
Findings of the Association for Computational Linguistics: EMNLP 2023, pages 13–26
December 6-10, 2023 ©2023 Association for Computational Linguistics

Guiding AMR Parsing with Reverse Graph Linearization

Bofei Gao∗, Liang Chen∗, Peiyi Wang, Zhifang Sui, Baobao Chang†

National Key Laboratory for Multimedia Information Processing,
School of Computer Science, Peking University

gaobofei@stu.pku.edu.cn leo.liang.chen@outlook.com
wangpeiyi9979@gmail.com {szf,chbb}@pku.edu.cn

Abstract

Abstract Meaning Representation (AMR)
parsing aims to extract an abstract semantic
graph from a given sentence. The sequence-
to-sequence approaches, which linearize the
semantic graph into a sequence of nodes
and edges and generate the linearized graph
directly, have achieved good performance.
However, we observed that these approaches
suffer from structure loss accumulation during
the decoding process, leading to a much lower
F1-score for nodes and edges decoded later
compared to those decoded earlier. To address
this issue, we propose a novel Reverse Graph
Linearization (RGL) enhanced framework.
RGL defines both default and reverse lineariza-
tion orders of an AMR graph, where most
structures at the back part of the default order
appear at the front part of the reversed order
and vice versa. RGL incorporates the reversed
linearization to the original AMR parser
through a two-pass self-distillation mechanism,
which guides the model when generating the
default linearizations. Our analysis shows that
our proposed method significantly mitigates
the problem of structure loss accumulation,
outperforming the previously best AMR
parsing model by 0.8 and 0.5 Smatch scores
on the AMR 2.0 and AMR 3.0 dataset,
respectively. The code are available at https:
//github.com/pkunlp-icler/AMR_
reverse_graph_linearization.

1 Introduction

Abstract Meaning Representation (AMR) (Ba-
narescu et al., 2013) is a formalization of a sen-
tence’s meaning using a directed acyclic graph
that abstracts away from shallow syntactic features
and captures the core semantics of the sentence.
AMR parsing involves transforming a textual in-
put into its AMR graph, as illustrated in Figure 1.

*Equal Contribution.
†Corresponding Author.

come-01

study-01 learn-01

:op2

and

:purpose

:op1
Come to study and learn.

AMR Parsing

Figure 1: An example of AMR Parsing of the sentence
“Come to study and learn”.

0-9
10-19

20-29
30-39

40-49

Position

0.86

0.88

0.90

0.92

0.94

F1
 sc

or
e

F1-score of node prediction

(a) Node prediction

0-9
10-19

20-29
30-39

40-49
50-59

Position

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

F1
 sc

or
e

F1 score of relation prediction

(b) Relation prediction

Figure 2: There is a negative correlation between the F1-
score of the node or relation prediction and the position.
The results are obtained from AMRBART (Bai et al.,
2022) on the test set of AMR 2.0.

Recently, sequence-to-sequence (seq2seq) based
AMR parsers (Xu et al., 2020b; Bevilacqua et al.,
2021; Wang et al., 2021; Bai et al., 2022; Yu and
Gildea, 2022b; Chen et al., 2022; Cheng et al.,
2022) have significantly improved the performance
of AMR parsing. In these models, the AMR graph
is first linearized into a token sequence during tradi-
tional seq2seq training, and the output sequence is
then restored to the graph structure after decoding.
AMR parsing has proven beneficial for many NLP
tasks, such as summarization (Liao et al., 2018;
Hardy and Vlachos, 2018), question answering (Mi-
tra and Baral, 2016; Sachan and Xing, 2016), dia-
logue systems (Bonial et al., 2020; Bai et al., 2021),
and information extraction (Rao et al., 2017; Wang
et al., 2017; Zhang and Ji, 2021; Xu et al., 2022).

13

https://github.com/pkunlp-icler/AMR_reverse_graph_linearization
https://github.com/pkunlp-icler/AMR_reverse_graph_linearization
https://github.com/pkunlp-icler/AMR_reverse_graph_linearization

In this study, we aim to address the issue of
structure loss accumulation in seq2seq-based AMR
parsing. Our analysis (Figure 2) shows that the
F1-score of structure prediction (node and relation)
decreases as the generation direction progresses.
This phenomenon is a consequence of the error
accumulation in the auto-regressive decoding pro-
cess, a common problem in natural language gen-
eration (Ing, 2007; Zhang et al., 2019c; Liu et al.,
2021).

However, unlike natural language, the lineariza-
tion of AMR graphs does not follow a strict order,
as long as the sequence preserves all nodes and
relations in the AMR graph. To this end, we de-
fine two linearization orders based on the depth-
first search (DFS) traversal, namely Left-to-Right
(L2R) and Right-to-Left (R2L). The L2R order is
the conventional linearization used in most previ-
ous works (Bevilacqua et al., 2021; Bai et al., 2022;
Chen et al., 2022), where the leftmost child cor-
responding to the penman annotation is traversed
first. In contrast, the R2L order is its reverse, where
the structures at the end of the L2R order appear at
the beginning of the R2L order. By training AMR
parsing models with R2L linearization, it improves
the accuracy of predictions for the structures at the
end of the L2R order, which are less affected by
the accumulation of structure loss.

We propose to enhance AMR parsing with re-
verse graph linearization (RGL). Specifically, we
incorporate an additional encoder to integrate the
reverse linearization graph and replace the orig-
inal transformer decoder with a mixed decoder
that utilizes gated dual cross-attention, taking input
from both the hidden states of the sentence en-
coder and the graph encoder. We design a two-pass
self-distillation mechanism to prevent the model
from overfitting to the gold reverse linearized graph
as well as to further utilize it to guide the model
training. Our analysis shows that our proposed
method significantly mitigates the problem of struc-
ture loss accumulation, outperforming the previ-
ously best AMR parsing model (Bai et al., 2022)
by 0.8 Smatch score on the AMR 2.0 dataset and
0.5 Smatch score on the AMR 3.0 dataset.

