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Abstract

The label noise in real-world scenarios is unpre-
dictable and can even be a mixture of different
types of noise. To meet this challenge, we de-
velop an adaptive textual label noise learning
framework based on pre-trained models, which
consists of an adaptive warm-up stage followed
by a hybrid training stage. Specifically, an early
stopping method, relying solely on the training
set, is designed to dynamically terminate the
warm-up process based on the model’s fit level
to different noise scenarios. The hybrid training
stage incorporates several generalization strate-
gies to gradually correct mislabeled instances,
thereby making better use of noisy data. Exper-
iments on multiple datasets demonstrate that
our approach performs on-par with or even bet-
ter than the state-of-the-art methods in various
noise scenarios, including scenarios with the
mixture of multiple types of noise.

1 Introduction

In recent years, deep neural networks (DNNs) have
been successfully applied in many fields (Pouyan-
far et al., 2018; Alinejad et al., 2021; Liu et al.,
2023) and the performance largely depends on
well-labeled data. However, accessing large-scale
datasets with expert annotation in the real world is
difficult due to the significant time and labor costs
involved. Instead, the noisy data obtained directly
from the real world is often utilized in practical
scenarios, even though it inevitably contains some
incorrect labels. Thus, research on learning with
noisy labels has gained attention in various fields
such as natural language processing (NLP) (Jindal
et al., 2019; Jin et al., 2021; Wu et al., 2022).

There are two main types of label noise in
NLP: class-conditional noise (CCN) and instance-
dependent noise (IDN). CCN assumes that label
noise is dependent on the true class, which can
simulate the confusion between similar classes like
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“Game” and “Entertainment”. On the other hand,
IDN assumes that label noise is dependent on the
instance, which simulates the confusion caused by
the characteristics of the instance. For example, a
piece of news containing the phrase “played on a
pitch as slow as a bank queue” may be misclassified
as Economic news instead of Sports news due to
the specific wording. However, most studies focus
on a particular type of noise. For example, Jin-
dal et al. (2019) introduces a non-linear processing
layer to learn the noise transition matrix of CCN.
Qiao et al. (2022) designs the class-regularization
loss according to the characteristic of IDN. How-
ever, there is a premise for applying these methods,
which is that the noise is known and of a single
type.

In the real-world, the noise scenarios are more
complex and involve a mixture of multiple noises
arising from various factors, such as data ambi-
guity, collection errors, or annotator inexperience.
Methods that specifically target one type of noise
are less effective when dealing with other types of
noise. This limitation hinders their applicability
in real scenarios where the noise is unknown and
variable.

To address the challenges posed by real noise
scenarios, we develop an adaptive textual label
noise learning framework based on pre-trained
models. This framework can handle various noise
scenarios well, including different types of noise
and mixed noise types. Specifically, our approach
begins with an adaptive warm-up stage, then di-
vides the data into clean and noisy sets by the
correctness statistic of samples, and utilizes dif-
ferent generalization strategies on them. In partic-
ular, there are three key designs in our approach.
First, the warm-up stage is designed to automat-
ically stop early based on the model’s fit level to
the noise scenario, which effectively prevents the
model overfitting erroneous labels especially under
IDN scenarios or with a high ratio of noise. No-
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tably, the adaptive warm-up method relies solely
on the raw training set, rather than a clean vali-
dation set, making it more suitable for practical
scenarios. Second, unlike previous works (Li et al.,
2020; Qiao et al., 2022) that fit GMM (Permuter
et al., 2006) on the training losses to separate data,
the data is separated according to the correctness
statistic of each sample. The correctness statistic is
accumulated by assessing the consistency between
the model’s predictions and the given labels during
the warm-up stage. This prolonged observation pro-
vides more accurate grounds for data partitioning.
Third, a linear decay fusion strategy is designed
to gradually correct the potential wrong labels to
generate more accurate pseudo-labels by adjusting
the fusion weights of the original labels and the
model outputs.

We conduct extensive experiments on four clas-
sification datasets, considering different types of
noise: class-conditional noise, instance-dependent
noise, and a mixture of multiple noises. To the
best of our knowledge, previous methods have not
explored such mixed noise. The experimental re-
sults demonstrate that our method surpasses ex-
isting general methods and approaches the perfor-
mance of methods specifically designed for partic-
ular noise types in different noise settings. Our
contributions can be concluded as follows:

• We design an early stopping method for fine-
tuning the pre-trained models, which adapts
to various noise scenarios and datasets and
achieves near the best test accuracy by relying
solely on training set.

• We develop an adaptive noise learning frame-
work based on pre-trained models, which can
make good use of different types of noisy data
while effectively preventing the model from
overfitting erroneous labels.

• Experimental results of various noise settings
show that our approach performs comparably
or even surpasses the state-of-the-art methods
in various noise scenarios, which proves the
superiority of our proposed method in practi-
cal scenarios.

2 Related work

Universal Label Noise Learning. Label noise
learning methods can be divided into two groups:
loss correction and sample selection methods

(Liang et al., 2022). Loss correction tries to reduce
the effect of noisy labels during training by adding
regularization item in loss, designing robust net-
work structure for noisy label and so on. For exam-
ple, Wang et al. (2019) adds a reverse cross-entropy
term to the traditional loss to reduce the disturbance
brought by noise. ELR (Liu et al., 2020) adds a
regularization term prevent the model from mem-
orizing the noisy labels because it would not be
fitted in the early training stage. Sample selection
divides the data into clean and noisy subsets, and
uses different methods for different subsets. For
example, Co-Teaching (Han et al., 2018) maintains
two networks. During training, the two networks
respectively pick out some small-loss samples as
clean data for each other to learn. DivideMix (Li
et al., 2020) uses Gaussian mixture model to sepa-
rate clean and noisy samples. The noisy samples
are treated as unlabeled data, whose pseudo-labels
are generated by the model. Finally, Mixmatch
(Berthelot et al., 2019) method is adopted for mixed
training on clean set and noisy set.

