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Abstract

Multi-path voting methods like self-consistency
have been used to mitigate reasoning errors in
large language models caused by factual errors
and illusion generation. However, these meth-
ods require excessive computing resources as
they generate numerous reasoning paths for
each problem. Our experiments show that on
the arithmetic reasoning task, SVAMP, half
of the problems fail to obtain noticeable ac-
curacy gains when voting with more than three
paths. In this paper, we propose a novel multi-
path voting technique called Dynamic Voting,
which effectively reduces the number of rea-
soning paths during multi-path voting while
preserving accuracies by applying early exit-
ing for problems that large language models
can confidently solve. Experimental evalua-
tions on arithmetic, commonsense, and sym-
bolic reasoning tasks under few-shot and zero-
shot settings demonstrate that Dynamic Voting
achieves comparable accuracies employing sig-
nificantly fewer reasoning paths. Notably, one
of our Dynamic Voting strategies outperforms
self-consistency using only 24.7% of the num-
ber of paths on the LetterConcat task in the
few-shot setting. Furthermore, Dynamic Vot-
ing showcases strong robustness of thresholds.
It also demonstrates excellent generalizability
when combined with other voting techniques,
different models, and diverse prompts.

1 Introduction

Prominent large language models (LLMs) like
GPT-3 (Brown et al., 2020; Ouyang et al.,
2022), Chinchilla (Hoffmann et al., 2022), and
PaLM (Chowdhery et al., 2022; Chung et al., 2022)
demonstrate exceptional performance in natural
language processing tasks. Despite the success,
their performance on reasoning-heavy tasks, such
as mathematics, common sense, and logical reason-
ing tasks, remains limited when solely increasing
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the model size (Rae et al., 2021). To address this
issue, Wei et al. (2022) propose chain of thoughts
(CoT) to guide LLMs to reason step by step, which
however suffers from factual errors and hallucina-
tions in reasoning paths (Cobbe et al., 2021; Wang
et al., 2022b; Li et al., 2022; Weng et al., 2022; Ye
and Durrett, 2022). To mitigate the errors of CoT,
researchers propose multi-path voting methods, in-
cluding self-consistency (Wang et al., 2022b), DI-
VERSE (Li et al., 2022), and rationale-augmented
ensembles (Wang et al., 2022a), which generate
multiple reasoning paths and aggregate the paths
with voting. However, multiple reasoning paths
lead to significant increases in computational re-
sources. For instance, self-consistency generates
40 reasoning paths per question, while DIVERSE
employs 100, resulting in tens of times more com-
putational effort.

This paper aims to address the following prob-
lem: how to achieve comparable accuracy in multi-
path voting using significantly fewer computational
resources? One intuition is that simple problems
can be solved with fewer reasoning paths and tilting
computational resources to complex problems will
effectively improve the overall performance of rea-
soning. In our empirical investigation on an arith-
metic reasoning task, SVAMP (Patel et al., 2021),
57.5% of the problems demonstrate a remarkable
level of accuracy, reaching 95.7%, with only three
unanimous reasoning paths. And augmenting the
reasoning paths on these problems does not sig-
nificantly improve the accuracy. This shows that
generating more paths on half of the problems in
SVAMP is a waste of computational resources with
negligible benefit. A more detailed analysis of re-
source wastage can be found in Appendix A.

Inspired by Early Exiting (Viola and Jones,
2001), which prioritizes computational resources
to critical features to minimize computational con-
sumption, we propose Dynamic Voting to reduce
the number of reasoning paths while maintaining
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comparable accuracies in reasoning with LLMs.
The core idea behind Dynamic Voting is to apply
early exiting for problems that the LLMs can confi-
dently solve with a handful of paths, thus avoiding
unnecessary generation of numerous paths.

A key challenge in Dynamic Voting lies in the
identification of problems that the LLMs can con-
fidently solve. Self-consistency establishes a ro-
bust association between voting consistency and
accuracy, which aligns with our finding that a few
unanimous paths on SVAMP lead to high accu-
racy. Thus, we adopt voting consistency as the
confidence of the LLMs in solving problems and
validate it through a range of experiments.

Dynamic Voting is a simple and effective method
that involves multiple rounds of voting with cor-
responding consistency thresholds. Initially, the
LLM generates a few paths and votes on them. If
the voting consistency threshold is reached, the
voting concludes and the current voting result is
outputted. Otherwise, the LLM generates another
reasoning path and all the generated paths are used
for the subsequent round of voting. This iterative
process continues until the threshold is reached or
the number of paths reaches a preset maximum.
Figure 1 illustrates an example of the process.

In practice, we introduce two Dynamic Vot-
ing strategies: Confidence-based Dynamic Vot-
ing (CDV) and Percentage-based Dynamic Voting
(PDV). CDV employs a fixed threshold in each
round, offering a straightforward approach. How-
ever, it is limited by the need for prior knowledge
regarding the probability of correctly solving the
problem. For example, when the probability of
correct reasoning is 0.5, setting a threshold of 0.9
renders early exiting unlikely. To overcome this
limitation, PDV applies early exiting to a fixed pro-
portion of questions that obtain the highest consis-
tency in the current voting round, offering greater
flexibility and adaptability in determining when to
terminate the voting process. We evaluate these
strategies using the Openai GPT-3.5 model1 in few-
shot and zero-shot settings. Following Wei et al.
(2022) and Wang et al. (2022b), we conduct exper-
iments on Arithmetic Reasoning (GSM8K (Cobbe
et al., 2021), SVAMP (Patel et al., 2021)), Com-
monsense Reasoning (CSQA (Talmor et al., 2019),
StrategyQA (Geva et al., 2021)), and Symbolic
Reasoning (LetterConcat (Wei et al., 2022)) tasks.

1We utilize the GPT-3.5-turbo-0301 API (https://
platform.openai.com/docs/models/gpt-3-5) since it is
fee friendly and not updated iteratively like GPT-3.5-turbo.

Dynamic Voting achieves comparable accuracies
using significantly fewer reasoning paths than self-
consistency2. Across the five evaluated datasets,
Dynamic Voting achieves a comparable average
accuracy to self-consistency while employing less
than 45% of the reasoning paths. Specifically, in
the few-shot setting on LetterConcat, CDV out-
performs self-consistency using 24.7% of the rea-
soning paths. Moreover, Dynamic Voting demon-
strates substantial accuracy improvements under
reduced path constraints. When both are limited
to 25% reasoning path usage3, Dynamic Voting
achieves an average accuracy gain of 1.6 and 4.7
over self-consistency in the few-shot and zero-shot
settings, respectively. Remarkably, PDV improves
by 12.7 on LetterConcat in the zero-shot setting.
Furthermore, Dynamic Voting attains higher ac-
curacies when employing comparable paths. On
GSM8K, CDV and PDV achieve improvements of
1.9 and 1.0, respectively, compared to the highest
accuracy of self-consistency in the zero-shot setting
with less than 100% reasoning path usage.

In addition to its resource efficiency, Dynamic
Voting exhibits several excellent features. Dynamic
Voting demonstrates stronger robustness of thresh-
olds than self-consistency, providing flexibility in
setting appropriate threshold levels. Moreover, Dy-
namic Voting performs well when combined with
other voting techniques, different LLMs, and di-
verse prompts.

2 Related Works

2.1 CoT Reasoning with LLMs

Large language models have achieved remarkable
success in natural language processing tasks (Sri-
vastava et al., 2022), even surpassing human-level
performance in some cases (Brown et al., 2020;
Zhang et al., 2022a; Scao et al., 2022; Ouyang
et al., 2022; Hoffmann et al., 2022; Chowdhery
et al., 2022; Chung et al., 2022). However, the
ability of these models to solve complex reasoning
problems does not improve significantly by sim-
ply increasing model size (Rae et al., 2021). To
address this, Wei et al. (2022) propose chain of
thoughts (CoT), which is a sequence of intermedi-
ate steps (Ling et al., 2017), to assist the model in
reasoning step by step.