Our contributions can be listed as follows:
1. We explore the structure loss accumulation

problem in sequence-to-sequence AMR parsing.
2. We propose a novel RGL framework to allevi-

ate the structure loss accumulation by incorporating
reverse graph linearization into the model, which

Direction Linearized AMR Graph

Left-to-Right (c/come-01 :purpose (a/and :op1 (s/study-01) :op2 (l/learn-01)))

Right-to-Left (c/come-01 :purpose (a/and :op2 (l/learn-01) :op1 (s/study-01)))

Table 1: The AMR graph shown in Figure 1 with dif-
ferent linearization order. "Left-to-Right" follows the
standard DFS traversal order. "Right-to-Left" follows
the reverse DFS traversal order.

outperforms previously best AMR parser.
3. Extensive experiments and analysis demon-

strate the effectiveness and superiority of our pro-
posed method.

2 Backgrounds

2.1 Seq2Seq based AMR Parsing

In our work, we followed previous methods
(Ge et al., 2019; Bevilacqua et al., 2021; Bai
et al., 2022), which formulate AMR parsing as
a sequence-to-sequence generation problem. For-
mally, given a sentence x = (x1, x2, ..., xN), the
model needs to generate a linearized AMR graph
y = (y1, y2, ..., yM) in an auto-regressive manner.

Assuming that we have a training set containing
N sentence-linearized graph pairs (xi, yi), the total
training loss of the model is computed by the cross-
entropy loss which is listed as follows:

LCE = −
N∑

i=1

mi∑

t=1

logp(yit|yi<t, x
i) (1)

where mi is the length of ith linearized AMR
graph, and yi<t is the previous tokens.

2.2 Graph Linearization Order

As shown in Table 1, we formalize two types of
graph linearization, the corresponding AMR graph
is shown in Figure 1. Left-to-Right (L2R) denotes
that when we use the depth-first search (DFS) to
traverse the children of a node, we first start from
the leftmost child and then traverse to the right,
which is identical to the order of penman annotation
and is the default order of sequence-to-sequence
based AMR parsers (Bevilacqua et al., 2021; Bai
et al., 2022; Chen et al., 2022). In contrast, Right-
to-Left (R2L) traverses from the rightmost child
to the leftmost child, which is the reverse of the
standard traversal order. When the input sentence is
long or contains multi-sentence, most of the nodes
or relationships that are positioned later in the L2R
sequence will appear earlier in the R2L sequence.

14

R2L Parser

Training

Training and Inference

silver linearization: ŷr

textual input: x

gold graph of x
gold linearization: yr

Mixed Decoder

Sentence
Encoder

share parameters

R2L Linearize αi LCE

(1-αi) LCE

LKL

Graph
Encoder

textual input: x

Mixed Decoder

Sentence
Encoder

Graph
Encoder

T

S

Teacher Pass

Student Pass

Figure 3: The overview of our method. In addition to the encoder-decoder model, an additional graph encoder is
used to incorporate reverse graph linearization. Following the paradigm of self-distillation, we regard the model
with the input of the gold linearization yr and x as the teacher model and ŷr parsed by a pre-trained R2L parser
and x as the student model. The model does twice forward pass to obtain the output probabilities of the teacher
and the student in each training step. We calculate the cross-entropy loss of teacher and student as well as their
KL divergence as the training loss. Given a sentence x during inference, the model generates the standard AMR
linearization using x and its silver linearization ŷr.

3 Methodology

3.1 Overview

Our method is illustrated in Figure 3. In addition
to the traditional encoder-decoder architecture, we
have incorporated a graph encoder to include the
reverse linearization sequence. As a result, the
model now takes both the sentence and its reverse
linearization as input. We modify the original trans-
former decoder with a mixed decoder that uses
gated dual cross-attention in each decoder layer,
allowing the integration of hidden representations
from both the sentence encoder and the graph en-
coder. During inference, we need an additional
R2L AMR parser that generates the reverse lin-
earization ŷr of the sentence and then feed both the
input sentence x and ŷr to the model.

To obtain reverse linearization during training, a
common intuitive approach is to linearize the gold
AMR graph into the gold reverse linearization, de-
noted by yr. However, simply using yr and the
source sentence x as input for all training data can
lead to overfitting of the model to yr, causing it
to ignore the importance of the source sentence.
As a result, the model may simply copy from yr
and generate y during training. This can limit the
model’s performance during inference due to the
noise introduced by the generated reverse lineariza-
tion, denoted by ŷr.

To prevent the model from overfitting to yr we

introduce silver linearization ŷr during training.
While we still hope to utilize the gold lineariza-
tion yr to guide the training, we design a two-pass
self-distillation mechanism. Alongside yr, we in-
corporate ŷr, which is parsed by the additional R2L
AMR parser during training. The teacher model
takes yr and x as input, while the student model
takes ŷr and x. During each training step, the
model performs two forward passes and computes
cross-entropy losses, LT

CE for the teacher and LS
CE

for the student. We employ KL divergence LKL

to guide the student with the teacher’s output. We
also design a loss scheduler to balance the weight
αi for LT

CE and LS
CE at optimization step i.

3.2 Model Structure

As shown in Figure 3, our model mainly consists
of three parts: sentence encoder, graph encoder,
and mixed decoder. The major structural differ-
ence from standard pretrained models, e.g. BART
(Lewis et al., 2020), is that we use a graph encoder
to integrate the reverse linearized structural infor-
mation to guide the model.

Sentence Encoder The sentence encoder re-
ceives the given sentence s = (s1, s2, ..., sN), and
encodes it to the hidden representations Hs =
(hs

1,hs
2, ...,hs

N), which is the same as the encoder
of pretrained transformer models.

15

Graph Encoder Following (Bevilacqua et al.,
2021; Bai et al., 2022), we adopt the standard
transformer encoder to encode the structural in-
formation. Given the reverse-linearized AMR
graph, the output of the graph encoder is Hg =
(hg

1,hg
2, ...,hg

M).

Mixed Decoder Different from the traditional
decoder, the mixed decoder takes the hidden states
of the sentence Hs and the graph Hg via a gated
dual cross-attention layer as shown in Figure 4.
The gated dual cross-attention layer contains two
cross-attention modules which are used to integrate
Hs and Hg respectively. In the decoder layer, the
output of the self-attention module is Sz ∈ Rk×d,
where k is the number of tokens in the decoder in-
put and d is the size of the hidden state. The output
of each cross-attention module can be computed
as:

Ss = CrossAttns(Sz, Hs, Hs) (2)

Sg = CrossAttng(Sz, Hg, Hg) (3)

where the two cross-attention modules contains the
same query Sz but different key-value Hs and Hg

respectively.
The output of the gated dual cross-attention mod-

ule So is the weighted sum of Ss and Sg.

