appendix C: Visualization of window
and mass based segmentation

A simple visualization of a window-based segmen-
tation comparison is shown in Figure 8. Here, the
start of a new segment is represented by a 1. The
window-based metrics use a sliding window that
compares segment boundaries between reference
and hypothesis sets within the window. The same
example segmentation set is presented in mass-
based format in Figure 9, where the segments are
represented as alternating shaded boxes. In a mass-
based metric, the sizes of the segments in terms of
chunks are used as the basis for comparison.

Figure 8: Window-based segmentation comparison

Figure 9: Mass-based segmentation comparison

D Appendix D: Ablation study

To validate the design choices used in our proposed
metric, a small ablation study was performed using
both data sets and both of the synthetic degraded
segmentation experiments. As with previous exper-
iments, random selection of boundaries was per-
formed several times (five for each file in the Choi
3-11 data set and 30 for each file in the Wiki-50
data set) and results were averaged. The two mod-
ifications made to the original Davies-Bouldin In-
dex are described in detail in Section 3.3 and are
the inclusion of a size penalty term as well as an
adjacency requirement for the computation of the
metric. Table 6 shows the results of the removal
of these individual alterations by computing the
Pearson correlation coefficient between the Davies-
Bouldin based metric and the Pk metric. The Pk

metric was chosen as a comparison due to it’s posi-
tion as the oldest and most common segmentation
metric. It can be seen that the original Davies-
Bouldin Index does not correlate with Pk as well as
our proposed metric does, and for the some experi-
ments has a negative correlation. The size penalty
appears to be helpful for improving performance in
the presence of segment boundary additions (simu-
lated as segment splits), which causes smaller-than-
desired segments. The adjacency appears to be
most necessary for penalizing missed (simulated as
deleted) segment boundaries, which conceptually
makes sense as a missed boundary would cause two
different topical segments to become combined.

Multiple distance metrics were also tested, in-
cluding L1, L2, and Cosine distance. Although
L1 distance slightly outperformed L2 distance in
a significant way on one experiment, L2 distance
was more used in Davies-Bouldin Index literature
and was chosen for our proposed metric.
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Ablation Choi
Split

Choi
Del.

Wiki-
50
Split

Wiki-
50 Del.

Proposed 0.999 0.998 0.694 0.985
-Size
Penalty

0.988 0.999 -0.994 0.994

-Adjacen.
Req.

0.816 -0.844 0.940 0.960

Orig.
DBI

0.763 -0.844 -0.998 0.993

L1 Dist. 0.999 0.998 0.732 0.986
Cos.
Dist.

-0.871 -0.832 -0.806 0.987

Table 6: Correlation Between Ablated Versions of Pro-
posed Metric and PK .
Original DBI includes neither adjacency requirement nor size
penalty term. Proposed metric uses L2 distance.
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