Labels Noise Learning in NLP. The above works
mainly focus on vision tasks, the researches on
textual scenarios are relatively fewer. Jindal et al.
(2019) and Garg et al. (2021) add additional noise
modules based on lightweight models such as CNN
and LSTM to learn the probability of noise trans-
fer. (Liu et al., 2022; Tänzer et al., 2021; Zhu
et al., 2022; Qiao et al., 2022) conduct research on
pre-trained models and find that pre-trained models
demonstrate superior performance in noise learning
compared to trained-from-scratch models. How-
ever, most works focus on one certain type of noise
such as CCN. Qiao et al. (2022) studies both CCN
and IDN, but still conducts experiments in settings
where the type of noise is known and designs spe-
cific regularization loss for IDN.

Few works have focused on general methods
of label noise in NLP. Zhou and Chen (2021) de-
velops a general denoising framework for infor-
mation retrieval tasks, which reduces the effect of
noise by adding a regularization loss to samples
whose model predictions are inconsistent with the
given label. Jin et al. (2021) proposes an instance-
adaptive training framework to address the problem
of dataset-specific parameters and validates its ver-
satility across multiple tasks. However, these meth-
ods rely on additional components, such as supple-
mentary structures or auxiliary dataset, which lim-
its their practicality. In contrast, our method relies
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Figure 1: The overall diagram of the proposed method

solely on a single network and the noisy training
data, making it superior in terms of practicality.

3 Methodology

Problem Definition. Without loss of generaliza-
tion, we take text classification as an example.
Given a noisy training dataset D̃ = (X, Ỹ ) =
{(xi, ỹi)}Ni=1, the one-hot label ỹi associated with
sample xi is probably wrong. Our goal is to learn
a classification model p(y|x; θ, ζ) from the noisy
dataset D̃, which generalizes well on clean test data.
Specifically, the classification model p(y|x; θ, ζ)
consists of a pre-trained encoder and a classifier
with parameters θ and ζ, respectively.
Overview of the Proposed Method. To address
various noise types, we propose a general learning
method consisting of the warm-up training stage
and the hybrid training stage, and the overall di-
agram is shown in Figure 1. The classification
model p(y|x; θ, ζ) is first trained by the raw data
in the warm-up stage to form the initial classifica-
tion ability. During the warm-up stage, we also
maintain a correctness statistic to justify whether
the model begins to overfit the noisy data. Once
there is a sign of overfitting to noisy data, we will
stop the warm-up, and move on to the subsequent
hybrid training stage. During the hybrid training
stage, the raw data is divided into the clean set and
noisy set according to the correctness statistic, and
then further train model p(y|x; θ, ζ) by applying
different training strategies to the clean set and the
noisy set respectively.

3.1 Adaptive warm-up
The goal of this warm-up stage is to obtain a clas-
sification model that fits clean data well but not
noisy data. As shown in Figure 2, however, the
optimal warm-up time may vary significantly for
different noise scenarios. To meet this challenge,
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Figure 2: The memorization observation of different
noise cases. Label recall on top figures, train and test
accuracy on bottom figures. MOTA is short for the
maximum obtainable test accuracy . More cases can be
found in Appendix A.

an adaptive early stopping condition is involved to
terminate the warm-up training before overfitting
noisy data. The details of our warm-up stage are
given as follows.

Training Data. We directly use the raw noisy
dataset D̃ to warm up the classification model and
determine when to stop early.

Learning objective. The standard cross-entropy
loss is used to warm up the model:

Lwarm = −
N∑

i=1

ỹTi log
(
p(ỹi|xi; θ, ζ)

)
. (1)

Overfitting regarding noisy data. Our stopping
condition is based on the following Assumption 1
and Assumption 2.

Assumption 1: As learning progresses, the clean
data is fitted faster than the noisy data. We em-
pirically demonstrate that the clean samples can be
recalled earlier than the noisy samples during learn-
ing (see Figure 2), regardless of the noise types.
This is mainly caused by the memorization effect
(Arpit et al., 2017) which means DNNs tend to
learn simple patterns before fitting noise. As a
result, the whole learning process can be roughly
divided into Clean Rising (CR) phase (where most
clean samples are quickly learned) and Noisy Ris-
ing (NR) phase (where the noisy samples are fitted
slowly), which are differentiated by backgrounds
in Figure 2.

Assumption 2: The prediction regarding noisy
data tends to swing between the true label and the
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Figure 3: Examples of the model output during train-
ing under different noise settings. The given label of
clean samples is true. More examples can be found in
Appendix A.

noisy label. It originates from another memoriza-
tion phenomenon regarding noisy samples(Chen
et al., 2021). The results in Figure 3 also demon-
strate that the prediction for the noisy samples ex-
hibits a higher level of inconsistency with the given
label due to the activation of the true label.

Correctness statistic. According to these two
assumptions, we update the correctness statistic
of training set at intervals to judge whether the
model begins to overfit the noisy data. Specifically,
for a given sample xi with label ỹi, its correctness
coefficient mt

i is:

mt
i =

∑

t

rti , (2)

obtained by,

rti =





1, if argmax
k∈K

pk(xi; θ, ζ) = argmax
k∈K

ỹki

−1, else.
(3)

where the correctness rti indicates whether the pre-
diction of sample xi is consistent with the given
label at moment t, and mt

i is the statistic of correct-
ness in a given time range.

The higher the number of correct predictions
compared to incorrect predictions for a sample,
the higher the degree to which the model fits that
sample. Intuitively, positive mt

i indicates xi has
been fitted by the model at moment t.

Furthermore, we have a proportion ratiot,

ratiot =
1

N

∑

i

I(mt
i > 0), (4)

which indicates the sample fitting level for the
whole dataset with N samples.