So = g · Sg + (1− g) · Ss

where g ∈ RK×1 is predicted by a feed-forward
network:

g = σ(VTtanh(WTSz + b1) + b2) (4)

σ is the sigmoid function, W ∈ Rd×d , V ∈ Rd×1,
b1 ∈ Rd×1 and b2 ∈ R are trainable parameters
and bias.

3.3 Training Objective
The training objective of the RGL is:

L = αiL
T
CE + (1− αi)L

S
CE + LKL (5)

where αi is a balancing weight related to ith itera-
tion. LT

CE and LS
CE are the cross-entropy loss of

the teacher and the student respectively and LKL

is the self-distillation loss.

Self-distillation To further guide the model with
gold reverse linearization yr during training as well
as to avoid the model from overfitting to it and
ignoring the sentence x, we propose a two-pass self-
distillation mechanism during training. As shown

Mixed�Decoder

Cross-Attentions Cross-Attentiong

Self-Attention

+
g1�-�g

Feed�Forward�Network

Linear�&�Softmax

Embeddings

HgSz

So

Hs

����Output��
Probabilities

×N

Figure 4: The illustration of the mixed decoder in
RGL. Hs and Hg are the hidden representations from
the sentence encoder and graph encoder. The module
enclosed by the dashed line is the gated dual cross-
attention, which integrates the outputs of the dual atten-
tion through a gate predicted by an FFN. For brevity
and focus, the residual connection and normalization
are omitted from the figure.

in Equation 6 and 7, we regard the forward pass
taking yr as input a teacher and ŷr as a student. To
obtain the output distribution of both the teacher
and the student, the model performs two forward
passes in one training step. Note that the teacher
and the student model share the same parameters.

p(y|x, yr) =
M∏
i=1

p(yi|(y1, y2, ..., yi−1), x, yr) (6)

q(y|x, ŷr) =
M∏
i=1

p(yi|(y1, y2, ..., yi−1), x, ŷr) (7)

To distill the knowledge from the teacher pass
to the student pass, we guide the output of stu-
dent pass with the teachers by minimizing the Kull-
back–Leibler divergence loss:

LKL(p, q) =
D∑

i=1

pilog(
pi
qi
) (8)

where p and q are the output probabilities of the
teacher and the student respectively, D is the num-
ber of classes which is the total size of the target
vocabulary.

Loss scheduler Inspired by the idea of curricu-
lum learning, we introduce a loss scheduler to bet-
ter balance the training process. We set an adaptive

16

coefficient αi to control the weights of LT
CE and

LS
CE . αi gradually decays with the increase of

training step i. The model is supposed to learn
more from gold linearization when its capability
is weak so that the model can converge quickly.
When the model’s capability is strong, it is sup-
posed to have the ability to infer from the noisy sil-
ver linearization, which can make the model more
capable and robust to noise during inference since
we do not have a gold linearization graph during
inference. The αi can be computed as exponential
decay:

αi = k1 ∗ e−k2∗i, 0 ≤ i ≤ total_steps (9)

where k1 and k2 are hyper-parameters that can con-
trol the upper- and lower-bounds of the αi. We set
the upper bound of αi to 0.8 and the lower bound
to 0.2 without further tuning.

3.4 Inference
Given a sentence, we first use the R2L AMR parser
to generate its reverse linearization. Then the
trained RGL model takes the reverse linearization
and the sentence as input and decodes the standard
L2R AMR linearization.

4 Experiments

4.1 Datasets
We conducted our experiments on two AMR bench-
mark datasets, AMR 2.0 and AMR 3.0. AMR 2.0
contains 36521, 1368, and 1371 sentence-AMR
pairs in training, validation, and testing sets, re-
spectively. AMR 3.0 has 55635, 1722, and 1898
sentence-AMR pairs for training validation and
testing set, respectively.

4.2 Evaluation Metrics
We use the Smatch (Cai and Knight, 2013) and fur-
ther the fine-grained scores (Damonte et al., 2017)
to evaluate the performance. The detailed explana-
tions of the metrics are shown in Appendix B.

BLINK (Wu et al., 2019) is used to add wiki tags
to the predicted AMR graphs in all the systems in
our experiments. We do not apply any re-category
methods and other post-processing methods which
are the same with Bai et al. (2022) to restore AMR
from the token sequence.

4.3 Main Compared Systems
AMRBART We use the current state-of-the-art
sequence-to-sequence AMR Parser proposed by
Bai et al. (2022) as our main baseline model.

RGL We initialize our model using AMRBART
(Bai et al., 2022). The sentence encoder and the
graph encoder are initialized the same as the AMR-
BART encoder, but they have individual gradients
during training. Full details of the compared sys-
tems are listed in Appendix A.

4.4 Main Results
We report the results of our method with several
Seq2seq baselines on two major datasets, AMR 2.0
and AMR 3.0 in table 2. Our method outperforms
previous methods significantly and provides a state-
of-the-art AMR parser.

In comparison with the baseline AMRBART,
our method outperforms it by 0.8 Smatch point on
AMR 2.0 and 0.5 Smatch point on AMR 3.0. More-
over, our method does not introduce any additional
data and is compatible with existing methods such
as Chen et al. (2022) and Bai et al. (2022).

4.5 Ablation Study
Model Training Table 3 presents the results of an
ablation study in which we analyze how different
training methods affect the performance of RGL.

We observed a significant drop in model perfor-
mance when we removed the silver linearization
from the training process. This approach involves
feeding the model with the gold linearization dur-
ing training while using the silver linearization at
inference. We believe this drop in performance
occurred for two reasons. First, since the gold re-
verse linearization and the target are highly similar
in structure, the model can be easily overfitted to
the gold reverse linearization and ignore the source
sentence. This can cause the model to simply repli-
cate the input yr to y instead of accurately parsing
the sentence to an AMR graph. Second, the lack
of a structure loss for the gold AMR sequence dur-
ing training means that the model does not learn
to differentiate the correct part of the graph from
the noisy part, which is required during inference.
Therefore, without the silver graph during training,
our model cannot be effectively trained.

We also observed a significant drop in perfor-
mance when we removed self-distillation from the
training process. This highlights the importance
of self-distillation in our method, which helps the
model avoid the error information caused by noise
in silver graphs during training. Nevertheless, our
method still outperformed AMRBART, even with-
out self-distillation, which demonstrates the effec-
tiveness of incorporating the reverse linearization

17

Model SMATCH NoWSD Wiki Conc. NER Neg. Unll. Reen. SRL

A
M

R
2.