2We consider self-consistency as the basic voting technique
due to its computational simplicity.

3We adopt the same path setting as self-consistency, taking
forty paths per question as the maximum (100%).
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Several approaches have been proposed to im-
prove the performance of CoT. Some researchers
attempt to break down complex problems into sub-
problems, which are then solved sequentially (Zhou
et al., 2022; Drozdov et al., 2022). Others ex-
plore the use of additional tools such as code, re-
trieval, and symbolic languages to provide extra
information (Yao et al., 2022; Cheng et al., 2022;
Chen et al., 2022; Gao et al., 2022; Schick et al.,
2023). A simpler yet effective approach is self-
consistency (Wang et al., 2022b), which generates
multiple reasoning paths and yields the final output
through majority vote. Another approach involves
calibrating the reasoning paths using an additional
verifier (Li et al., 2022; Ye and Durrett, 2022).
However, calibrating approaches require training
additional verifiers and exhibit performance degra-
dation on out-of-distribution problems.

Multi-path voting is effective, but comes with
the drawback of causing a substantial increase in
computational resources due to multi-path gener-
ation. To address this issue, this paper aims to
achieve a comparable accuracy with significantly
fewer reasoning paths in reasoning with LLMs.

2.2 Early Exiting

Early Exiting optimizes inference and resource uti-
lization by interrupting computation when adequate
results are produced. To accelerate real-time face
detection, Viola and Jones (2001) propose to se-
lect a few crucial features from a vast number of
possible features for further processing. Similarly,
Persin (1994) and Cambazoglu et al. (2010) iden-
tify potentially highly ranked documents before-
hand to improve retrieval efficiency. In addition,
some researchers attempt to reduce the number
of model layers involved in computation by rely-
ing on intermediate layer outputs through entropy-
based (Teerapittayanon et al., 2016; Xin et al.,
2020; Liu et al., 2020), confidence-based (Kaya
et al., 2019; Schwartz et al., 2020), and patience-
based (Zhou et al., 2020) indicators. Drawing on
these insights, we propose Dynamic Voting that
aims to conserve computational resources in multi-
path voting by performing early exiting to prevent
unnecessary path generation. To the best of our
knowledge, this is the first work to apply early exit-
ing to voting with LLMs.

3 Dynamic Voting

This section provides a comprehensive exposition
of our proposed method, Dynamic Voting. We
present an overview of the method in Section 3.1.
We then introduce two Dynamic Voting strategies,
Confidence-based Dynamic Voting and Percentage-
based Dynamic Voting in Section 3.2 and 3.3.

3.1 Overall Process

As stated in Section 1, the consistency of the votes
has a strong correlation with the reasoning accuracy.
Thus, we estimate the confidence of the LLMs us-
ing consistency. How to reasonably quantify voting
consistency is one of the crucial factors in the suc-
cess of Dynamic Voting. In this paper, we simply
use the proportion of the majority votes in each
voting round as consistency and experimentally
demonstrate the effectiveness of this plain scheme.

Figure 1 illustrates an example of the overall pro-
cess of Dynamic Voting, which involves multiple
rounds of generation and voting progress. We first
set the consistency threshold t, the initial number
of votes v, and the maximum number of votes V .
For a problem p, we use the LLM to generate v rea-
soning paths and vote on these paths. If the voting
consistency reaches t, the voting result is consid-
ered the final reasoning output, and the generation
and voting process is exited. Otherwise, Dynamic
Voting will proceed to the next round where the
LLM generates another path and the voting process
is carried out on all the v+1 generated paths. This
generation and voting process continues until the
voting consistency reaches t or until V paths are
generated and voted on.

It is worth noting that varied thresholds result
in different accuracies and computational resource
consumption. A loose threshold allows more ques-
tions to exit early, which saves more computational
resources but reduces accuracy. Conversely, strict
thresholds lead to more computational resource
consumption and higher accuracy.

3.2 Confidence-based Dynamic Voting

In Confidence-based Dynamic Voting (CDV), a
consistency threshold tc is set in each round of vot-
ing. If the proportion of the majority votes in the
current round reaches the set threshold, the result
is considered valid, and early exiting is performed.
For example, there are 10 paths in the k-th round of
voting and tc = 0.5, the voting ends if the number
of paths to an answer reaches 5. Otherwise, the pro-
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user: If there are 3 cars in 

the parking lot and 2 more 

cars arrive, how many cars 

are in the parking lot?

assistant: There are 3 cars in 

the parking lot already. 2 

more arrive. Now there are 3 

+ 2 = 5 cars. The answer is 5.

…

user: James decides to run 3 

sprints 3 times a week.  He 

runs 60 meters each sprint.  

How many total meters does 

he run a week?

LLM

He runs 3 * 3 = 9 times a week. So he totally run 

9 * 60 = 540 meters a week. The answer is 540.

James runs 3 (times a week) * 60 (meters each 

spirit) = 180 meters a week. The answer is 180.

James runs 3 * 60 = 180 meters each running 

session. He runs 3 times a week, so 3 * 180 = 

540 meters a week. The answer is 540.

Each time, James runs 3 * 60 = 180 meters. He 

runs this 3 times a week, so he runs a total of 

180 * 3 = 540 meters a week. The answer is 540.

The result of this round is 540, and 

the consistency is 2 (number of votes 

with 540) / 3 (number of total votes) 

= 0.67, which is lower than 0.7 (a 

pre-set threshold) thus goes to the 

next round of voting.

The result of this round is 540, and 

the consistency is 3 / 4 =0.75, which 

exceeds 0.7 thus the voting ends and 

the result is 540.

Round 1

Round 2

Figure 1: The overall process of Dynamic Voting. The figure shows an example of two rounds of voting with the
consistency threshold set to 0.7. In Round 1, the voting consistency does not reach the pre-set threshold, so the
voting proceeds to Round 2. In Round 2, the LLM generates an additional path to participate in the voting and the
consistency reaches the threshold, upon which the voting ends and the voting result is output. In practice, voting will
continue until the consistency threshold is reached or the number of generated paths reaches a predefined maximum.

cess continues to the next round of path generation
and voting.

In general, achieving high confidence in later
rounds of the Dynamic Voting process is less likely
as those questions that the LLM can solve confi-
dently are usually exited in the early stages. An
ideal option for designing confidence-based thresh-
olds would be to gradually decrease the threshold
value as the number of rounds increases. However,
in this paper, we opt for a simple approach of set-
ting a constant threshold value for all rounds to
avoid complex fine-grained threshold tuning.

3.3 Percentage-based Dynamic Voting
One challenge in effectively utilizing CDV is the
selection of an appropriate threshold based on prior
knowledge, as discussed in Section 1. To facil-
itate a simpler and more efficient application of
Dynamic Voting, we propose a strategy that auto-
matically adjusts the consistency threshold when
dealing with batch problems, called Percentage-
based Dynamic Voting (PDV). In PDV, we set a per-
centage threshold tp, and then the questions with
the top tp% of consistencies in each round will be
applied early exiting. The percentage threshold is
solely employed to control the proportion of ques-
tions exiting early in each round, eliminating the
need for any prior knowledge about the LLMs or
the questions themselves.

PDV can handle batch problems quite efficiently
as it ensures that a certain percentage of questions
always exit in each voting round. The disadvan-
tage of PDV is that it does not work on individ-
ual questions well. It is noteworthy that in PDV,

an increased threshold implies the early exit of a
greater number of questions each round, which
corresponds to lower accuracy and reduced compu-
tational resource consumption.