Early stopping condition. Through observing
the change of ratiot, we can determine whether
the learning process has entered the NR phase. Ac-
cording to Assumption 1, in the CR phase, ratiot

should increase fast since the model fits clean sam-
ples quickly. In the NR phase, ratiot should stay
within a certain range for an extended period be-
cause the noisy samples are difficult to fit (Assump-
tion 2).

As a consequence, if ratiot stays within a range
ε for η times, we can assume that the learning pro-
cess has entered the NR phase. To approach the
optimal stopping point, we continue to warm up the
model until a certain improvement in the training
accuracy. The magnitude of improvement is set to
be a fraction ρ1 of the current remaining accuracy.
The pseudo-code for adaptive warm-up process
is shown in Appendix B. Note that this adaptive
warm-up process is suitable for different noise sce-
narios due to Assumption 1 and Assumption 2 can
be widely satisfied by different noise types.

3.2 Hybrid training
To further leverage the underlying values of noisy
samples, we propose a hybrid training method ap-
plying different training strategies to clean samples
and noisy samples respectively.

Data. Based on the correctness statistic M =
{mt′

i }Ni=1 (assuming t′ is the stopping time of
the warm-up stage), the whole training set D̃ =
{(xi, ỹi)}Ni=1 can be divided into the “clean” set
D̃c and “noisy” set D̃n as follows.

D̃c = (Xc, Ỹc) = {(xi, ỹi)|if mt′
i ≥ l},

D̃n = (Xn, Ỹn) = {(xi, ỹi)|if mt′
i < l},

(5)

where l is the Nρ2-th largest correctness statis-
tic value of M because a larger number indicates
that the sample is fitted earlier and has a higher
probability of being a clean sample. ρ2 is a given
percentage, which is set to 20%.

Pseudo-labeling. To minimize the side-effects
of the noisy labels, we regenerate labels for both the
clean set D̃c and noisy set D̃n through the pseudo-
labeling method combining the original labels and
the prediction of the classification model. Note that
there may inevitably be some noisy samples in set
D̃c, albeit fewer than in D̃n.

For each sample (xi, ỹi) in clean set D̃c, the
corresponding pseudo-labels ŷi is obtained by,

ŷi = wt
c · ỹi + (1− wt

c) · p(xi; θ, ζ), (6)

where the weight wt
c decays linearly with the train-

ing step t, which is calculated by,

wt
c = 1− (1− δ1) ·

t

T
, (7)
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where T indicates the all training steps of this stage,
wt
c decays from 1 to δ1 due to relatively reliable

labels in the clean set D̃c.
Likewise, for each sample in noisy set D̃n, its

pseudo-labels ŷi are obtained by,

wt
n = δ2 · (1−

t

T
),

ŷi = wt
n · ỹi + (1− wt

n) · p(xi; θ, ζ),
(8)

where wt
n decays from δ2 to 0 due to most labels

in D̃n are incorrect.
By linearly decaying the weight of original la-

bels, a good balance is achieved between leverag-
ing the untapped label information and discarding
noise. As the accuracy of the classification model’s
predictions continues to improve, the generated
pseudo-labels will be closer to the true labels.

Furthermore, for each pseudo-label ŷi , we
adopt the sharpen function to encourage the model
to generate low entropy predictions, i.e., ŷi =

ŷ
1/τ
i /

∥∥∥ŷ1/τi

∥∥∥
1
, where τ is the temperature parame-

ter and ∥·∥1 is l1-norm. Finally, the new whole set
D̂ = {(xi, ŷi)}Ni=1 is reformed by clean and noisy
sets.

Mixup. To enhance the generalization of the
model, mixup technique (Zhang et al., 2017; Berth-
elot et al., 2019) is adopted to introduce diverse
and novel examples during training. Different from
mixing pictures directly in vision tasks, the text
input cannot be directly mixed due to the discrete-
ness of words. Like previous work (Berthelot et al.,
2019; Qiao et al., 2022) in NLP, the sentence pre-
sentations encoded by pre-trained encoder are used
to perform mixup:

λ = Beta(α, α) (9)

λ′ = max(λ, 1− λ) (10)

h′ = λ′p(xi; θ) + (1− λ′)p(xj ; θ) (11)

y′ = λ′ŷi + (1− λ′)ŷj (12)

where α is the parameter of Beta distribution,
p(x; θ) is the sentence embedding which corre-
sponds to “[CLS]” token. (xi, ŷi) and (xj , ŷj) are
randomly sampled in the corrected set D̂.

The mixed hidden states {h′i}Ni=1 and targets
{y′i}Ni=1 are used to train the classifier by apply-
ing entropy loss:

Lmix = −
N∑

i=1

y′Ti log
(
p(h′; ζ)

)
(13)

Datasets Classes Traning Testing Type
Trec 6 5,452 500 Question
Agnews 4 120,000 7,600 News Topic
IMDB 2 25,000 25,000 Movie Review
Chnsenticorp 2 10,430 1,200 Hotel Review

Table 1: The statistics of datasets

R-Drop. Since the prediction of the model is
fused in pseudo-labeling, it needs to be as accurate
as possible. Therefore, the R-Drop strategy (liang
et al., 2021) is applied on noisy samples Xn to
promote the model to have a consistent output dis-
tribution for the same input. R-Drop minimizes the
Kullback-Leibler divergence between two distribu-
tions predicted by the model with dropout mecha-
nism for the same sample :

Ldrop =
M∑

i=1

1

2

(
DKL

(
p1(xi; θ, ζ)||p2(xi; θ, ζ)

)

+DKL

(
p2(xi; θ, ζ)||p1(xi; θ, ζ)

))
,

(14)
where M is the number of noisy samples Xn.
p1(xi; θ) and p2(xi; θ) are two predictions of xi.

Learning objective. The total loss is:

L = Lmix + βLdrop, (15)

where β is the hyper-parameter of KL loss, which
is set to 0.3 in experiments.