0
SPRING (Bevilacqua et al., 2021) 83.8 84.4 84.3 90.2 90.6 74.4 86.1 70.8 79.6
SPRING (w/ silver) (Bevilacqua et al., 2021) 84.3 84.8 83.1 90.8 90.5 73.6 86.7 72.4 80.5
ATP (Chen et al., 2022) 85.2 85.6 84.2 90.7 93.1 74.9 88.3 74.7 83.3
AMRBART (Bai et al., 2022) 85.4 85.8 81.4 91.2 91.5 74.0 88.3 73.5 81.5
AMRBART (ours) 85.3 85.7 84.0 91.2 90.8 74.3 88.2 73.2 81.3
AMRBART+Multitask (ours) 85.8 86.2 83.9 91.4 91.2 75.7 88.6 74.3 81.9
RGL (ours) 86.1 86.4 84.5 91.5 91.7 76.1 88.9 74.8 82.1

A
M

R
3.

0

SPRING (w/ silver) (Bevilacqua et al., 2021) 83.0 83.5 82.7 89.8 87.2 73.0 85.4 70.4 78.9
ATP (Chen et al., 2022) 83.9 84.3 81.0 89.7 88.4 73.9 87.0 73.9 82.5
AMRBART (Bai et al., 2022) 84.2 84.6 78.9 90.2 88.5 72.1 87.1 72.4 80.3
AMRBART (ours) 84.2 84.6 83.3 90.1 88.2 73.2 87.1 71.9 80.0
AMRBART+Multitask (ours) 84.4 84.7 82.9 90.3 88.1 73.1 87.3 72.9 80.4
RGL (ours) 84.7 85.1 82.8 90.5 88.2 72.3 87.5 73.2 80.8

Table 2: SMATCH and fine-grained F1 scores on AMR 2.0 and 3.0. RGL outperforms AMRBART(ours) significantly
with p < 0.001 for both AMR 2.0 and AMR 3.0.

Model SMATCH

AMRBART (ours) 85.3
RGL (ours) 86.1

- w/o silver linearization 85.0
- w/o loss scheduler 85.9
- w/o self-distillation 85.7

Table 3: Ablation study results on the RGL. "w/o loss
scheduler": remove the loss scheduler in the training
process, where we simply add up all loss terms. "w/o
self-distillation": remove the LKL and LT

CE from train-
ing objective. "w/o silver linearization": remove the
LKL and LS

CE from training objective.

Number of Layers 12 10 8 6 4

SMATCH 86.1 86.0 85.7 85.9 85.6

Table 4: The influence of different number of layers of
graph encoder on AMR 2.0.

into AMR parsing.
Finally, when we removed the loss scheduler,

the performance of the model degraded. This em-
phasizes the importance of the loss scheduler in
balancing the teacher and the student during train-
ing and enhancing the performance of our method.

Graph Encoder Size We conduct an ablation ex-
periment on how does the size of graph encoder
influence the parsing performance. As shown in
Table 4, we only retain the bottom few layers of the
graph encoder and we observe that the performance
generally declines when the number of layers de-
creases. However, even when the graph encoder
retains only four layers, our model still outperforms
AMRBART, which demonstrates the effectiveness
of incorporating reverse graph linearization during
training.

5 Analysis

5.1 On the Effect of R2L Linearization

In this section, we replace the input of the graph
encoder with different sequences to validate the ef-
fectiveness of R2L linearization, which is shown in
the upper parts of Table 5. ① is the proposed RGL
and achieves the best performance of all methods.
And we replace the input of the graph encoder with
the standard L2R linearization without changing
other conditions, which is shown at ②. Inspired by
the ideas of Zhou et al. (2019a,b), which explore
decoding from both sides for machine translation,
we can directly reverse the entire L2R linearization
token sequence as the input of graph encoder in-
stead of the R2L linearization, where all the nodes
and relations strictly appear at the opposite of L2R
linearization, which is the ③ of Table 5.

Comparing ① to ②, we observe a more signifi-
cant improvement when using R2L linearization.
This is because some nodes or relations in R2L lin-
earization are predicted earlier by the R2L parser,
resulting in less structure loss and higher accuracy,
which serves as a complementary source of infor-
mation for the model. The result proves the effec-
tiveness of incorporating reverse linearization.

Comparing ① to ③, we find that the performance
would drop if we replace the R2L linearization with
a simple reversed L2R token sequence. We believe
the main reason for this is that the dependencies be-
tween nodes and relationships within the linearized
AMR graphs are highly intricate. Simply revers-
ing the sequence can lead to unexpected changes
in the sequence, e.g. referential variables, making
it challenging for the model to accurately predict
after the inversion. In fact, the parsing performance
of the simple reverse parser is only 75.9 Smatch

18

Model SMATCH

① RGL w/ R2L Linearization 86.1
② RGL w/ L2R Linearization 85.8
③ RGL w/ reverse sequence 85.8

④ Double-decoder+KL 85.6
⑤ Multitask 85.8
⑥ Concatenate Input 85.3

Table 5: SMATCH of different reverse linearizations and
different integration methods. The upper part compares
different graph encoder inputs of the RGL. The lower
part compares different ways to incorporate R2L lin-
earization.

score, which is far less than the baseline model. In
contrast, R2L linearization is a more reasonable
reverse as it is meaning-equivalent to the original
L2R linearization and can reach similar parsing
performance to the original L2R parser.

The combined findings demonstrate that incor-
porating a reverse order is advantageous for AMR
parsing. Moreover, the R2L linearization proves to
be a more suitable form compared to reversing the
input sequence token by token.

5.2 On Incorporating R2L Linearization

In this section, we compare different methods to
incorporate the R2L linearization, including several
works in other fields adapted into the setting of
AMR parsing, which are shown in the lower part
of Table 5.

Double-decoder+KL Xie et al. (2021) using two
decoders to generate two different linearizations i.e.
DFS and BFS for code generation and leverages the
mutual information to narrow the KL-divergence
between the outputs. We adapt this method into
AMR parsing settings, where the two different lin-
earizations are L2R and R2L. Then we narrow the
output distributions of corresponding nodes and
relations of the two linearizations.