4 Experiments

4.1 Datasets

Following Wei et al. (2022) and Wang et al.
(2022b), we conduct experiments on Arithmetic,
Commensense, and Symbolic reasoning tasks. It
is worth noting that GPT-3.5 with self-consistency
is capable of achieving close to 100% accuracy
on certain tasks such as MultiArith (Roy and Roth,
2015), ARC (Clark et al., 2018), and CoinFlip (Wei
et al., 2022). Consequently, we carefully select
several representative datasets that are moderately
challenging for GPT-3.5.

For the Arithmetic Reasoning task, we utilize
GSM8K (Cobbe et al., 2021) and SVAMP (Pa-
tel et al., 2021), two challenging sets of math
word problems. For Commensense Reasoning, we
employ CSQA (Talmor et al., 2019) and Strate-
gyQA (Geva et al., 2021), both of which are consid-
ered to be highly challenging question answering
benchmarks that require a general understanding of
common sense. Finally, for Symbolic Reasoning,
we take the LetterConcat task (Wei et al., 2022), in
which GPT-3.5 is required to concatenate the last
letters of four given words.

In our experiments, we use the test split for
GSM8K and SVAMP. For CSQA, we use the dev
split since the labels of the test set are not available.
As for LetterConcat, we construct the test set by
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randomly generating 1000 examples using the 1000
most commonly used surnames and first names
from Name Census4. The settings for the afore-
mentioned four datasets align with those employed
by Wang et al. (2022b). Regarding StrategyQA,
we randomly sample 1000 questions from the train-
filtered set because the evaluation on the test set ne-
cessitates the use of the StrategyQA Leaderboard5.
Multiple evaluations on various thresholds are re-
quired in this study and frequent submissions are
not allowed in the Leaderboard.

4.2 Prompts and Instructions

We conduct experiments on the GPT-3.5 model6

in both few-shot and zero-shot settings. To form
the prompts for the few-shot setting, we use the
same demonstrations as proposed by Wang et al.
(2022b), with minor modifications made to create
dialog histories that GPT-3.5 can leverage. In the
zero-shot setting, we provide one-sentence instruc-
tions that set constraints on the desired word count
and the format of the final answer. The complete
prompts and instructions used on the five evaluated
datasets are provided in Appendix E.

4.3 Hyper Parameters

We compare the performance of Dynamic Voting
and Self-consistency under various path usage con-
straints, including 25%, 50%, 75%, and 100%.
Specifically, following Wang et al. (2022b), the
maximum path constraint (100%) is defined as vot-
ing with forty votes per question.

For Self-consistency, constraints result in a re-
duced number of votes per question. For example,
a usage constraint of 25% implies the use of 10
paths per question, while a constraint of 50% cor-
responds to 20 paths, and so forth. In the case
of Dynamic Voting, the initial round commences
with 3 votes. The constraints in Dynamic Voting
indicate the percentage of used paths on a dataset
relative to the maximum path constraint.

To determine the appropriate thresholds for Dy-
namic Voting under different reasoning path usage
constraints, we follow the methodology presented
by Kaya et al. (2019) and use a validation set com-
prising 100 randomly selected samples from the
training set. In CDV, the threshold search range is

4https://namecensus.com/.
5https://leaderboard.allenai.org/strategyqa/

submissions/public.
6We utilize the GPT-3.5-turbo-0301 API (https://

platform.openai.com/docs/models/gpt-3-5).

set between 0.1 and 0.95, with a granularity of 0.05.
For PDV, the range is set between 1 and 30, with a
granularity of 1. Notably, the threshold searching
necessitates only one generation of 40 paths for
100 examples on each dataset, thus the searching
computational overhead is trivial. The searched
thresholds can be found in Appendix B.

In accordance with Wang et al. (2022b), we in-
corporate temperature sampling to generate diverse
reasoning paths. During decoding, we set the tem-
perature to 1.5 without top-k/top-p truncation.

4.4 Experimental Results

4.4.1 Fewer Paths for Comparable Accuracy

Table 1 and Figure 2 present the experimental re-
sults on various reasoning path usage constraints
and the following conclusions can be drawn:

1) Dynamic Voting achieves comparable accu-
racies to self-consistency with significantly fewer
reasoning paths. In Table 1, in the few-shot and
zero-shot settings, Dynamic Voting requires only
25% and 50% of the reasoning path usages, respec-
tively, while maintaining average accuracies on par
with self-consistency. In particular, the CDV in
the zero-shot setting on StrategyQA and the PDV
in the few-shot setting on LetterConcat meet the
accuracy of self-consistency using less than 25%
of the paths. In Figure 2, Dynamic Voting achieves
the highest accuracy of SC using less than 60% of
the paths. This highlights the potential of Dynamic
Voting to conserve substantial computational re-
sources compared to self-consistency.

2) Dynamic Voting significantly outperforms
self-consistency on all tasks under a limited rea-
soning path usage. In Table 1, When the reasoning
path usage constraint is set to 25%, Dynamic Vot-
ing surpasses self-consistency on all five tasks. On
average, CDV and PDV exhibit performance im-
provements of 1.6 and 1.6 in the few-shot setting,
and 4.7 and 4.8 in the zero-shot setting, respec-
tively, compared to self-consistency. In Figure 2,
Dynamic Voting consistently achieves higher accu-
racies than SC when the path usage limit is below
80%. These results indicate that Dynamic Voting
offers a substantial advantage over self-consistency
in scenarios with constrained computational re-
sources.

3) Dynamic Voting reduces reasoning path
usage with negligible performance degradation
under extremely strict thresholds. When apply-
ing strict thresholds in Dynamic Voting, only a
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Task Method
fewshot zeroshot

≤ 25% ≤ 50% ≤ 75% ≤ 100% ≤ 25% ≤ 50% ≤ 75% ≤ 100%

GSM8K
SC 82.6(25.0) 86.1(50.0) 87.3(75.0) 87.9(100.0) 80.2(25.0) 84.0(50.0) 85.1(75.0) 85.4(100.0)

CDV 86.5(25.0) 87.9(42.9) 87.9(52.3) 87.9(52.3) 82.7(28.4) 85.1(46.6) 85.3(60.4) 85.4(68.0)
PDV 85.8(24.7) 87.6(43.1) 87.9(65.5) 87.9(85.9) 84.2(25.6) 85.4(43.1) 85.7(58.1) 85.4(85.9)

SVAMP
SC 84.5(25.0) 86.3(50.0) 86.3(75.0) 86.7(100.0) 82.9(25.0) 85.9(50.0) 87.6(75.0) 87.4(100.0)

CDV 86.0(23.6) 86.1(31.4) 86.1(37.5) 86.1(37.5) 85.1(23.8) 87.1(40.7) 87.2(57.0) 87.2(57.0)
PDV 86.2(25.6) 86.8(47.2) 86.7(58.1) 86.7(85.9) 86.4(24.7) 87.8(43.2) 87.4(65.5) 87.4(85.9)

CSQA
SC 80.1(25.0) 80.5(50.0) 80.6(75.0) 81.0(100.0) 72.2(25.0) 75.8(50.0) 75.6(75.0) 75.8(100.0)

CDV 80.5(23.3) 80.8(37.1) 80.8(40.2) 80.8(40.2) 74.0(18.4) 75.8(39.6) 75.9(64.4) 75.7(93.4)

PDV 80.3(21.9) 81.0(47.1) 81.0(65.5) 81.0(85.9) 75.6(22.5) 76.0(43.1) 75.8(65.5) 75.8(85.9)