4 Experiments

4.1 Experimental settings
Datasets Experiments are conducted on four text
classification datasets, including Trec (Voorhees
et al., 1999), Agnews (Zhang et al., 2015), IMDB
(Maas et al., 2011) and Chnsenticorp (Tan and
Zhang, 2008), where Chnsenticorp is Chinese
dataset and the rests are English datasets. The
statistics of datasets are presented in Table 1, where
the training set of Chnsenticorp is a merger of the
original training and the validation set.

Noise types The following types of noise are in-
jected to standard datasets:

Class-conditional noise: We choose typical
symmetric (Sym) and asymmetric (Asym) noises
in various class-conditional noise to conduct exper-
iments. Symmetric noise flips a certain percentage
of labels in a given category into other categories
uniformly. Asymmetric noise flips labels between
given similar class pairs. IMDB and Chnsenticorp
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Noise Type Sym Asym IDN
even mixture

(Sym & Asym)
even mixture

( Asym & IDN )
uneven mixture

(all three)
Dataset Trec Agnews Trec Agnews IMDB Chn Agnews IMDB Chn Trec IMDB Chn Agnews
Noise Ratio 40 40 40 20 40 20 40 20 40 20 40

BERT-FT
Best 94.12 92.68 90.96 92.80 84.85 81.88 75.84 72.16 73.66 95.92 93.28 88.87 81.28 91.86 83.06 92.09 90.87
Last 87.40 80.92 76.60 71.30 64.07 66.82 69.26 68.67 67.03 95.16 85.64 85.79 72.46 85.63 69.68 90.78 85.44

CT
Best 94.16 92.98 90.20 92.61 81.35 91.21 77.34 72.72 74.06 96.16 94.20 88.30 80.87 92.91 85.01 92.37 91.23
Last 88.28 85.75 77.04 91.17 61.85 66.58 70.01 70.09 69.06 94.88 88.68 86.22 72.68 87.53 68.95 91.21 88.21

ELR
Best 94.68 93.06 92.64 92.88 85.70 91.83 75.65 72.08 73.57 96.24 94.64 88.92 80.58 92.65 83.63 92.30 90.94
Last 93.48 91.68 85.24 90.73 78.28 84.91 70.18 68.77 69.01 96.16 93.52 87.15 76.10 90.28 79.58 91.74 90.11

SelfMix*
Best 94.04 92.91 95.32 93.22 87.41 89.02 84.09 80.74 84.02 95.64 94.16 89.88 84.34 92.91 87.70 92.11 91.15
Last 93.56 92.71 94.96 92.95 86.19 83.45 83.15 79.99 83.52 94.28 93.60 87.88 82.67 92.03 86.66 86.55 90.24

Ours
Best 94.72 93.27 96.32 93.56 89.13 92.65 85.40 80.07 84.25 96.48 94.36 89.05 83.47 93.23 88.47 92.65 91.33
Last 94.20 92.33 96.00 91.06 88.21 89.99 84.76 75.42 84.03 96.16 93.68 87.87 81.58 88.36 85.42 91.74 90.25

Table 2: Results (%) of five runs on Trec, Agnews, IMDB and Chnsenticorp under different noise settings. The
bolded results means the highest among all best scores and the underlined results means the highest among all last
scores. Chn is short for Chnsenticorp. * means some hyper-parameters are adjusted according to the type of noise
and the composition ratio of mixture noise.

are binary classification datasets, so their symmet-
ric and asymmetric noises are the same.

Instance-dependent noise: Follow (Qiao et al.,
2022), a LSTM classifier is trained to determine
which sample features are likely to be confused.
The labels of the samples closest to the decision
boundary are flipped to their opposite category
based on the classifier prediction probability. All
datasets except Trec are used because of its small
sample size and uneven categories. Main experi-
ments only show results for a single type of noise
with a ratio of 40%, results for other ratios can be
found in the Appendix C.

Mixture of multiple noises: We mix different
types of noise to verify the ability of the algorithm
to deal with complex and unknown scenarios. For
datasets with only two types of noise, including
Trec, IMDB and Chnsenticorp, we mix the two
noises evenly. Specifically, Sym and Asym are
evenly mixed on Trec, Asym and IDN are evenly
mixed on IMDB and Chnsenticorp. For Agnews,
we mix three noises unevenly for a larger challenge.
The result of evenly mixing of two types of noise
on Agnews is in Appendix C.

4.2 Baselines

BERT-FT (Devlin et al., 2018): the benchmark
classification model without special methods, di-
rectly trained on noisy data.
Co-Teaching (CT for short) (Han et al., 2018): a
well-known noise learning method, which main-
tains two models simultaneously and lets each
model select clean samples for the other to train.
ELR (Liu et al., 2020): ELR designs a regulariza-
tion term to prevent the model from memorizing
noisy labels by increasing the magnitudes of the co-
efficients on clean samples to counteract the effect

of wrong samples.
SelfMix(Qiao et al., 2022): SelfMix first warms
up the model and then uses GMM to separate data
to perform semi-supervised self-training, and de-
signs the normalization method according to the
characteristics of IDN, resulting in a significant per-
formance improvement compared to other methods
lacking specific designs.

For fair comparison, the backbone model of each
method is the same, including a pre-trained encoder
BERT1 and a two-layer MLP. The training time of
all methods except SelfMix is set to 6 epochs and
their hyper-parameters are the same under different
noise settings. For SelfMix, we follow the instruc-
tions of its paper to set different hyper-parameters
for different datasets and noise types. Specially, the
warm time for symmetric and asymmetric noise is
2 epochs, the warm time for instance-dependent
noise is 1 epoch, and the semi-supervised self-
training time is 4 epochs. The average results are
run five times on the code base provided by Qiao
et al. (2022).

4.3 Parameter settings

The same hyper-parameters as baselines remain un-
changed, where the maximum sentence length is
256, the learning rate is 1e-5, the drop rate is 0.1,
the size of middle layer of MLP is 768 and opti-
mizer is set to Adam. Additionally, the temperature
τ is 0.5, α of Beta distribution is 0.75.