Multitask A simple method to integrate extra
linearization order is through multitask learning,
where the model learns to predict both the L2R and
R2L AMR graph. During training, a task identi-
fier <L2R> or <R2L> is added to the beginning
of the input sentence to differentiate the output’s
order. During inference, we individually test the
two orders and select the order with the higher
Smatch score (L2R) as the final result. The differ-
ence from ① in model architecture is that we share
the decoder which learns to generate different lin-

0-9
10-19

20-29
30-39

40-49

Position

0.86

0.88

0.90

0.92

0.94

F1
 sc

or
e

w/ RGL w/o RGL

(a) Node prediction

0-9
10-19

20-29
30-39

40-49
50-59

Position

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

F1
 sc

or
e

w/ RGL w/o RGL

(b) Relation prediction

Figure 5: F1-score of nodes and relations with the in-
crease of the predicted length of AMRBART (Bai et al.,
2022) represented by orange bars and RGL represented
by blue bars.

earizations simultaneously, rather than use an extra
decoder.

Concatenate Input Another intuitive way to di-
rectly introduce reverse linearization into the model
is to concatenate it with the textual input. Com-
pared with RGL, this method reduces the additional
graph encoder without changing other conditions.

Experimental results show that both ④ and ⑤ can
benefit the model, which implicitly incorporates the
R2L linearization to the model through the train-
ing loss. However, the proposed RGL explicitly
integrates reverse linearization into the model as
the extra input, achieving more significant improve-
ments.

However, integrating the R2L linearization
through directly concatenating them as the model
input is not as effective as the RGL. One possible
reason for this is that the linearized graph and the
sentence are different structures and simply con-
catenating them from the input text and letting the
model learn the extra structural information pro-
vided by R2L linearization through one encoder is
challenging. Therefore, the extra graph encoder is
necessary for encoding the R2L linearization.

Overall, this section demonstrates that RGL is
an effective method for incorporating reverse lin-
earization into the model.

5.3 Effect of RGL on structure loss

The decrease of F1 scores for nodes and relations
with prediction length is shown in Figure 5. Com-
pared with the baseline AMRBART, there is a sig-
nificant improvement in the F1 score of both the
node and relation prediction of the RGL when the
prediction length is greater than 30.

19

0-49
50-99

100-149
150-199

200-249
250-299

300-349
350-399

400-449
450-499

Position(token)

0.40

0.42

0.44

0.46

0.48

0.50

Th
e

va
lu

e
of

 g
at

e

The gated weight for reverse linearization

Figure 6: The histogram of the gated weight in the
gated dual cross-attention with the increase of the po-
sition during inference. A higher value indicates that
the model is attending more to the output of the reverse
graph encoder in the cross-attention layer. We divided
the positions into buckets of size 50 and computed the
average gate value across all positions and layers within
each bucket, represented by the blue bar in the diagram.

To quantify the results, we measured the Pearson
coefficients between the F1 scores of nodes and
relations and the prediction length. Compared to
AMRBART, the Pearson correlation coefficient of
node F1 scores with prediction position decreased
from -0.42 to -0.26. The coefficient of relation
F1 scores with prediction position decreased from
-0.72 to -0.6. It proves that the RGL model can
indeed alleviate the structure loss problem.

Our analysis also reveals that node prediction is
less affected by structure loss accumulation than
relation prediction. We believe this is mainly be-
cause node prediction in AMR parsing is relatively
easier, whereas relation prediction requires correct
node predictions as a precondition.

5.4 Balancing source and reverse linearization

Figure 6 shows the results of a quantitative analysis
of the weight g in the gated dual cross-attention of
RGL. We recorded the positions and gated values
during model inference on the validation set1 .

The diagram reveals that the average value of the
gate is less than 0.5, indicating that the model pays
more attention to the source sentence than to the
reverse linearization. This suggests that the model
is performing sentence-to-AMR conversion, rather
than simply copying the reverse linearization.

Furthermore, there is a positive correlation be-
tween the gated weight and the position, which
provides insight into how our method works. In

1The value range of the x-axis is significantly longer than
that of Figure 2 because we count all the output tokens in this
experiment, instead of picking out tokens representing nodes
and relationships from all tokens.

positions closer to the beginning, the model has
greater confidence, resulting in smaller structure
loss. The model can predict the AMR graph using
only the original source sentence. As the position
increases, the model needs to refer to the reverse
linearization to compensate for the accumulation
of structure loss. Consequently, the gated weight
for the reverse linearization becomes larger as the
position increases.

6 Related Work

AMR parsing aims to convert a textual input to
an AMR semantic graph (Banarescu et al., 2013).
There are mainly four AMR Parsing strategies
in previous work, two-stage approaches (Flani-
gan et al., 2014; Lyu and Titov, 2018; Zhang
et al., 2019a; Zhou et al., 2020), graph-based
approaches (Zhang et al., 2019b; Cai and Lam,
2020), transition-based approaches (Naseem et al.,
2019; Lee et al., 2020; Fernandez Astudillo et al.,
2020; Zhou et al., 2021), sequence-to-sequence ap-
proaches (Ge et al., 2019; Xu et al., 2020a; Bevilac-
qua et al., 2021; Wang et al., 2021; Bai et al., 2022;
Chen et al., 2022; Yu and Gildea, 2022b; Cheng
et al., 2022). In terms of AMR graph lineariza-
tion, Bevilacqua et al. (2021) explores which lin-
earization method is better for AMR parsing, and
Chen et al. (2022) studied how to linearize differ-
ent semantic resources like SRL to enhance AMR
parsing. Some methods have also been proposed
to incorporate graph information into sequence-to-
sequence models to compensate for the discrep-
ancy between graph and sequence (Yu and Gildea,
2022a; Bai et al., 2022). While previous seq2seq-
based AMR parsing models mostly take the L2R
linearization order by default, our work first ex-
plores how to leverage different graph linearization
orders to enhance AMR parsing.

7 Conclusion

In this work, we propose a novel Reverse Graph
Linearization (RGL) enhanced framework to ad-
dress the structure loss accumulation problem
observed in the seq2seq-based AMR parsing.
Through extensive experiments and analysis, it
shows that RGL significantly mitigates the prob-
lem of structure loss accumulation and outperforms
the previous state-of-the-art model on both AMR
2.0 and AMR 3.0 datasets, which demonstrates the
effectiveness of the proposed approach.