StrategyQA
SC 75.7(25.0) 77.0(50.0) 77.2(75.0) 76.7(100.0) 71.8(25.0) 73.5(50.0) 74.2(75.0) 73.7(100.0)

CDV 76.3(22.0) 76.9(43.6) 76.9(54.8) 76.9(55.1) 73.7(22.5) 73.6(38.6) 73.8(64.3) 73.8(67.2)
PDV 76.4(22.5) 77.4(36.9) 76.7(65.5) 76.7(85.9) 73.0(22.5) 74.1(47.2) 73.7(58.1) 73.7(85.9)

LetterConcat
SC 85.0(25.0) 86.2(50.0) 86.8(75.0) 86.7(100.0) 62.4(25.0) 79.8(50.0) 86.3(75.0) 89.9(100.0)

CDV 86.4(23.4) 86.4(31.5) 86.4(31.5) 86.4(31.5) 78.7(30.9) 84.8(48.5) 89.7(72.4) 89.9(97.0)
PDV 87.0(24.7) 86.8(43.2) 86.7(65.5) 86.7(85.9) 75.1(24.7) 89.3(47.2) 89.8(65.5) 89.9(85.9)

AVG
SC 81.6(25.0) 83.3(50.0) 83.7(75.0) 83.9(100.0) 74.2(25.0) 79.9(50.0) 81.7(75.0) 82.4(100.0)

CDV 83.2(23.5) 83.8(37.6) 83.8(43.7) 83.8(43.7) 78.9(24.8) 81.3(42.9) 82.3(63.5) 82.3(76.7)
PDV 83.2(23.9) 84.0(43.6) 83.9(64.2) 83.9(85.9) 79.0(24.0) 82.4(44.6) 82.4(62.4) 82.3(85.9)

Table 1: The accuracies of Self-consistency and Dynamic Voting under different reasoning path usage constraints.
"SC" means self-consistency. ≤ 25% indicates that when applying the threshold, less than 25% of the paths are used
on the validation set compared with the maximum path constraint (forty votes per question). Since the threshold is
searched from the validation set, the actual usage on the test set may be slightly higher than the constraint. The
values in brackets indicate the actual usage on the test set (%). The accuracies exceeding SC under each constraint
are marked in bold. The accuracies reaching SC (40-votes) are marked underlined.

small number of questions exit early in each voting
round. The ≤ 100% results in Table 1 exemplify
this situation7. Despite these stringent thresholds,
Dynamic Voting achieves a reduction in reason-
ing path usage with an average accuracy loss of
no more than 0.1% in both few-shot and zero-shot
settings. In particular, the CDV in the few-shot
setting uses only 43.7% of the usage while main-
taining high accuracy. These findings emphasize
the practical applicability of Dynamic Voting, even
if the threshold search phase is omitted and a strict
threshold is employed directly.

4.4.2 Higher Accuracy on Comparable Paths

In Dynamic Voting, the preset maximum number
of votes V also affects the accuracy. We set vary-
ing maximums and analyze the effect of different
maximums on Dynamic Voting. The thresholds are
set to those corresponding to ≤ 50% in Table 1,
with which Dynamic Voting achieves accuracies
comparable to self-consistency on most tasks.

As shown in Table 2, Dynamic Voting uses more
reasoning paths and the accuracies improve as the
maximum increases. It is noteworthy that PDV in
the zero-shot setting only utilizes additional 3.6%

7In the experiments, we set tc = 0.95 and tp = 1.

0 20 40 60 80 100
Paths Usage (%)

80
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A
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)
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CDV
PDV

Figure 2: The few-shot results of self-consistency and
Dynamic Voting on the GSM8K dataset under different
path usage constraints. The zero-shot results and the
results on the other datasets are in Appendix C.

of paths to achieve a decent improvement of 0.6 on
average accuracy when the maximum is increased
from 40 to 100. When V is set to 100, the ac-
curacies of Dynamic Voting on several datasets
exceed self-consistency with still fewer reasoning
paths, such as GSM8K, SVAMP, and CSQA in the
zero-shot setting. This demonstrates that the accu-
racy can be improved by increasing the maximum
number of votes in Dynamic Voting and Dynamic
Voting typically outperforms self-consistency with
comparable reasoning path usage.
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Task Method
fewshot zeroshot

max=40 max=60 max=80 max=100 max=40 max=60 max=80 max=100

GSM8K
SC 87.9(100.0) - - - 85.4(100.0) - - -

CDV 87.9(42.9) 88.6(60.2) 88.7(77.4) 88.6(94.5) 85.1(46.6) 86.5(64.6) 86.9(82.4) 87.2(99.9)
PDV 87.6(43.1) 88.2(52.1) 88.3(66.4) 88.2(80.5) 85.4(43.1) 86.2(45.1) 86.1(45.6) 86.1(45.8)

SVAMP
SC 86.7(100.0) - - - 87.4(100.0) - - -

CDV 86.1(31.4) 86.5(43.0) 86.6(54.6) 86.8(66.1) 87.1(40.7) 87.6(55.8) 87.5(70.7) 88.0(85.5)
PDV 86.8(47.2) 86.6(37.7) 86.5(47.3) 86.6(56.8) 87.8(43.2) 88.3(45.2) 88.2(45.7) 88.2(46.1)

CSQA
SC 81.0(100.0) - - - 75.8(100.0) - - -

CDV 80.8(37.1) 80.5(51.4) 80.6(65.5) 80.8(79.5) 75.8(39.6) 76.4(52.2) 77.1(64.3) 77.3(76.3)
PDV 81.0(47.1) 80.3(37.4) 80.4(46.5) 80.7(55.6) 76.0(43.1) 76.5(45.1) 76.7(45.6) 76.8(45.9)

StrategyQA
SC 76.7(100.0) - - - 73.7(100.0) - - -

CDV 76.9(43.6) 76.7(60.6) 76.8(77.3) 77.3(94.0) 73.6(38.6) 73.5(51.4) 73.6(63.7) 73.4(75.6)
PDV 77.4(36.9) 76.6(46.2) 76.7(57.5) 77.2(68.7) 74.1(47.2) 73.9(50.4) 73.9(51.4) 74.1(51.8)

LetterConcat
SC 86.7(100.0) - - - 89.9(100.0) - - -

CDV 86.4(31.5) 86.6(44.0) 86.5(56.5) 86.5(68.9) 84.8(48.5) 86.0(65.8) 87.2(82.6) 87.4(99.2)
PDV 86.8(43.2) 86.3(24.1) 86.3(28.7) 86.3(33.2) 89.3(47.2) 89.7(50.4) 90.2(51.4) 90.1(51.8)

AVG
SC 83.9(100.0) - - - 82.4(100.0) - - -

CDV 83.8(37.6) 83.9(52.3) 84.0(66.9) 84.1(81.4) 81.3(42.9) 82.0(58.1) 82.5(73.0) 82.7(87.6)
PDV 84.0(43.6) 83.7(40.1) 83.8(50.2) 83.9(60.1) 82.4(44.6) 82.9(47.0) 83.0(47.7) 83.0(48.0)

Table 2: The accuracies under different maximum number of votes. Results with accuracy exceeding SC (40-votes)
on each dataset are marked in bold.
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Figure 3: The few-shot results of SC and Dynamic Voting under different thresholds. Note that a smaller threshold
in PDV implies a stricter exiting condition, that is, a smaller number of samples exiting each round.