There are some specific hyper-parameters in our
method. Specifically, in warm up stage, the inter-
val s of monitoring training set is 1/10 epoch, the
converge range ε is 0.01, the times η is 3 and the

1the weight of BERT for English task is initialized with
bert-base-uncased, and the wight for Chinese task is initialized
with chinese-bert-wwm-ext of HIT.
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fraction ρ1 is 0.1, the batch size is 12. In hybrid
training stage, the fraction ρ2 to divide data is 0.2,
the threshold δ1 is 0.9 and δ2 is 0.4, and the loss
weight β is 0.3. The batch size of clean set in hy-
brid training stage is 3 and the batch size of noisy
set is 12 to match the ration ρ2 of their numbers.

The duration of the warm up stage varies under
different noise settings. The hybrid training stage
lasts for 4 epochs to compare with SelfMix. For
generality, the parameters used in all cases are same
as above.

4.4 Main Results

Table 2 demonstrates the main results of our
method and baselines.

Baselines BERT-FT is highly affected by noise,
with its performance and stability decreasing sig-
nificantly as the complexity of noise increases. CT
and ELR demonstrate strengths in handling simple
noise scenarios, such as Trec with 40% symmetric
noise and a mixture of symmetric and asymmet-
ric noise. However, they perform poorly under
more complex noise settings, such as IDN noise.
In contrast, SelfMix excels in cases involving IDN
due to its design of class-regularization loss and re-
duced warm-up time. Among all the methods, only
SelfMix needs to adjust specific hyper-parameters
based on the dataset and noise type.

Our method In contrast to the baselines, our
method consistently performs well across all noise
scenarios. With simple CCN setting, our method
exhibits further improvements in performance com-
pared to well-performing baselines like ELR. With
IDN setting, our method outperforms general base-
lines and even surpasses SelfMix in certain cases,
such as on Agnews and Chnsenticorp. Moreover,
when confronted with mixed noise, our method
consistently achieves top or near-top results while
maintaining stability. In conclusion, our approach
demonstrates superior performance and adaptabil-
ity in various noise scenarios, making it more prac-
tical for real-world scenarios.

5 Analysis

In this section, some experiments are designed to
make a more comprehensive analysis of our pro-
posed method. The main results are shown in Table
3 and the correspond analyses are as follows. More
analyses can be found in Appendix D.

Dataset Trec Chnsenticorp
Noise Type Asym IDN
Method/Ratio 20 40 10 40

Ours
Clean 99.20 94.89 95.71 75.57

Best 96.68 96.32 94.75 84.25
Last 96.36 96.00 93.24 84.03

w/o linear decay fusion
Best 95.60 90.08 93.53 83.97
Last 95.48 89.80 92.34 81.08

w/o correctness statistic
Best 96.32 95.16 93.78 74.89
Last 96.24 94.76 92.33 68.68

w/o mixup
Best 96.32 96.20 94.17 79.67
Last 95.72 95.96 90.22 74.22

w/o r-drop
Best 96.04 95.72 93.30 76.58
Last 95.40 95.20 75.08 64.53

1 epoch warm-up time
Best 94.20 93.64 94.33 83.60
Last 93.44 93.24 90.97 83.60

2 epoch warm-up time
Best 96.36 95.36 93.80 80.65
Last 96.16 95.12 92.55 78.20

3 epoch warm-up time
Best 96.60 96.80 93.30 77.15
Last 96.36 96.52 90.33 75.87

4 epoch warm-up time
Best 96.52 96.44 93.47 70.35
Last 96.24 96.20 88.98 69.32

separate data with GMM
Clean 98.94 92.40 94.76 73.68

Best 96.16 93.28 92.82 81.05
Last 95.68 93.16 91.58 79.50

Table 3: Ablation study results in terms of test accuracy
(%) on Trec and Chnsenticorp under different noise.
The highlighted rows denotes the ratio of correct labels
in the separated clean set.

5.1 Ablation experiment

To verify that each component contributes to the
overall approach, we remove each component sep-
arately and check the test accuracy. To remove
linear decay fusion, the original labels of clean set
are kept and the pseudo-labels of noisy set are gen-
erated by the model. For the design of correctness
statistic, the relevant parts including early stopping
and linear decay fusion are removed and replaced
by normal training. The standard cross entropy loss
are directly applied on all samples and the corre-
sponding pseudo labels to remove mixup operation.
For R-Drop, the KL-divergence term is eliminated.
The first part of Table 3 shows each component is
helpful to the final performance. Correctness statis-
tic and R-Drop are more critical to complex setting
(i.e. 40% IDN), because the model is greatly af-
fected by this noise. And due to the introduction of
linear decay fusion, R-Drop becomes more impor-
tant in the aspect of keeping the model stable.

5.2 Analysis of early stopping

Stopping warm up properly is important for adapt-
ing to various noise cases and datasets. To ver-
ify this view, experiments with different warm-up
times are performed. The numbers of war-up epoch
are set to {1,2,3, 4} and the results are shown in the
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Figure 4: The instances of early stopping under different
noise scenarios.

second part of Table 3. We can observe that no one
fixed warm-up time is suitable for all situations. For
simple cases such as asymmetric noise, warm up
for 3 epochs is beneficial. For complex cases such
as instance-dependent noise, warm up for 1 epoch
is enough. But adaptive warm-up works better than
fixed times on processing all cases. Therefore, find-
ing appropriate stopping point according to differ-
ent noisy training datasets may be a good strategy
of noise learning based on pre-trained models.