20

8 Limitation

Compared to traditional sequence-to-sequence
AMR parser, our model needs an additional R2L
parser to generate the reverse linearizations, al-
though it can be easily obtained by fine-tuning
off-the-shelf AMR parser, e.g. AMRBART (Bai
et al., 2022) and SPRING (Bevilacqua et al., 2021).
Due to the necessity to generate the reverse lin-
earization before AMR parsing, the inference is
two times slower than the one-pass AMR parser.

9 Acknowledgement

We thank all reviewers for their valuable advice.
This paper is supported by the National Key Re-
search and Development Program of China under
Grant No.2020AAA0106700, the National Science
Foundation of China under Grant No.61936012
and 61876004.

10 Ethics Consideration

We collect our data from public datasets that permit
academic use and buy the license for the datasets
that are not free. The open-source tools we use for
training and evaluation are freely accessible online
without copyright conflicts.

References
Xuefeng Bai, Yulong Chen, Linfeng Song, and Yue

Zhang. 2021. Semantic representation for dialogue
modeling. ArXiv, abs/2105.10188.

Xuefeng Bai, Yulong Chen, and Yue Zhang. 2022.
Graph pre-training for AMR parsing and generation.
In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 6001–6015, Dublin, Ireland.
Association for Computational Linguistics.

Laura Banarescu, Claire Bonial, Shu Cai, Madalina
Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2013. Abstract meaning representation
for sembanking. In Proceedings of the 7th linguis-
tic annotation workshop and interoperability with
discourse, pages 178–186.

Michele Bevilacqua, Rexhina Blloshmi, and Roberto
Navigli. 2021. One spring to rule them both: Sym-
metric amr semantic parsing and generation without a
complex pipeline. In Proceedings of the Thirty-Fifth
AAAI Conference on Artificial Intelligence.

Claire Bonial, L. Donatelli, Mitchell Abrams,
Stephanie M. Lukin, Stephen Tratz, Matthew Marge,
Ron Artstein, David R. Traum, and Clare R. Voss.

2020. Dialogue-amr: Abstract meaning representa-
tion for dialogue. In LREC.

Deng Cai and Wai Lam. 2020. AMR parsing via graph-
sequence iterative inference. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 1290–1301, Online. Asso-
ciation for Computational Linguistics.

Shu Cai and Kevin Knight. 2013. Smatch: an evaluation
metric for semantic feature structures. In Proceed-
ings of the 51st Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short Pa-
pers), pages 748–752, Sofia, Bulgaria. Association
for Computational Linguistics.

Liang Chen, Peiyi Wang, Runxin Xu, Tianyu Liu, Zhi-
fang Sui, and Baobao Chang. 2022. ATP: AMRize
then parse! enhancing AMR parsing with Pseu-
doAMRs. In Findings of the Association for Compu-
tational Linguistics: NAACL 2022, pages 2482–2496,
Seattle, United States. Association for Computational
Linguistics.

Ziming Cheng, Z. Li, and Hai Zhao. 2022. Bibl: Amr
parsing and generation with bidirectional bayesian
learning. In International Conference on Computa-
tional Linguistics.

Marco Damonte, Shay B. Cohen, and Giorgio Satta.
2017. An incremental parser for Abstract Meaning
Representation. In Proceedings of the 15th Con-
ference of the European Chapter of the Association
for Computational Linguistics: Volume 1, Long Pa-
pers, pages 536–546, Valencia, Spain. Association
for Computational Linguistics.

Ramón Fernandez Astudillo, Miguel Ballesteros, Tahira
Naseem, Austin Blodgett, and Radu Florian. 2020.
Transition-based parsing with stack-transformers. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2020, pages 1001–1007, Online.
Association for Computational Linguistics.

Jeffrey Flanigan, Sam Thomson, Jaime Carbonell, Chris
Dyer, and Noah A. Smith. 2014. A discriminative
graph-based parser for the Abstract Meaning Repre-
sentation. In Proceedings of the 52nd Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 1426–1436, Bal-
timore, Maryland. Association for Computational
Linguistics.

DongLai Ge, Junhui Li, Muhua Zhu, and Shoushan Li.
2019. Modeling source syntax and semantics for
neural amr parsing. In IJCAI, pages 4975–4981.

Hardy Hardy and Andreas Vlachos. 2018. Guided neu-
ral language generation for abstractive summariza-
tion using abstract meaning representation. In Pro-
ceedings of the 2018 Conference on Empirical Meth-
ods in Natural Language Processing, pages 768–773.

Ching-Kang Ing. 2007. Accumulated prediction errors,
information criteria and optimal forecasting for au-
toregressive time series.

21

https://doi.org/10.18653/v1/2022.acl-long.415
https://doi.org/10.18653/v1/2020.acl-main.119
https://doi.org/10.18653/v1/2020.acl-main.119
https://aclanthology.org/P13-2131
https://aclanthology.org/P13-2131
https://doi.org/10.18653/v1/2022.findings-naacl.190
https://doi.org/10.18653/v1/2022.findings-naacl.190
https://doi.org/10.18653/v1/2022.findings-naacl.190
https://aclanthology.org/E17-1051
https://aclanthology.org/E17-1051
https://doi.org/10.18653/v1/2020.findings-emnlp.89
https://doi.org/10.3115/v1/P14-1134
https://doi.org/10.3115/v1/P14-1134
https://doi.org/10.3115/v1/P14-1134

Young-Suk Lee, Ramón Fernandez Astudillo, Tahira
Naseem, Revanth Gangi Reddy, Radu Florian, and
Salim Roukos. 2020. Pushing the limits of amr pars-
ing with self-learning. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing: Findings, pages 3208–3214.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 7871–7880, Online. Association for Computa-
tional Linguistics.

Kexin Liao, Logan Lebanoff, and Fei Liu. 2018. Ab-
stract meaning representation for multi-document
summarization. In Proceedings of the 27th Inter-
national Conference on Computational Linguistics,
pages 1178–1190.

Yijin Liu, Fandong Meng, Yufeng Chen, Jinan Xu, and
Jie Zhou. 2021. Scheduled sampling based on decod-
ing steps for neural machine translation. In Proceed-
ings of the 2021 Conference on Empirical Methods
in Natural Language Processing, EMNLP 2021, Vir-
tual Event / Punta Cana, Dominican Republic, 7-11
November, 2021, pages 3285–3296. Association for
Computational Linguistics.