4.5 Analyses

To get a better insight into Dynamic Voting, we
further analyze the applicability of Dynamic Vot-
ing in different application scenarios. The high
robustness of thresholds provides high fault toler-
ance in threshold settings, making the method more
user-friendly in practical applications. High gen-
eralizability when combined with different voting
techniques, LLMs, and prompts demonstrates the
reliability and expansibility. The analyses are de-
signed for answering the following questions: Q1:
Does Dynamic Voting show strong robustness of
thresholds? Q2: Does Dynamic Voting still work
with multi-path voting techniques that use Veri-
fiers? Q3: Does Dynamic Voting still work on
other large language models? Q4: Does Dynamic
Voting still work across different prompts?

4.5.1 Robustness of Thresholds
As detailed in Section 3.1, the selection of thresh-
olds involves a trade-off between accuracy and re-
source consumption. However, determining the
optimal threshold is a challenging task due to the
variable probabilities of correct reasoning by LLMs
across different problems. The robustness of thresh-
old settings offers greater flexibility, rendering the
approaches more user-friendly and practical.

To assess the robustness of threshold settings,
we conduct an analysis of the accuracy variations
in both self-consistency and Dynamic Voting under
different thresholds, and the results are presented in
Figure 3. We observe that both self-consistency and
Dynamic Voting exhibit a similar trade-off trend:
a stricter threshold tends to produce a higher accu-
racy rate. Notably, the accuracy of Dynamic Voting
varies more smoothly with changing thresholds on
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Setting Method ≤ 25% ≤ 50% ≤ 75% ≤ 100%

Few-shot
DIVERSE 89.2(25.0) 91.9(50.0) 92.9(75.0) 93.0(100.0)

CDV 92.3(24.2) 93.0(48.6) 93.0(49.9) 93.0(49.9)
PDV 91.4(23.1) 93.0(47.2) 93.0(65.5) 93.0(85.9)

Zero-shot
DIVERSE 85.4(25.0) 88.7(50.0) 90.7(75.0) 91.5(100.0)

CDV 89.3(27.3) 91.5(46.0) 91.5(64.9) 91.5(64.9)
PDV 88.5(23.9) 91.5(47.2) 91.5(65.5) 91.5(85.9)

Table 3: Results with DIVERSE on the GSM8K dataset
under different resource constraints. The accuracies ex-
ceeding DIVERSE under each constraints are marked in
bold and the accuracies reaching DIVERSE (40-votes)
are marked underlined.

Model Method ≤ 25% ≤ 50% ≤ 75% ≤ 100%

Code
SC 75.9(25.0) 78.2(50.0) 79.5(75.0) 80.7(100.0)

CDV 78.4(25.1) 80.4(44.8) 80.3(58.9) 80.3(58.9)
PDV 78.2(23.9) 80.6(43.1) 80.7(65.5) 80.7(85.9)

GPT-4
SC - 92.7(50.0) 94.1(75.0) 95.2(100.0)

CDV - 95.2(53.9) 95.2(53.9) 95.2(53.9)
PDV - 94.6(53.7) 95.2(65.4) 95.2(81.6)

LLaMA-7B
SC 8.5(25.0) 11.2(50.0) 11.4(75.0) 12.1(100.0)

CDV 9.0(26.4) 10.8(45.2) 12.7(68.0) 12.2(92.3)
PDV 9.6(23.9) 11.6(47.2) 12.6(74.6) 12.5(85.9)

Table 4: Results on GSM8K using Code-davinci-002
API, GPT-4 API, and LLaMA-7B.

all the five evaluated tasks, suggesting that it pos-
sesses superior robustness of threshold compared
to self-consistency. The findings are consistent in
the zero-shot setting, with further details provided
in Appendix D.

4.5.2 Dynamic Voting with Verifier

There are also multi-voting techniques to improve
reasoning performance using additional verifiers,
such as DIVERSE (Li et al., 2022). We conduct ex-
periments with DIVERSE on the GSM8K dataset
to assess the compatibility of Dynamic Voting with
additional verifiers. As shown in Table 3, Dy-
namic Voting demonstrates similar efficiency to
DIVERSE, that is, Dynamic Voting outperforms
DIVERSE by a wide margin at low reasoning path
usage and achieves comparable accuracies as DI-
VERSE with less than half the reasoning paths.
This highlights the strong compatibility of Dy-
namic Voting when combined with other voting
techniques.

4.5.3 Dynamic Voting on Other LLMs

Dynamic Voting is a technique of integration at the
output side, with dynamic adjustment of the num-
ber of inferences, which can be used logically on
all language models. We further experiment with

Prompt Method ≤ 25% ≤ 50% ≤ 75% ≤ 100%

Prompt 2
SC 84.4(25.0) 86.9(50.0) 87.5(75.0) 87.3(100.0)

CDV 86.0(22.8) 87.3(40.4) 87.3(48.8) 87.3(48.8)
PDV 86.9(23.9) 87.5(47.2) 87.3(74.6) 87.3(85.9)

Prompt 3
SC 83.9(25.0) 86.7(50.0) 87.6(75.0) 87.9(100.0)

CDV 85.8(23.8) 87.6(47.0) 87.6(55.8) 87.6(55.8)
PDV 86.5(23.9) 87.6(47.2) 87.9(74.6) 87.9(85.9)

Table 5: Results on GSM8K with diverse prompts.

Openai’s code-davinci-0028 API, GPT-49 API, and
LLaMA-7B (Touvron et al., 2023) on the GSM8K
task in the few-shot setting. The performance of
GPT-4 stands out with high accuracy and consis-
tency, achieving an impressive accuracy rate of
95.2% when employing four votes in SC. More-
over, we observe no significant improvement in ac-
curacy when increasing the number of votes from
four to ten. Consequently, we consider four votes
in the SC method as 100% path usage for our exper-
iments with GPT-4, while 25% path usage indicates
a single answer without voting. When conducting
experiments with Code-davinci-002 and LLaMA-
7B, we maintain the 100% path usage as forty
votes. The results of the experiments are presented
in Table 4. Dynamic Voting outperforms self-
consistency significantly at low reasoning paths
usage and achieves comparable accuracies to the
best performance of self-consistency using fewer
reasoning paths, which demonstrates the generaliz-
ability of Dynamic Voting across different models.
It is noteworthy that achieving a target accuracy
of 95% using GPT-4 incurs a cost exceeding $40
when employing SC, whereas the cost is less than
$24 when utilizing Dynamic Voting.

4.5.4 Dynamic Voting Across Varied Prompts
Different prompts can lead to varying reasoning
accuracies in large language models (Wang et al.,
2022b,a; Zhang et al., 2022b). In this analysis, we
aim to investigate the efficiency of Dynamic Vot-
ing when employed with different prompts. We
compare the accuracies of Dynamic Voting and
self-consistency on the GSM8K dataset at vari-
ous paths usage levels, using another two distinct
prompts, one generated by ChatGPT10 (Prompt 2)
and one written by the authors (Prompt 3). The
whole prompts used can be found in Appendix E.

As shown in Table 5, Dynamic Voting con-

8https://platform.openai.com/docs/models/
gpt-3-5.

9https://platform.openai.com/docs/models/
gpt-4.

10https://chat.openai.com.
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sistently achieves higher accuracies than self-
consistency when the reasoning paths usage is
below 50%. Moreover, Dynamic Voting always
achieves accuracies comparable to self-consistency
with only about 50% of the reasoning paths, regard-
less of the prompt used. These findings highlight
the robustness of Dynamic Voting in maintaining
high performance across diverse prompts.

