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Abstract
Conventional approaches to relation extraction
can only recognize predefined relation types.
In the real world, new or out-of-scope rela-
tion types may keep challenging the deployed
models. In this paper, we formalize such a
challenging problem as Novel Relation Detec-
tion (NRD), which aims to discover potential
new relation types based on training samples of
known relations. To this end, we construct two
NRD datasets and exhaustively investigate a
variety of out-of-scope detection methods. We
further propose an effective NRD method that
utilizes multi-strategy self-supervised learning
to handle the problem of shallow semantic sim-
ilarity in the NRD task. Experimental results
demonstrate the effectiveness of our method,
which significantly outperforms previous state-
of-the-art methods on both datasets.

1 Introduction

Relation extraction (RE) is an important task in
structured information extraction, which aims to
recognize the relations of entity pairs from texts
(Riedel et al., 2013; Zeng et al., 2014; Lin et al.,
2016). For example, given the sentence “West-
world is a science fiction western series directed
by Jonathan Nolan.” and the entity pair [Jonathan
Nolan, Westworld], an RE model should output the
relation type “the director of ”.

Existing RE methods typically follow the closed-
world classification assumption and can only rec-
ognize predefined relation types. However, such
an assumption limits the usage of these methods
in real-world applications, as new or out-of-scope
(OOS) relation types may continually emerge after
the model is deployed. For example, in the Wiki-
data knowledge graph (Vrandecic and Krötzsch,
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Assume that ‘‘nominated for’’ is an OOS relation type.

Text: Westworld was nominated for 
an Empire Award for Best TV Series. Conventional 

RE Model
Relation: winner×

Collected OOS Data

Developer

Update the Model

Text: Westworld was nominated for 
an Empire Award for Best TV Series. NRE Model
Relation: novel relation√

Figure 1: An example of novel relation extraction. For
the data of the OOS relation, the conventional RE model
predicts a wrong relation. The NRE model is able to
correctly predict the novel relation type.

2014), new items and properties keep appearing
over time1. These new relations may mislead the
deployed RE model, making it incorrectly assign
known relations to the data of new relations, as
shown in Figure 1. In addition, existing methods
cannot automatically discover new relations for fu-
ture development.

To handle this problem, we propose a more real-
istic and challenging task, Novel Relation Extrac-
tion (NRE), which aims to discover potential new
relation types based on training samples of known
relations. Note that we define novel relations as
OOS relations that are not included in the prede-
fined relation set. In the NRE task, we group the
novel relation types into a new class and convert
the traditional k-class RE task into a (k + 1)-class
RE task. The (k + 1)-th class represents the novel
relation. This task requires RE models to correctly
identify not only the known relations but also the
novel relation. Based on the OOS data collected
by the NRE model, developers can easily and pur-
posefully annotate the data and update the model,
as shown in Figure 1.

The novel relation class in the NRE task is differ-

1https://www.wikidata.org/wiki/Wikidata:News
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ent from the “no relation” class and the “other rela-
tion” class in existing RE tasks (Hendrickx et al.,
2010; Zhang et al., 2017). Previous developers al-
ways assume that the “no relation” class and the
“other relation” class are known in the development
phase, and they can annotate a large amount of
training data for these two relations to train RE
models. However, the novel relation class indicates
that the text contains new or OOS relations whose
distribution is unknown and unpredictable in the
development phase. It is infeasible for develop-
ers to annotate training data for the novel relation
class in real-world applications since real test data
is usually unknown and continually changing.

There are two lines of previous work related to
NRE, open RE (Yao et al., 2011; Marcheggiani and
Titov, 2016; Wu et al., 2019; Liu et al., 2021) and
OOS detection (Hodge and Austin, 2004; Chandola
et al., 2009; Lin and Xu, 2019; Wu et al., 2021).
Open RE means that there are no predefined rela-
tion types and no labeled data. Open RE extracts
phrases and arguments as specific relations and
discovers new relations by clustering or heuristics.
Compared to open RE, NRE strengthens the capa-
bility of the conventional RE methods and aims to
automatically discover novel relation types that are
not in the predefined relation set, while providing
accurate predictions for known relations. Another
line of related work is OOS detection, which aims
to recognize OOS data that does not belong to any
predefined class. Although OOS detection has been
widely investigated in other NLP tasks, its explo-
ration in RE is relatively rare.