Chunchuan Lyu and Ivan Titov. 2018. AMR parsing as
graph prediction with latent alignment. In Proceed-
ings of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 397–407, Melbourne, Australia. Association
for Computational Linguistics.

Arindam Mitra and Chitta Baral. 2016. Addressing a
question answering challenge by combining statis-
tical methods with inductive rule learning and rea-
soning. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 30.

Tahira Naseem, Abhishek Shah, Hui Wan, Radu
Florian, Salim Roukos, and Miguel Ballesteros.
2019. Rewarding smatch: Transition-based amr
parsing with reinforcement learning. arXiv preprint
arXiv:1905.13370.

Sudha Rao, Daniel Marcu, Kevin Knight, and Hal
Daumé III. 2017. Biomedical event extraction using
abstract meaning representation. In BioNLP 2017,
pages 126–135.

Mrinmaya Sachan and Eric Xing. 2016. Machine com-
prehension using rich semantic representations. In
Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 2:
Short Papers), pages 486–492.

Peiyi Wang, Liang Chen, Tianyu Liu, Baobao Chang,
and Zhifang Sui. 2021. Hierarchical curriculum
learning for amr parsing. In Annual Meeting of the
Association for Computational Linguistics.

Yanshan Wang, Sijia Liu, Majid Rastegar-Mojarad, Li-
wei Wang, Feichen Shen, Fei Liu, and Hongfang Liu.
2017. Dependency and amr embeddings for drug-
drug interaction extraction from biomedical literature.
In Proceedings of the 8th acm international confer-
ence on bioinformatics, computational biology, and
health informatics, pages 36–43.

Ledell Wu, Fabio Petroni, Martin Josifoski, Sebastian
Riedel, and Luke Zettlemoyer. 2019. Scalable zero-
shot entity linking with dense entity retrieval. arXiv
preprint arXiv:1911.03814.

Binbin Xie, Jinsong Su, Yubin Ge, Xiang Li, Jianwei
Cui, Junfeng Yao, and Bin Wang. 2021. Improving
tree-structured decoder training for code generation
via mutual learning. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 35, pages
14121–14128.

Benfeng Xu, Licheng Zhang, Zhendong Mao, Quan
Wang, Hongtao Xie, and Yongdong Zhang. 2020a.
Curriculum learning for natural language understand-
ing. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
6095–6104, Online. Association for Computational
Linguistics.

Dongqin Xu, Junhui Li, Muhua Zhu, Min Zhang, and
Guodong Zhou. 2020b. Improving amr parsing with
sequence-to-sequence pre-training. In Proceedings
of the 2020 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages 2501–
2511.

Runxin Xu, Peiyi Wang, Tianyu Liu, Shuang Zeng,
Baobao Chang, and Zhifang Sui. 2022. A two-stream
amr-enhanced model for document-level event argu-
ment extraction. In North American Chapter of the
Association for Computational Linguistics.

Chen Yu and Daniel Gildea. 2022a. Sequence-to-
sequence AMR parsing with ancestor information.
In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume
2: Short Papers), pages 571–577, Dublin, Ireland.
Association for Computational Linguistics.

Chenyao Yu and Daniel Gildea. 2022b. Sequence-to-
sequence amr parsing with ancestor information. In
Annual Meeting of the Association for Computational
Linguistics.

Sheng Zhang, Xutai Ma, Kevin Duh, and Benjamin
Van Durme. 2019a. AMR parsing as sequence-to-
graph transduction. In Proceedings of the 57th An-
nual Meeting of the Association for Computational
Linguistics, pages 80–94, Florence, Italy. Association
for Computational Linguistics.

Sheng Zhang, Xutai Ma, Kevin Duh, and Benjamin
Van Durme. 2019b. Broad-coverage semantic pars-
ing as transduction. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language

22

https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2021.emnlp-main.264
https://doi.org/10.18653/v1/2021.emnlp-main.264
https://doi.org/10.18653/v1/P18-1037
https://doi.org/10.18653/v1/P18-1037
https://doi.org/10.18653/v1/2022.acl-short.63
https://doi.org/10.18653/v1/2022.acl-short.63
https://doi.org/10.18653/v1/P19-1009
https://doi.org/10.18653/v1/P19-1009
https://doi.org/10.18653/v1/D19-1392
https://doi.org/10.18653/v1/D19-1392

Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 3786–3798, Hong Kong, China. As-
sociation for Computational Linguistics.

Wen Zhang, Yang Feng, Fandong Meng, Di You, and
Qun Liu. 2019c. Bridging the gap between train-
ing and inference for neural machine translation. In
Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4334–
4343, Florence, Italy. Association for Computational
Linguistics.

Zixuan Zhang and Heng Ji. 2021. Abstract meaning
representation guided graph encoding and decoding
for joint information extraction. In Proceedings of
the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 39–49.

Jiawei Zhou, Tahira Naseem, Ramón Fernandez As-
tudillo, and Radu Florian. 2021. AMR parsing with
action-pointer transformer. In Proceedings of the
2021 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 5585–5598, On-
line. Association for Computational Linguistics.

Long Zhou, Jiajun Zhang, and Chengqing Zong. 2019a.
Synchronous bidirectional neural machine translation.
Transactions of the Association for Computational
Linguistics, 7:91–105.

Long Zhou, Jiajun Zhang, Chengqing Zong, and Heng
Yu. 2019b. Sequence generation: From both sides to
the middle. arXiv preprint arXiv:1906.09601.

Qiji Zhou, Yue Zhang, Donghong Ji, and Hao Tang.
2020. AMR parsing with latent structural informa-
tion. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
4306–4319, Online. Association for Computational
Linguistics.

23

https://doi.org/10.18653/v1/P19-1426
https://doi.org/10.18653/v1/P19-1426
https://doi.org/10.18653/v1/2021.naacl-main.443
https://doi.org/10.18653/v1/2021.naacl-main.443
https://doi.org/10.18653/v1/2020.acl-main.397
https://doi.org/10.18653/v1/2020.acl-main.397

A Training Details

AMR Parsing on AMR 2.0/3.0
Model Name AMRBART (Bai et al., 2022)
Pretrained Model AMRBART-Large
Learning Rate 8e-6
Batchsize 16
Accumulation Steps 4
Max Epochs 30
Validation Interval 1 epoch
Early Stopping 10
Beam size 5
Warmup Steps 200
Entity Linking BLINK (Wu et al., 2019)

Table 6: The Hyper-Parameters for all of our imple-
mented models including RGL and baseline models.

