@inproceedings{zhang-duh-2023-handshape,
title = "Handshape-Aware Sign Language Recognition: Extended Datasets and Exploration of Handshape-Inclusive Methods",
author = "Zhang, Xuan and
Duh, Kevin",
editor = "Bouamor, Houda and
Pino, Juan and
Bali, Kalika",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2023",
month = dec,
year = "2023",
address = "Singapore",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.findings-emnlp.198",
doi = "10.18653/v1/2023.findings-emnlp.198",
pages = "2993--3002",
abstract = "The majority of existing work on sign language recognition encodes signed videos without explicitly acknowledging the phonological attributes of signs. Given that handshape is a vital parameter in sign languages, we explore the potential of handshape-aware sign language recognition. We augment the PHOENIX14T dataset with gloss-level handshape labels, resulting in the new PHOENIX14T-HS dataset. Two unique methods are proposed for handshape-inclusive sign language recognition: a single-encoder network and a dual-encoder network, complemented by a training strategy that simultaneously optimizes both the CTC loss and frame-level cross-entropy loss. The proposed methodology consistently outperforms the baseline performance. The dataset and code can be accessed at: www.anonymous.com.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zhang-duh-2023-handshape">
<titleInfo>
<title>Handshape-Aware Sign Language Recognition: Extended Datasets and Exploration of Handshape-Inclusive Methods</title>
</titleInfo>
<name type="personal">
<namePart type="given">Xuan</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kevin</namePart>
<namePart type="family">Duh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: EMNLP 2023</title>
</titleInfo>
<name type="personal">
<namePart type="given">Houda</namePart>
<namePart type="family">Bouamor</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Juan</namePart>
<namePart type="family">Pino</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kalika</namePart>
<namePart type="family">Bali</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Singapore</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The majority of existing work on sign language recognition encodes signed videos without explicitly acknowledging the phonological attributes of signs. Given that handshape is a vital parameter in sign languages, we explore the potential of handshape-aware sign language recognition. We augment the PHOENIX14T dataset with gloss-level handshape labels, resulting in the new PHOENIX14T-HS dataset. Two unique methods are proposed for handshape-inclusive sign language recognition: a single-encoder network and a dual-encoder network, complemented by a training strategy that simultaneously optimizes both the CTC loss and frame-level cross-entropy loss. The proposed methodology consistently outperforms the baseline performance. The dataset and code can be accessed at: www.anonymous.com.</abstract>
<identifier type="citekey">zhang-duh-2023-handshape</identifier>
<identifier type="doi">10.18653/v1/2023.findings-emnlp.198</identifier>
<location>
<url>https://aclanthology.org/2023.findings-emnlp.198</url>
</location>
<part>
<date>2023-12</date>
<extent unit="page">
<start>2993</start>
<end>3002</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Handshape-Aware Sign Language Recognition: Extended Datasets and Exploration of Handshape-Inclusive Methods
%A Zhang, Xuan
%A Duh, Kevin
%Y Bouamor, Houda
%Y Pino, Juan
%Y Bali, Kalika
%S Findings of the Association for Computational Linguistics: EMNLP 2023
%D 2023
%8 December
%I Association for Computational Linguistics
%C Singapore
%F zhang-duh-2023-handshape
%X The majority of existing work on sign language recognition encodes signed videos without explicitly acknowledging the phonological attributes of signs. Given that handshape is a vital parameter in sign languages, we explore the potential of handshape-aware sign language recognition. We augment the PHOENIX14T dataset with gloss-level handshape labels, resulting in the new PHOENIX14T-HS dataset. Two unique methods are proposed for handshape-inclusive sign language recognition: a single-encoder network and a dual-encoder network, complemented by a training strategy that simultaneously optimizes both the CTC loss and frame-level cross-entropy loss. The proposed methodology consistently outperforms the baseline performance. The dataset and code can be accessed at: www.anonymous.com.
%R 10.18653/v1/2023.findings-emnlp.198
%U https://aclanthology.org/2023.findings-emnlp.198
%U https://doi.org/10.18653/v1/2023.findings-emnlp.198
%P 2993-3002
Markdown (Informal)
[Handshape-Aware Sign Language Recognition: Extended Datasets and Exploration of Handshape-Inclusive Methods](https://aclanthology.org/2023.findings-emnlp.198) (Zhang & Duh, Findings 2023)
ACL