Therefore, in this paper, we formalize the NRE
task and construct two NRE datasets based on two
widely used RE datasets, FewRel (Han et al., 2018)
and TACRED (Zhang et al., 2017). Then, to estab-
lish NRE’s baselines, we exhaustively investigate a
variety of OOS detection methods (Hendrycks and
Gimpel, 2017; Lin and Xu, 2019; Yan et al., 2020).
In general, previous OOS detection methods usu-
ally learn the decision boundaries of known classes
based on the feature or probability distributions of
known training data. In the testing phase, they use
confidence scores to identify samples outside the
decision boundaries as OOS data.

However, when applying existing OOS detection
methods in the NRE task, we find a shallow seman-
tic similarity problem. Specifically, sentences with
OOS relations may have similar surface informa-
tion, such as entity overlapping and similar syntac-

Assume that ‘‘nominated for’’ is an OOS relation type.

Text 1 (OOS): Westworld was nominated for an Empire 
Award for Best TV Series.

Text 2 (Known): Westworld is directed by Jonathan Nolan.

Figure 2: An example of shallow semantic similarity.
Although “Text 1” and “Text 2” express different rela-
tions, there is similar surface information between them.

tic structures, to sentences with known relations,
as shown in Figure 2. Previous methods only use
training samples of known relations to train mod-
els, which makes them difficult to handle OOS data
with similar surface information. They may pre-
dict similar features or probabilities for these OOS
data and known training data, eventually leading to
confusion between the novel and known relations.

To address the above problem, we propose an
effective NRE method, called Multi-Strategy Self-
Supervised Learning (M3S), which explicitly mod-
els OOS data with similar semantic information by
constructing pseudo-OOS data. Specifically, M3S
uses features of known training data to construct
various pseudo-OOS data. In the semantic feature
space, these pseudo data are close to the known
data. Then, M3S utilizes these pseudo-OOS data to
train the model, thus improving the generalization
in the novel relation. Experimental results show
that M3S significantly outperforms previous state-
of-the-art OOS detection methods.

In summary, the contributions of this work are
as follows: (1) To the best of our knowledge, we
are the first to formally introduce OOS detection
into RE and we construct two NRE benchmarks
through two widely used RE datasets. (2) We inves-
tigate a variety of existing OOS detection methods
and further propose multi-strategy self-supervised
learning, which can effectively handle the prob-
lem of shallow semantic similarity in the NRE task.
(3) Experimental results show that M3S signifi-
cantly outperforms previous OOS detection meth-
ods on the two benchmarks. The source code and
benchmarks will be released for further research
(https://github.com/liuqingbin2022/NRE).

2 Task Formulation

2.1 Relation Extraction

The traditional RE task is usually formulated as
a text classification task (Zhang et al., 2017; Han
et al., 2018). Given a sentence x that contains a pair
of entities, the traditional RE task is to predict a
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relation y for these two entities. This task assumes
y ∈ Y , where Y denotes a predefined relation set.

2.2 Novel Relation Extraction

The NRE task aims to identify the data of OOS rela-
tions while correctly classifying the data of known
relations. We denote the data of known relations as
Do = (Do

1,Do
2, ...,Do

k). Do
i is the data of the i-th

known relation, which has its own training, vali-
dation, and test sets (Dtrain,o

i , Dvalid,o
i , Dtest,o

i ). To
match the realistic environment, there is no training
and validation data for the novel relation type. In
the development phase, the NRE model can only
access the training and validation data of known
relations. In the test phase, the NRE model should
classify each sample into (k + 1)-class relations,
where the (k+1)-th class is the novel relation type.
Therefore, in the test phase, we employ the test data
of both known and novel relations to evaluate the
model. Due to the lack of OOS training data, it is
difficult for previous RE methods to make accurate
predictions for the novel relation type.

3 Dataset

To the best of our knowledge, we are the first to
formally introduce the NRE task. Therefore, we
construct two NRE datasets based on two widely
used RE datasets. In this section, we first briefly in-
troduce the original RE datasets and then describe
the construction method of the NRE datasets. Fi-
nally, we show the statistics of these datasets.

3.1 Original Relation Extraction Datasets

FewRel (Han et al., 2018) is a few-shot RE dataset,
which contains 100 relations. In our work, we use
the publicly available 80 relations as the original
dataset. Since FewRel contains a sufficient number
of relation types, we can use FewRel to simulate
various OOS relations well. Each relation in the
FewRel dataset has 700 labeled data. TACRED
(Zhang et al., 2017) is an RE dataset that contains
42 relations. In the TACRED dataset, there are
68124, 22631, and 15509 samples in the training,
validation, and test sets, respectively.