To check whether our early stopping method
finds the stopping point close to the maximum ob-
tainable test accuracy (MOTA), we draw some find-
ing instances compared with other two heuristic
approaches, including stopping through noise ratio
(Arpit et al., 2017) and clean validation set (we use
test set for validation here). As shown in Figure
4, the estimated start and end points of early stop-
ping (ES) are close to the MOTA under different
noise settings. And in some cases ES is closer to
the MOTA than stopping through noise ratio (Ra-
tio) especially under IDN. Because IDN is easier
fitted by deep models, which resulting in high train-
ing accuracy at early stage. Compared with the
two methods relying on additional conditions, our
method only relies on the original noisy training
set, which is more adaptable to the real world.

5.3 The design of correctness statistic
During warm up stage, a correctness statistic is
maintained to judge the time of early stopping. In
addition, it is used to separate the training data into
clean set and noisy set for training in hybrid stage.
We directly select the top 20% samples of the high-

Methods\Datasets Trec Chnsenticorp Agnews
BERT-FT 3min 22min 2h 17min
SelfMix 5min 42min 4h 40min
Ours 5min 43min 4h 48min

Table 4: The time cost example of different methods
under the same noise setting.

est value in the correctness statistic as the clean set.
It is different from previous noise-learning works
(Li et al., 2020; Qiao et al., 2022; Garg et al., 2021)
where the sets are separated by GMM or BMM. To
make comparison, GMM is used in hybrid training
stage and divide data at each epoch. In addition
to the results, the ratios of correctly separation (i.e.
how many samples in clean sets are truly clean)
are also listed in Table 3, and highlighted with
the gray background. As shown, the right ratio of
our method is slightly higher than that of GMM,
and the performance is better especially under the
higher noise ratio settings.

5.4 Computational cost

Compared to previous noise learning approaches
that include a normal warm-up phase (Han et al.,
2018; Qiao et al., 2022), our method involves an
additional cost incurred by inferring the entire train-
ing set at intervals during the adaptive warm-up
phase. This cost is directly proportional to the num-
ber of training set samples and the frequency of
inference. To strike a balance between monitor-
ing and cost, we set the interval to 1/10 epoch in
our experiments. Additionally, during the hybrid
training stage, we reduce the cost of inferring the
training set and fitting the GMM compared to Self-
Mix. Table 4 provides an example of the time costs
of BERT-FT, SelfMix and our method under the
same settings, with all methods trained on a single
GeForce RTX 2080Ti.

6 Conclusion

Based on the unknown and complex nature of noise,
we propose a noise learning framework based on
pre-trained models that can adapt to various tex-
tual noise scenarios. This framework automatically
stops the warm-up process based on the magnitude
and complexity of the noise to prevent the model
from overfitting noisy labels. To further leverage
mislabeled data, the linear decay fusion strategy is
combined with mixup and R-Drop to improve per-
formance while maintaining stability. Experimen-

3181



tal results demonstrate that our method achieves
performance comparable to state-of-the-art in all
settings within common noise range.

Limitations

We would like to introduce a versatile noise frame-
work that can adapt to various noise scenarios and
have conducted extensive experiments across dif-
ferent simulated scenarios to evaluate the perfor-
mance. However, it is crucial to acknowledge that
we didn’t experiment on real textual noise scenar-
ios. If the noise learning method can be verified in
real industrial datasets, it will be more convincing.
Furthermore, due to the necessity of monitoring the
training set during the warm-up stage, the overall
training time of our method tends to be longer com-
pared to other approaches, especially when dealing
with large datasets like Agnews. Resolving this
issue or exploring alternative approaches to reduce
training time is a direction that requires further
investigation, which we leave to future work.
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A Examples of Assumption

The more examples of two assumptions are shown
in Figure 5 and 6.

B Pseudo-code of Adaptive Warm-up

We summarize the pseudo-code of adaptive warm-
up in Algorithm 1.

C Experiments

C.1 Detailed Results

The detailed results are given in this section. Table
5 shows the results of different ratios of CCN, Table
6 shows the results of different ratios of IDN, and
the results of the mixture of two types of noise on
Agnews are supplemented in Table 7.

Class-conditional noise: With this simple as-
sumption, our proposed method basically achieves
the best scores across all noise cases in Table 5. All
methods can obtain very good performance under
a low noise ratio due to the deep model is robust to
simple noise. However, there are still some gains
to be made with our approach in some cases such
as the results on Trec and Chnsenticorp with 20%
asymmetric label noise. Under a high noise ration
i.e. 40%, the baselines are all affected to a greater
or lesser extent, but our method performs well on
different datasets and outperforms all methods. Ad-
ditionally, we list the results on clean datasets with-
out noise. The performance gap between clean data
and noisy data are getting smaller by applying our
method.

Instance-dependent noise: Table 6 shows that
the complexity of IDN results in a substantial de-
crease in performance for general methods CT and
ELR, indicating that they cannot cope well with
this noise setting. In these experiments, SelfMix
gets more best scores, which is related to its special
designs based on noise type such as reducing the
warm-up time, designing class-regularization loss
and etc. In contrast, our method exhibits strong per-
formance in all cases and achieves scores close to or
even better than SelfMix without making assump-
tions about the type of noise. Particularly notewor-
thy are the cases where SelfMix underperforms,
such as Trec and Chnsenticorp with 10% noise,
whereas our method surpasses even the strongest
baseline. This further highlights the versatility and
effectiveness of our method across different scenar-
ios.

Mixture of multiple noises: As shown in Table
7, mixed noise pose challenges, and various base-
lines exhibit distinct characteristics. BERT-FT is
highly impacted by noise, particularly with a signif-
icant drop in the Last score. CT and ELR demon-
strate their strengths in handling simple noise sce-
narios, such as a mixture of symmetric and asym-
metric noise. On the other hand, SelfMix excels
in cases involving IDN. In contrast, our method
consistently achieves top or near-top performance
while maintaining stability across all scenarios. It
offers a more flexible and adaptable solution for
unknown noise cases.

In conclusion, our method gets good enough
scores under all noise conditions without knowing
the noise type, noise ratio or the characteristics
of dataset. Besides, the same hyper-parameters
are used for all datasets and noise settings. These
factors make our approach more practical in real
scenarios.