5 Conclusion

To address the problem of computational resource
wastage caused by multi-path voting using large
language models, this paper proposes Dynamic Vot-
ing and designs Confidence-based and Percentage-
based Dynamic Voting methods, which achieve
comparable performance to self-consistency us-
ing significantly fewer reasoning paths. We
demonstrate the effectiveness and efficiency of Dy-
namic Voting on Arithmetic Reasoning (GSM8K,
SVAMP), Commensense Reasoning (CSQA, Staat-
egyQA), and Symbolic Reasoning (LetterConcat)
tasks using the GPT-3.5 model in few-shot and
zero-shot settings. Dynamic Voting achieves com-
parable accuracies to self-consistency on all the five
evaluated tasks with less than half of the reasoning
paths. Moreover, Dynamic Voting performs more
robustly for the selection of thresholds than self-
consistency and demonstrates its generalizability
combined with other voting techniques, different
LLMs, and varied prompts. Our study provides
valuable insights for developing efficient and effec-
tive reasoning methods with large language models.
Future research can explore more sophisticated Dy-
namic Voting methods or explore the application
of Dynamic Voting in other learning scenarios.

Limitations

Dynamic Voting is an effective approach that
can significantly reduce computational resource
consumption when using large language models
(LLMs) for multi-path voting to solve reasoning
problems. Moreover, it has shown promising per-
formance in both the few-shot and zero-shot set-
tings. Nevertheless, we acknowledge five limita-
tions of this approach.

Firstly, Dynamic Voting cannot calibrate the
wrong answer to a problem that LLMs would not
be able to solve. LLMs may stubbornly assume that
certain incorrect facts are correct and repeatedly
generate these in their reasoning. In such cases,
Dynamic Voting can only end the path generation

process early without calibrating the answer to be
correct.

Secondly, Confidence-based Dynamic Voting re-
quires some prior knowledge of the likelihood of
the LLMs solving the problem. An inappropriate
threshold setting can still invalidate Dynamic Vot-
ing, for instance, if the model has a probability of
generating a correct answer below 0.1 when faced
with a difficult problem and we set the threshold
to 0.9, this can degrade Dynamic Voting into self-
consistency.

Thirdly, Percentage-based Dynamic Voting is
not adept at handling individual questions, which
presents a challenge for deploying applications that
handle single instance requests in real time.

Fourthly, due to the inaccessibility of other large
language models, Dynamic Voting has been tested
only on the GPT series models and LLaMA-7B.
Yet, this limitation is currently widespread in works
that explore LLMs.

Lastly, Dynamic Voting has only been tested on
English reasoning tasks with specific answers and
is not suited to natural language generation tasks
such as summarization and translation. However, it
is essential to note that this limitation is not unique
to Dynamic Voting but is inherent in all current
multi-path voting methods.

In summary, while Dynamic Voting is a valu-
able approach for reducing computational resource
consumption in multi-path voting, it is crucial to
consider these limitations carefully to optimize its
performance and applicability in real-world scenar-
ios. Subsequent efforts will center on ameliorating
these limitations and extending the scope of Dy-
namic Voting scenarios.

Ethics Statement

We hereby affirm that all co-authors of this pa-
per are cognizant of and uphold the ACL Code of
Ethics. In this study, we present an effective ap-
proach that significantly curtails resource consump-
tion while using large models for multi-path voting
to resolve reasoning problems. Our contribution
concentrates on the methodology rather than the
development of data and language models, which
does not raise any ethical issues. Nonetheless, the
publicly accessible datasets and pre-trained models
employed in this research may harbor negative ef-
fects, such as gender and religious bias. As a result,
we urge other researchers to exercise caution when
employing our methods and these data.
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A Resource Wastage in Multi-path Voting

Multi-path voting methods like self-consistency
emerge as potent techniques for enhancing the rea-
soning accuracy of large language models. How-
ever, the drawback of these methods lies in the
inefficient utilization of computational resources
due to the generation of an excessive number of
reasoning paths for each problem.

We extensively explore the computational re-
source wastage in multi-path voting, using self-
consistency on GPT-3.5 across five distinct datasets
as an example. When voting with 3 paths, we find
that there are 39.4%, 57.5%, 47.2%, 33.8%, and
59.0% of the questions on the GSM8K, SVAMP,
CSQA, StrategyQA, and LetterConcat datasets ob-
tain unanimous votes, respectively. Then we in-
crease the number of paths for voting on the ques-
tions receiving unanimous votes, and the results
are presented in Table 6. It becomes evident that
augmenting the number of paths does not yield
a significant enhancement in accuracy for these
questions. In particular, a degradation in accuracy
can be observed on StrategyQA. This observation
implies that allocating substantial inference compu-
tational resources to nearly half of the problems in
the datasets is redundant, as an investment of over
ten times the computational resources results in
less than 1% improvement in accuracy. To mitigate
the issue, Dynamic Voting applies early exiting
for problems that demonstrate high consistency in
voting, thereby curbing unnecessary computations.

Paths GSM8K SVAMP CSQA StrategyQA LetterConcat

3 97.1 95.7 89.6 87.2 94.9
5 97.1 95.7 89.6 87.2 94.9

10 97.3 95.8 89.6 87.2 95.1
20 97.3 95.7 89.9 87.2 95.8
40 97.3 96.5 89.9 86.9 95.8

Table 6: Self-consistency accuracies on questions that
get unanimous votes with 3 paths.

B Searched Thresholds

The searched thresholds are shown in Table 7.

C Results under Different Path Usages

The experimental results under different path us-
ages are shown in Figure 5. It is clear that Dynamic
Voting consistently achieves higher accuracies than
self-consistency on all the five evaluated datasets
when paths are limited to under 50%. Except for
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Task Method fewshot zeroshot
≤ 25% ≤ 50% ≤ 75% ≤ 100% ≤ 25% ≤ 50% ≤ 75% ≤ 100%

GSM8K
SC 10 20 30 40 10 20 30 40

CDV 0.40 0.70 0.95 0.95 0.35 0.55 0.70 0.95
PDV 17 7 3 1 16 7 4 1

SVAMP
SC 10 20 30 40 10 20 30 40

CDV 0.55 0.70 0.95 0.95 0.45 0.65 0.95 0.95
PDV 16 6 4 1 17 7 3 1

CSQA
SC 10 20 30 40 10 20 30 40

CDV 0.55 0.80 0.95 0.95 0.10 0.30 0.45 0.95
PDV 21 6 3 1 20 7 3 1

StrategyQA
SC 10 20 30 40 10 20 30 40

CDV 0.40 0.70 0.90 0.95 0.40 0.55 0.80 0.95
PDV 20 9 3 1 20 6 4 1

LetterConcat
SC 10 20 30 40 10 20 30 40

CDV 0.70 0.95 0.95 0.95 0.20 0.30 0.40 0.95
PDV 17 7 3 1 17 6 3 1

Table 7: The thresholds used under different resource consumption. The thresholds in SC means the number of used
votes. The thresholds in CSV and PDV means consistency thresholds tc and percentage thresholds tp, respectively.
These thresholds are searched via a validation set containing 100 randomly chosen samples from training sets. The
threshold value indicates that when the threshold is applied by the method, less than the corresponding percentage
of paths are used on the validation set. For instance, 0.40 in the second row (GSM8K, CDV, fewshot, ≤ 25%)
means that when the threshold is set to 0.40, CDV in the few-shot setting on GSM8K uses less than 25% of the
paths compared with SC which using 40 votes per question.
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Figure 4: The zeroshot results of Self-consistency and Dynamic Voting under different thresholds.

the few-shot setting on StrategyQA and LetterCon-
cat, Dynamic Voting outperforms self-consistency
using fewer paths.

D Zero-shot Results with Different
Thresholds

The experimental results with different thresholds
in the zero-shot setting are shown in Figure 4. The
results in the zero-shot setting lead to similar con-
clusions as those from the results in the few-shot
setting in Figure 3. That is, Dynamic Voting ex-
hibits greater robustness of thresholds compared to
self-consistency.