3.2 NRE Dataset Construction

For an original RE dataset, we randomly select
some relations as OOS relations according to a spe-
cific ratio. Since many relations can be predefined
in practical applications, we adopt three reason-
able ratios, 10%, 20%, and 30%, in this paper. For

Metric FewRel-NRE-20% TACRED-NRE-20%

# Training Data 26,880 2,880
# Validation Data 8,960 960
# Test Data 11,200 1,200
# OOS Test Data 2,240 240
Vocabulary Size 66,171 13,714
# Known Relations 64 16
# OOS Relations 16 4

Table 1: Statistics of the NRE datasets. “#” indicates
“the number of”.

these OOS relations, we remove their training and
validation data and keep their test data as the test
data of the novel relation type. Based on FewRel
and TACRED, we propose two instantiations of the
above construction method. FewRel-NRE: Since
the original FewRel dataset does not provide data
splitting, we split the data of each relation in a
3:1:1 ratio into the training, validation, and test
sets. TACRED-NRE: Considering the severe class
imbalance in TACRED, we use the top 20 most
frequent relations and limit the number of training,
validation, and test samples of each relation to 180,
60, and 60, respectively. We treat the “no relation”
class in TACRED as a known relation to fit the real-
world setting. To avoid randomness, we construct 5
different datasets with 5 different random seeds for
each specific ratio. These datasets can well simu-
late unpredictable and diverse OOS relations in the
real world. Table 1 shows the statistics of the two
constructed datasets in which 20% of the relations
are selected as OOS relations.

4 Previous OOS Detection Methods

In other OOS detection tasks, recent work has at-
tempted to find an appropriate decision boundary to
balance the performance of both known and OOS
relations. We roughly divide previous methods
into two categories: probability-based methods
(Hendrycks and Gimpel, 2017; Shu et al., 2017)
and feature-based methods (Lin and Xu, 2019; Yan
et al., 2020). We apply these methods to the NRE
task and provide a detailed quantitative analysis.

4.1 Probability-Based Methods
Probability-based methods assume that the updated
model will not be overconfident in the OOS data.
In the training phase, probability-based methods
use the training data of known relations to update
the model. In the test phase, these methods derive
a confidence score from the probability distribution
of each sample. If the confidence score of a test
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Figure 3: Maximum probabilities of the test samples
of the FewRel-NRE-20% dataset. “MSP (Known)” de-
notes the maximum probabilities predicted by the MSP
model for test samples with known relations. Test sam-
ples whose maximum probability is below the threshold
τ are predicted as OOS data.

sample is below a threshold, it is treated as OOS
data. For example, MSP (Hendrycks and Gimpel,
2017) adopts the maximum softmax probability as
the confidence score.

However, we find that these methods perform
poorly in the NRE task. To give a clear analysis, we
present the maximum probabilities of test samples
with known relations and OOS relations separately
in Figure 3. From the results, we can see that both
the MSP and DOC (Shu et al., 2017) methods tend
to overconfidently assign known relations to OOS
data. We speculate that since these models have
not learned the OOS data, they may not generalize
well to the OOS data with similar surface infor-
mation, leading to incorrect predictions. Besides,
these methods require an additional validation set
containing OOS data to obtain the threshold (τ ).

4.2 Feature-Based Methods

Feature-based methods derive the confidence score
from the feature distribution. In the training phase,
these methods employ specific optimization objec-
tives to constrain the feature distribution of known
classes. In the test phase, they use distance-based
outlier detection algorithms, such as LOF (Breunig
et al., 2000), to derive the confidence score from
the feature distribution. For example, SEG (Yan
et al., 2020) is a typical feature-based method that
assumes the features of known classes follow a
Gaussian mixture distribution.

To verify the effectiveness of feature-based meth-
ods on the NRE task, we provide the feature visu-
alization of the SEG method in Figure 4. We can
see that many features of OOS relations are con-

Figure 4: t-SNE visualization of the FewRel-NRE-20%
dataset. Blue dots denote the features of the training
samples with known relations. Light red dots denote the
features of the OOS test samples.

fused with features of known relations. Since the
SEG method has not learned OOS data, it may have
difficulty extracting valid features for these OOS
samples, which ultimately hurts the performance.

5 Methodology

To address the above problem, we propose Multi-
Strategy Self-Supervised Learning, which explic-
itly models OOS data with similar surface informa-
tion by constructing various pseudo-OOS data.

5.1 Input Encoding
We adopt BERT (Devlin et al., 2019), which is a
powerful pre-trained language model, as the text
encoder. The BERT encoder outputs a contextual
representation for each input sequence as:

hx = BERT(x) (1)

where hx is the hidden state. We use the hidden
state of the [CLS] token as the feature representa-
tion (f(x)) of each sequence. Note that our method
is agnostic to the model architecture. Other en-
coders can also be adopted.