D More Analysis

D.1 Analysis of linear decay fusion

In linear decay fusion, we set δ1 = 0.1 to let the
weight of label of cleaner data decay from 1 to 0.1,
and set δ2 = 0.6 to let that of noisier data from
0.6 to 0. To understand the role of two thresholds,
Table 8 lists some results of fixing one of them
and changing the other. The first three rows shows
that δ1 has little effect on asymmetric noise but
limits the performance of IDN. Because IDN is
easily fitted by the model, some noisy samples
are inevitably assigned to cleaner set. It is more
appropriate to reduce the weight to a small value.
As can be observed from the last two lines, small
value of δ2 is also detrimental to IDN, because it
introduces much noise from noisier set. But large
value lets some valuable information to be lost, the
trade-off value 0.6 is a good choice. The setting
of the two thresholds allows the proposed method
to handle complex noise cases and cover possible
noise situations, thus making it well applicable to
other datasets or the real world.

D.2 Stability Analysis

In main experiments, the time of hybrid training
is set to 4 epochs to fairly compare with SelfMix.
The stability of noise learning methods is also an
important aspect, and the training time is extended
to verify the stability. Since the warm up time
is adaptive, we set different hybrid training times.
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Dataset Trec Agnews IMDB Chnsenticorp
Noise Type Sym Asym Sym Asym Sym/Asym Sym/Asym
Method/Ratio 20 40 20 40 20 40 20 40 20 40 20 40
No Noise 97.04 94.53 92.39 96.50

BERT-FT
Best 96.36 94.12 95.88 90.96 93.85 92.68 94.06 92.80 90.46 84.85 94.08 81.88
Last 94.92 87.40 92.36 76.60 90.01 80.92 90.78 71.30 81.57 64.07 84.58 66.82

CT
Best 96.60 94.16 96.04 90.20 94.02 92.98 94.19 92.61 90.65 81.35 94.53 91.21
Last 95.32 88.28 94.92 77.04 91.27 85.75 93.58 91.17 84.73 61.85 87.61 66.58

ELR
Best 96.60 94.68 96.16 92.64 93.98 93.06 94.30 92.88 90.65 85.70 94.03 91.83
Last 96.24 93.48 95.24 85.24 93.69 91.68 93.71 90.73 89.52 78.28 92.75 84.91

SelfMix
Best 96.08 94.04 95.76 95.32 93.95 92.91 94.08 93.22 91.35 87.41 94.08 89.02
Last 94.96 93.56 94.64 94.96 90.08 92.71 90.50 92.95 90.43 86.19 89.02 83.45

Ours
Best 96.55 94.72 96.68 96.32 94.33 93.27 94.48 93.56 91.55 89.13 94.81 92.65
Last 96.30 94.20 96.36 96.00 92.80 92.33 92.52 91.06 90.78 88.21 93.85 89.99

Table 5: Results (%) of five runs on Trec, Agnews, IMDB and Chnsenticorp under different ratios of class-
conditional noise (CCN, inculding symmetric (Sym) and asymmetric (Asym)). The bolded results means the highest
among all best scores and the underlined results means the highest among all last scores. The “No Noise” row
shows the results of directly fine-tuning in original clean datasets.

Dataset Agnews IMDB Chnsenticorp
Method/Ratio 10 20 30 40 10 20 30 40 10 20 30 40

BERT-FT
Best 91.90 88.72 84.90 75.84 89.81 84.56 78.48 72.16 93.26 87.76 80.33 73.66
Last 91.21 86.10 78.67 69.26 88.57 82.21 75.88 68.67 90.66 83.30 74.16 67.03

CT
Best 92.02 89.08 84.52 77.34 89.82 85.86 80.38 72.72 93.90 88.63 82.03 74.06
Last 91.33 85.88 78.26 70.01 88.84 81.85 76.13 70.09 91.56 82.63 77.15 69.06

ELR
Best 92.05 88.92 85.04 75.65 90.24 83.70 78.14 72.08 93.75 88.55 80.71 73.57
Last 91.21 87.10 79.85 70.18 88.32 82.08 73.51 68.77 91.15 82.76 77.90 69.01

SelfMix
Best 91.86 90.17 88.92 84.09 90.50 87.76 83.12 80.74 93.38 91.64 88.58 84.02
Last 89.71 88.63 87.94 83.15 88.97 85.09 80.84 79.99 91.45 88.62 85.95 83.52

Ours
Best 92.40 89.93 87.72 85.40 90.43 86.56 83.42 80.07 94.75 90.23 87.63 84.25
Last 90.77 88.01 83.40 84.76 90.17 84.70 78.07 75.42 93.24 88.63 87.12 84.03

Table 6: Results (%) of five runs on Agnews, IMDB and Chnsenticorp under different ratios of instance-denpendent
noise (IDN). The bolded results means the highest among all best scores and the underlined results means the
highest among all last scores.

Mixed Type 50% Sym+50% Asym 50% Asym +50% IDN
Uneven

mixture of
three noises

Dataset Trec Agnews IMDB Chnsenticorp Agnews Agnews
Method/Ratio 20 40 20 40 20 40 20 40 20 40 20 40

BERT-FT
Best 95.92 93.28 93.96 92.83 88.87 81.28 91.86 83.06 91.72 88.12 92.09 90.87
Last 95.16 85.64 90.20 79.81 85.79 72.46 85.63 69.68 90.26 81.88 90.78 85.44

CT
Best 96.16 94.20 94.17 92.89 88.30 80.87 92.91 85.01 91.91 88.43 92.37 91.23
Last 94.88 88.68 90.76 82.94 86.22 72.68 87.53 68.95 90.58 82.66 91.21 88.21