E Prompts and Instructions

The prompts and instructions used in this paper
are shown from Table 8 through Table 13. All
of the prompts 1 are rewritten from the prompts
in Wang et al. (2022b) into dialogue form. On
GSM8K, prompt 2 is generated by ChatGPT11, and
prompt 3 is written by the authors of this paper.
All experiments in this paper are done based on
prompts 1 except for the analysis on prompts in
Section 4.5.4.

11https://chat.openai.com.
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Figure 5: The results of Self-consistency and Dynamic Voting under different reasoning paths usages.

3098



GSM8K / SVAMP Prompt 1 - Fewshot Setting:

system: You are a helpful assistant good at mathematical reasoning.

user: There are 15 trees in the grove. Grove workers will plant trees in the grove today. After they are done, 

there will be 21 trees. How many trees did the grove workers plant today?

assistant: We start with 15 trees. Later we have 21 trees. The difference must be the number of trees they 

planted. So, they must have planted 21 - 15 = 6 trees. The answer is 6.

user: If there are 3 cars in the parking lot and 2 more cars arrive, how many cars are in the parking lot?

assistant: There are 3 cars in the parking lot already. 2 more arrive. Now there are 3 + 2 = 5 cars. The 

answer is 5.

user: Leah had 32 chocolates and her sister had 42. If they ate 35, how many pieces do they have left in total?

assistant: Leah had 32 chocolates and Leah's sister had 42. That means there were originally 32 + 42 = 74 

chocolates. 35 have been eaten. So in total they still have 74 - 35 = 39 chocolates. The answer is 39.

user: Jason had 20 lollipops. He gave Denny some lollipops. Now Jason has 12 lollipops. How many 

lollipops did Jason give to Denny?

assistant: Jason had 20 lollipops. Since he only has 12 now, he must have given the rest to Denny. The 

number of lollipops he has given to Denny must have been 20 - 12 = 8 lollipops. The answer is 8.

user: Shawn has five toys. For Christmas, he got two toys each from his mom and dad. How many toys does 

he have now?

assistant: He has 5 toys. He got 2 from mom, so after that he has 5 + 2 = 7 toys. Then he got 2 more from 

dad, so in total he has 7 + 2 = 9 toys. The answer is 9.

user: There were nine computers in the server room. Five more computers were installed each day, from 

monday to thursday. How many computers are now in the server room?

assistant: There are 4 days from monday to thursday. 5 computers were added each day. That means in total 

4 * 5 = 20 computers were added. There were 9 computers in the beginning, so now there are 9 + 20 = 29 

computers. The answer is 29.

user: Michael had 58 golf balls. On tuesday, he lost 23 golf balls. On wednesday, he lost 2 more. How many 

golf balls did he have at the end of wednesday?

assistant: Michael initially had 58 balls. He lost 23 on Tuesday, so after that he has 58 - 23 = 35 balls. On 

Wednesday he lost 2 more so now he has 35 - 2 = 33 balls. The answer is 33.

user: Olivia has $23. She bought five bagels for $3 each. How much money does she have left?

assistant: She bought 5 bagels for $3 each. This means she spent 5 * $3 = $15 on the bagels. She had $23 in 

beginning, so now she has $23 - $15 = $8. The answer is 8.

user: [question]

GSM8K / SVAMP Instruction - Zeroshot Setting:

system: You are a helpful assistant good at mathematical reasoning.

user: [question] Solve this problem in 150 words and end with 'the answer is x.'

Table 8: The prompt and instruction used on GSM8K and SVAMP. The notation [question] refers to the question
that is being evaluated.
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GSM8K / SVAMP Prompt 2:

system: You are a helpful assistant good at mathematical reasoning.

user: There are 15 trees in the grove. Grove workers will plant trees in the grove today. After they are done, 

there will be 21 trees. How many trees did the grove workers plant today?

assistant: To find out how many trees the grove workers planted, we need to subtract the initial number of 

trees from the final number of trees: Number of trees planted = final number of trees - initial number of trees 

= 21 - 15 = 6. Therefore, the grove workers planted 6 trees today. The answer is 6.

user: If there are 3 cars in the parking lot and 2 more cars arrive, how many cars are in the parking lot?

assistant: If there are 3 cars in the parking lot and 2 more cars arrive, the total number of cars in the parking 

lot is: 3 + 2 = 5. Therefore, there are 5 cars in the parking lot. The answer is 5.

user: Leah had 32 chocolates and her sister had 42. If they ate 35, how many pieces do they have left in total?

assistant: Leah had 32 chocolates and her sister had 42, so they had a total of: 32 + 42 = 74 chocolates. If 

they ate 35 chocolates, the number of chocolates they have left is: 74 - 35 = 39 chocolates. Therefore, they 

have 39 chocolates left in total. The answer is 39.

user: Jason had 20 lollipops. He gave Denny some lollipops. Now Jason has 12 lollipops. How many 

lollipops did Jason give to Denny?

assistant: To find out how many lollipops Jason gave to Denny, we need to subtract the final number of 

lollipops Jason has from the initial number of lollipops he had: Number of lollipops given to Denny = initial 

number of lollipops - final number of lollipops = 20 - 12 = 8. Therefore, Jason gave 8 lollipops to Denny. 

The answer is 8.

user: Shawn has five toys. For Christmas, he got two toys each from his mom and dad. How many toys does 

he have now?

assistant: Shawn has five toys initially. For Christmas, he got two toys each from his mom and dad, so he 

got a total of: 2 (toys from mom) + 2 (toys from dad) = 4 toys. Adding the four toys from Christmas to his 

initial five toys, we get: 5 + 4 = 9. Therefore, Shawn has 9 toys now. The answer is 9.

user: There were nine computers in the server room. Five more computers were installed each day, from 

monday to thursday. How many computers are now in the server room?

assistant: If there were 9 computers to start with and 5 more were added each day from Monday to Thursday, 

that means 4 days have passed since Monday to Thursday. So, the number of additional computers added 

would be: 5 + 5 + 5 + 5 = 20. Therefore, the total number of computers in the server room now would be: 9 

+ 20 = 29. Hence, there are 29 computers in the server room now. The answer is 29.

user: Michael had 58 golf balls. On tuesday, he lost 23 golf balls. On wednesday, he lost 2 more. How many 

golf balls did he have at the end of wednesday?

assistant: Michael had 58 golf balls. On Tuesday, he lost 23 golf balls, which leaves him with: 58 - 23 = 35 

golf balls. On Wednesday, he lost 2 more golf balls, which leaves him with: 35 - 2 = 33 golf balls. Therefore, 

Michael had 33 golf balls at the end of Wednesday. The answer is 33.

user: Olivia has $23. She bought five bagels for $3 each. How much money does she have left?

assistant: Olivia had $23 to start with. She bought 5 bagels at $3 each, which is a total cost of: 5 x $3 = $15. 

Therefore, after buying the bagels, Olivia has: $23 - $15 = $8 left. So, Olivia has $8 left after buying bagels. 

The answer is 8.

user: [question]

Table 9: The prompt 2 used on GSM8K and SVAMP.
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GSM8K / SVAMP Prompt 3:

system: You are a helpful assistant good at mathematical reasoning.

user: There are 15 trees in the grove. Grove workers will plant trees in the grove today. After they are done, 

there will be 21 trees. How many trees did the grove workers plant today?

assistant: Step 1: We start with 15 trees. Later we have 21 trees. The difference must be the number of trees 

they planted. So, they must have planted 21 - 15 = 6 trees. Step 2: The answer is 6.

user: If there are 3 cars in the parking lot and 2 more cars arrive, how many cars are in the parking lot?

assistant: Step 1: There are 3 cars in the parking lot already. 2 more arrive. Now there are 3 + 2 = 5 cars. 