R2L parser For the R2L parser for inference, we
fine-tune AMRBART (Bai et al., 2022) using sen-
tences and their corresponding reverse linearized
AMR graphs of the training sets.

During training, we also need an R2L parser to
parse the sentence into the silver graph of the total
training set. If we use the R2L parser exactly the
same as that in inference, it will generate silver
graphs that are almost the same as the gold graphs,
because the R2L parser has already seen all of
these data during training. To solve this problem,
we use 30% of the training set (10000 samples in
AMR 2.0, 15000 samples in AMR 3.0) to train a
“weaker” R2L parser, and then use it to infer the
entire training set to obtain the silver linearizations2

during training.
We use hyper-parameters shown in table 6 to

train all of our implemented models, including the
baseline and R2L parser for inference. Before train-
ing the RGL, we use the state dict of the encoder of
AMRBART to initialize the graph encoder and then
train the model using the same configuration. As
for the R2L parser for training, we random select a
part of the training set in the ratio of 0.3, then we
use these gold labeled data to train the R2L parser.

We implemented our models on the Pytorch
framework. All the models are trained on a sin-
gle NVIDIA A100 GPU. Training takes 17 hours
on AMR 2.0 and 24 hours on AMR 3.0.

2Gold linearization means that the AMR sequence is ob-
tained by linearization of the gold AMR graph, which is the
ground truth AMR graph of the sentence and is free from
any errors. Silver linearization means that the AMR graph
is parsed from a sentence using an AMR parser, possibly
containing noise.

0 5 10 15 20 25 30
training epoch

0.830

0.835

0.840

0.845

0.850

0.855

ev
al

 sm
at

ch

w/o RGL
w/ RGL

Figure 7: The convergence curve of the RGL and AMR-
BART.

B Detailed Evaluation Metrics

We use the Smatch scores (Cai and Knight, 2013)
to evaluate the performance. The further the break
down scores (Damonte et al., 2017) is shown as
follows. i) No WSD, compute while ignoring Prop-
bank senses (e.g., duck-01 vs duck-02), ii) Wiki-
fication, F-score on the wikification (:wiki roles),
iii) Concepts, F-score on the concept identification
task, iv) NER, F-score on the named entity recog-
nition (:name roles), v) Negations, F-score on the
negation detection (:polarity roles), vi) Unlabel,
compute on the predicted graphs after removing all
edge labels, vii) Reentrancy, computed on reentrant
edges only, viii) Semantic Role Labeling (SRL),
computed on :ARG-i roles only.

C Convergence Curve

Figure 7 presents the convergence curves of RGL
and AMRBART on the AMR2.0 dataset. The train-
ing process consists of 30 epochs. After each epoch,
we compute the SMATCH of RGL and AMRBART
on the validation set. Results in Figure 7 indicate
that RGL outperforms AMRBART significantly.

D Error propagation vs. structure loss

Figure 8 highlights the distinction between error
propagation and structure loss. Error propagation
is typically evaluated position-wise or within a lim-
ited window (Liu et al., 2021), and is observed
in almost every autoregressive method, including
sequence-to-sequence based AMR parsing. Once a
previous prediction is misplaced or incorrect, sub-
sequent predictions tend to follow the same pattern.
In contrast, structure loss evaluates the validity of a
node or relation based on its existence in the entire
gold graph, rather than its position or window. We

24

F1
 sc

or
e

ac
cu

ra
cy

 position

(a) Error Propagation (b) Structure Loss

 position

relation F1
node F1

0 20 40

1

0.8

0.6

0.4

0.2 0.5

60 80 100 0 10 20 30 40 50

0.9

0.8

0.7

0.6

relation F1
node F1

Figure 8: The descent of (a) position-wise accuracy and
(b) graph-wise F1-score of nodes and relations as the
decoding progresses. The results are from AMRBART
(Bai et al., 2022) on the test set of AMR 2.0.

argue that structure loss provides a more accurate
reflection of the challenges in AMR parsing and
other structure generation tasks because it measures
the overall quality of the generated AMR graph.

E Case Study

The illustrated example in figure 9 shows the ac-
cumulation of structural loss more intuitively. We
align the variables predicted by the model with the
standard AMR graph and mark the prediction er-
rors in red. From the figure, we can see that there
are more errors in the later part of the predicted
AMR graph. What’s more, the relation ":snt2" is
wrongly predicted due to the error of the previous
relations ":op1" and ":op2", which shows that the
duplicate dependencies imposed by sequence-to-
sequence manner on AMR parsing have a negative
effect.

25

AMR graph
(m / multi-sentence
 :snt1 (m2 / many
 :ARG0-of (s / sense-01
 :ARG1 (u / urgency)
 :time (w / watch-01
 :ARG0 m2
 :ARG1 (t3 / thing
 :manner-of (d / develop-02
 :ARG0 (t / thing)))
 :manner (q / quiet-04
 :ARG1 m2))))
 :snt2 (d2 / dragon
 :domain (y / you)
 :ARG0-of (c / coil-01))
 :snt3 (t2 / tiger
 :domain (y2 / you)
 :ARG0-of (c2 / crouch-01))
 :snt4 (a / admire-01
 :ARG0 (i / i)
 :ARG1 (p / patriot
 :ARG0-of (m3 / mind-04
 :mod (n / noble)))))

AMR graph predicted by AMRBART
(m / multi-sentence
 :snt1 (m2 / many
 :ARG0-of (s / sense-01
 :mod (u / urgency)
 :time (w / watch-01
 :ARG0 m2
 :ARG1 (t3 / thing
 :manner-of (d / develop-02
 :ARG0 (t / thing)))
 :manner (q / quiet-04
 :ARG1 m2))))
 :op1 (d2 / dragon
 :ARG0 (y / you)
 :ARG0-of (c / coil-01))
 :op2 (t2 / tiger
 :ARG0 (y2 / you)
 :ARG0-of (c2 / crouch-01))
 :snt2 (a / admire-01
 :ARG0 (i / i)
 :ARG1 (p / patriot
 :ARG0-of (m3 / mind-04
 :mod (n / noble)))))

Sentence
There are many who have a sense of urgency, quietly watching how things develop,you are dragons coiling, you are tigers crouching,
I admire noble-minded patriots.

Figure 9: An example of AMR parsing of the long sentence from the validation set of AMR 3.0.

26