ELR
Best 96.24 94.64 94.08 93.13 88.92 80.58 92.65 83.63 91.73 88.34 92.30 90.94
Last 96.16 93.52 93.88 91.58 87.15 76.10 90.28 79.58 90.76 86.03 91.74 90.11

*SelfMix
Best 95.64 94.16 93.94 93.08 89.88 84.34 92.91 87.70 91.80 88.93 92.11 91.15
Last 94.28 93.60 90.70 92.98 87.88 82.67 92.03 86.66 85.89 88.70 86.55 90.24

Ours
Best 96.48 94.36 94.30 93.39 89.05 83.47 93.23 88.47 92.13 89.18 92.65 91.33
Last 96.16 93.68 93.65 91.39 87.87 81.58 88.36 85.42 90.88 85.65 91.74 90.25

Table 7: Results (%) of five runs on Trec, Agnews, IMDB and Chnsenticorp under different ratios of mixed noise.
The bolded results means the highest among all best scores and the underlined results means the highest among all
last scores. * denotes the best results chosen from different parameter combinations.
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(b) 40% Asym
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(c) 40% Asym
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(d) 10% IDN
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(e) 40% IDN

Figure 5: The memorization observation of different noise cases. Label recall on top figures, train and test accuracy
on bottom figures.
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Figure 6: Examples of model output under different
noise settings.

Dataset Trec Chnsenticorp
Noise Type Asym IDN
Weight Threshold/Ratio 20 40 10 40

(0.1, 0.6)
Best 96.68 96.32 94.75 84.25
Last 96.36 96.00 93.24 84.03

(0.8, 0.6)
Best 96.64 96.52 93.97 82.58
Last 96.20 95.80 93.15 81.68

(0.5, 0.6)
Best 96.64 96.32 94.27 81.95
Last 96.04 95.84 93.42 79.68

(0.1, 0.2)
Best 96.64 96.24 94.10 79.67
Last 96.12 95.76 91.52 79.37

(0.1, 0.8)
Best 95.96 95.28 94.18 85.08
Last 95.88 94.80 91.52 84.32

Table 8: Results in terms of test accuracy (%) with dif-
ferent warm-up times on Trec and Chnsenticorp under
different noise.

Dataset Trec Chnsenticorp
Noise Type Asym IDN
Epoch/Ratio 20 40 10 40

4
Best 96.68 96.32 94.75 84.25
Last 96.36 96.00 93.24 84.03

6
Best 96.80 96.64 94.40 81.98
Last 96.36 96.04 89.72 80.68

8
Best 97.04 96.52 94.22 83.78
Last 96.20 91.84 89.63 81.93

4+2
Best 96.84 96.44 94.75 85.37
Last 96.48 96.12 87.43 83.15

4+4
Best 96.88 96.52 94.75 85.37
Last 95.84 94.80 90.18 82.93

Table 9: Results in terms of test accuracy (%) with
different hybrid training times on Trec and Chnsenticorp
under different noise.

There are two modes to extend because of the ex-
istence of linear decay fusion. The first is that the
decay time is extended as same as the training time,
which is expressed as a uniform number in the ta-
ble. The second is that the decay time is fixed to
4 epochs and the total training time is extended,
which is expressed in the form of adding numbers.
For example, “4+2” in Table 9 means the weight
of original labels decays to the wanted threshold
in four epochs and remains unchanged during two
more epochs. The results shows that as training
time increases, the accuracy of the last epoch de-
creases but not by much. And interestingly, the
Best scores get better in some cases because there
are more monitored moments.

D.3 The trend of correctness statistic
Figure 7 displays the trend of the correctness statis-
tic ratiot along with the curve representing the
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Figure 7: The trend of correctness statistic and the proportion of samples correctly partitioned into the clean set
under different ρ2 values.

proportion of samples correctly partitioned into the
clean set under different ρ2 values during warm-up.
Each point on the correctness statistic curve corre-
sponds to a monitored situation. We observe the
appearance of a turning point in various scenarios,
and its occurrence time is determined by the speed
at which the model fits the training samples. When
the turning point appears, the frequency of occur-
rences within a fixed range quickly rises. Therefore,
we set the value of η to 3 and the corresponding
range ϵ to 0.01. This is a moderate choice that can
accommodate various noise scenarios. A larger η
is also acceptable but would result in a later early
stop time.

For ρ2, we compare two values, 0.5 and 0.2. Un-
der simpler noise settings, such as with 20% sym-
metric noise, the two ρ2 curves remain relatively
flat, indicating that the cleanliness of the top 20%
and top 50% sets is similar. However, under more
complex settings, such as with 40% idn, ρ2 = 0.2
exhibits some advantages. Additionally, a smaller
ρ2 value can accommodate a higher noise ratio.
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Algorithm 1: Adaptive Warm-up

Input: θ and ζ, training set (X, Ỹ ), monitoring interval s, converge range ε, times η, accuracy
fraction ρ1

Initial: P = ∅, enter = False ;
while t < MaxStep do

Draw a mini-batch {(xb, yb); b ∈ (1, ..., B)} from (X, Ỹ ) ;
Optimize θ and ζ by Equation 1 ; // standard training

/* monitoring the training process at intervals */

if t mod s == 0 then
Compute rti by Equation 3, (xi, ỹi) ∈ (X, Ỹ ) ;
mt

i =
∑

t r
t
i ; // update the correctness statistic

ratiot = 1
N

∑
i I(mt

i > 0) ; // calculate the proportion of samples that have been fitted

P← P ∪
{⌈

ratiot

ε

⌉ }
; // determine the range that ratiot stays inside

if not enter then
if P has η same items then

enter = True ; // enter the NR phase

Compute training accuracy acc ;
stop_acc = acc+ (1− acc) · ρ1 ;

// calculate the space available for further warming up

end
else

Compute training accuracy acc ;
if acc ≥ stop_acc then

Break ; // stop warming up

end
end

end
end
Output: θ and ζ, M = {mt

i}Ni=1 ; // output trained model and correctness statistic
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