Step 2: The answer is 5.

user: Leah had 32 chocolates and her sister had 42. If they ate 35, how many pieces do they have left in total?

assistant: Step 1: Leah had 32 chocolates and Leah's sister had 42. That means there were originally 32 + 42 

= 74 chocolates. Step 2: 35 have been eaten. So in total they still have 74 - 35 = 39 chocolates. Step 3: The 

answer is 39.

user: Jason had 20 lollipops. He gave Denny some lollipops. Now Jason has 12 lollipops. How many 

lollipops did Jason give to Denny?

assistant: Step 1: Jason had 20 lollipops. Since he only has 12 now, he must have given the rest to Denny. 

The number of lollipops he has given to Denny must have been 20 - 12 = 8 lollipops. Step 2: The answer is 8.

user: Shawn has five toys. For Christmas, he got two toys each from his mom and dad. How many toys does 

he have now?

assistant: Step 1: He has 5 toys. He got 2 from mom, so after that he has 5 + 2 = 7 toys. Step 2: Then he got 

2 more from dad, so in total he has 7 + 2 = 9 toys. Step 3: The answer is 9.

user: There were nine computers in the server room. Five more computers were installed each day, from 

monday to thursday. How many computers are now in the server room?

assistant: Step 1: There are 4 days from monday to thursday. 5 computers were added each day. That means 

in total 4 * 5 = 20 computers were added. Step 2: There were 9 computers in the beginning, so now there are 

9 + 20 = 29 computers. Step 3: The answer is 29.

user: Michael had 58 golf balls. On tuesday, he lost 23 golf balls. On wednesday, he lost 2 more. How many 

golf balls did he have at the end of wednesday?

assistant: Step 1: Michael initially had 58 balls. He lost 23 on Tuesday, so after that he has 58 - 23 = 35 balls. 

Step 2: On Wednesday he lost 2 more so now he has 35 - 2 = 33 balls. Step 3: The answer is 33.

user: Olivia has $23. She bought five bagels for $3 each. How much money does she have left?

assistant: Step 1: She bought 5 bagels for $3 each. This means she spent 5 * $3 = $15 on the bagels. Step 2: 

She had $23 in beginning, so now she has $23 - $15 = $8. Step 3: The answer is 8.

user: [question]

Table 10: The prompt 3 used on GSM8K and SVAMP.
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CSQA Prompt 1 - Fewshot Setting:

system: You are a helpful assistant good at commonsense reasoning.

user: What do people use to absorb extra ink from a fountain pen?

Answer Choices: (a) shirt pocket (b) calligrapher's hand (c) inkwell (d) desk drawer (e) blotter

assistant: The answer must be an item that can absorb ink. Of the above choices, only blotters are used to 

absorb ink. So the answer is (e).

user: What home entertainment equipment requires cable?

Answer Choices: (a) radio shack (b) substation (c) television (d) cabinet

assistant: The answer must require cable. Of the above choices, only television requires cable. So the 

answer is (c).

user: The fox walked from the city into the forest, what was it looking for?

Answer Choices: (a) pretty flowers (b) hen house (c) natural habitat (d) storybook

assistant: The answer must be something in the forest. Of the above choices, only natural habitat is in the 

forest. So the answer is (c).

user: Sammy wanted to go to where the people were. Where might he go?

Answer Choices: (a) populated areas (b) race track (c) desert (d) apartment (e) roadblock

assistant: The answer must be a place with a lot of people. Of the above choices, only populated areas have 

a lot of people. So the answer is (a).

user: Where do you put your grapes just before checking out?

Answer Choices: (a) mouth (b) grocery cart (c) super market (d) fruit basket (e) fruit market

assistant: The answer should be the place where grocery items are placed before checking out. Of the above 

choices, grocery cart makes the most sense for holding grocery items. So the answer is (b).

user: Google Maps and other highway and street GPS services have replaced what?

Answer Choices: (a) united states (b) mexico (c) countryside (d) atlas

assistant: The answer must be something that used to do what Google Maps and GPS services do, which is 

to give directions. Of the above choices, only atlases are used to give directions. So the answer is (d).

user: Before getting a divorce, what did the wife feel who was doing all the work?

Answer Choices: (a) harder (b) anguish (c) bitterness (d) tears (e) sadness

assistant: The answer should be the feeling of someone getting divorced who was doing all the work. Of the 

above choices, the closest feeling is bitterness. So the answer is (c).

user: [question]

CSQA Instruction - Zeroshot Setting:

system: You are a helpful assistant good at commonsense reasoning.

user: [question] Solve this problem in 80 words and end with 'the answer is x.'

Table 11: The prompt and instruction used on CSQA.
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StrategyQA Prompt 1 - Fewshot Setting:

system: You are a helpful assistant good at commonsense reasoning.

user: Yes or no: Do hamsters provide food for any animals?

assistant: Hamsters are prey animals. Prey are food for predators. Thus, hamsters provide food for some 

animals. So the answer is yes.

user: Yes or no: Could Brooke Shields succeed at University of Pennsylvania?

assistant: Brooke Shields went to Princeton University. Princeton University is about as academically 

rigorous as the University of Pennsylvania. Thus, Brooke Shields could also succeed at the University of 

Pennsylvania. So the answer is yes.

user: Yes or no: Hydrogen’s atomic number squared exceeds number of Spice Girls?

assistant: Hydrogen has an atomic number of 1. 1 squared is 1. There are 5 Spice Girls. Thus, Hydrogen’s 

atomic number squared is less than 5. So the answer is no.

user: Yes or no: Is it common to see frost during some college commencements?

assistant: College commencement ceremonies can happen in December, May, and June. December is in the 

winter, so there can be frost. Thus, there could be frost at some commencements. So the answer is yes.

user: Yes or no: Could a llama birth twice during War in Vietnam (1945-46)?

assistant: The War in Vietnam was 6 months. The gestation period for a llama is 11 months, which is more 

than 6 months. Thus, a llama could not give birth twice during the War in Vietnam. So the answer is no.

user: Yes or no: Would a pear sink in water?

assistant: The density of a pear is about 0.6g/cm^3, which is less than water. Objects less dense than water 

float. Thus, a pear would float. So the answer is no.

user: [question]

StrategyQA Instruction - Zeroshot Setting:

system: You are a helpful assistant good at commonsense reasoning.

user: [question] Solve this problem in 80 words and end with 'the answer is x.'

Table 12: The prompt and instruction used on StrategyQA.
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LetterConcat Prompt 1 - Fewshot Setting:

system: You are a helpful assistant good at symbolic reasoning.

user: Take the last letters of the words in "Elon Musk" and concatenate them.

assistant: The last letter of "Elon" is "n". The last letter of "Musk" is "k". Concatenating them is "nk". The 

answer is nk.

user: Take the last letters of the words in "Larry Page" and concatenate them.

assistant: The last letter of "Larry" is "y". The last letter of "Page" is "e". Concatenating them is "ye". The 

answer is ye.

user: Take the last letters of the words in "Sergey Brin" and concatenate them.

assistant: The last letter of "Sergey" is "y". The last letter of "Brin" is "n". Concatenating them is "yn". The 

answer is yn.

user: Take the last letters of the words in "Bill Gates" and concatenate them.

assistant: The last letter of "Bill" is "l". The last letter of "Gates" is "s". Concatenating them is "ls". The 

answer is ls.

user: [question]

LetterConcat Instruction - Zeroshot Setting:

system: You are a helpful assistant good at symbolic reasoning.

user: [question] Solve this problem in 80 words and end with 'the answer is x.'

Table 13: The prompt and instruction used on LetterConcat.
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