5.2 Multi-Strategy Self-Supervised Learning
In M3S, we design three self-supervised strategies
to construct pseudo-OOS data, including convex
combination, regional replacement, and irregular
replacement. These pseudo-OOS data, together
with the training data of known relations, are used
to update the model to improve its generalization.
The framework of M3S is shown in Figure 5.

5.2.1 Convex Combination
For this strategy, we use convex combinations of
sample features from different relations as pseudo-
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Figure 5: Overall framework of the proposed method.

OOS data, which can be formalized as:

f cc = α ∗ f(x1) + (1− α) ∗ f(x2) (2)

where x1 and x2 are two training samples with
different known relations. These two samples are
randomly selected from the same training batch.
f cc is the synthetic OOS data. α is a scalar that
is randomly sampled from a uniform distribution
U(0, 1). If α is close to 0 or 1, f cc will be close
to the features of known relations in the semantic
feature space. These synthetic features can thus
simulate real OOS data that have similar semantic
information as known training data.

These synthetic features are assigned to the novel
relation type to form a new training set: Dtrain,cc =⋃N

i=1 f
cc
i . Since these samples are constructed in

the feature space, it is very efficient to construct a
large number of pseudo data.

5.2.2 Regional Replacement
Since the distribution of real OOS data is often
arbitrary and diverse, we further propose a regional
replacement strategy to construct diverse pseudo-
OOS data. This strategy constructs pseudo samples
by replacing a random region of the feature of x1
with the corresponding region of the feature of x2:

f rr = M ⊙ f(x1) + (1−M)⊙ f(x2) (3)

where M is a binary mask vector that indicates the
region of replacement. x1 and x2 are two training
samples with different known relations. ⊙ is the
element-wise multiplication.

To get the mask vector M , we first sample a ran-
dom value β from a uniform distribution U(0, 1).
Then, we calculate the region length as: l = β ∗ d,
where d is the dimensional size of features. Finally,
we calculate the region coordinates:

t ∼ U(1, d)

rs = t − | l/2 |, re = t + | l/2 | (4)

where t is a random integer between 1 and d. rs and
re are the start and end coordinates of the selected
region. In this region, the value of the mask vector
is 0, otherwise it is 1. This strategy forms another
new OOS training set: Dtrain,rr =

⋃N
i=1 f

rr
i .

5.2.3 Irregular Replacement
Moreover, we design an irregular replacement. Dif-
ferent from regional replacement, irregular replace-
ment randomly selects some discontinuous dimen-
sions to replace, instead of a continuous region.

To obtain the mask vector M of this strategy,
we first sample the random value β and calculate
the number of replaced dimensions as: l = β ∗ d.
Then, we assign a coefficient γ, which is randomly
selected from the uniform distribution U(0, 1), for
each dimension. Finally, we select the top l dimen-
sions that get larger coefficients for replacement. In
the mask vector, we set these selected dimensions
to 0 and the others to 1. We use the mask vector
to construct the pseudo-OOS data f ir and obtain a
new training set: Dtrain,ir =

⋃N
i=1 f

ir
i .

5.3 Optimization

In each training batch, we combine the original fea-
tures with the synthetic OOS features as the train-
ing set, i.e., Dtrain = Dtrain,o ∪ Dtrain,cc ∪ Dtrain,rr ∪
Dtrain,ir. Thus, we can train a uniform (k+ 1)-class
classifier without additional post-processing. In
our method, we employ the softmax classifier and
use the cross-entropy loss to optimize the model:

LCE = −
∑|Dtrain|

i=1
log

eϕj(fi)/T

∑|C|
n=1 eϕn(fi)/T

(5)

where ϕj(fi) denotes the output logit of the ground-
truth class j of the feature fi. C is the entire (k+1)-
class relation set. T is the temperature scalar. In the
testing phase, M3S is able to directly predict known
relations while identifying the novel relation.

6 Experiments

6.1 Baselines

To provide a comprehensive comparison, we em-
ploy multiple OOS detection methods as baselines.

MSP (Hendrycks and Gimpel, 2017) obtains the
confidence score from the maximum softmax prob-
ability and treats samples that get lower scores as
OOS data. DOC (Shu et al., 2017) uses multiple
1-vs-rest sigmoid classifiers to optimize the prob-
ability distribution. LMCL (Lin and Xu, 2019)
utilizes a large margin cosine loss to learn discrim-
inative features and detects outliers via the LOF
algorithm. SEG (Yan et al., 2020) assumes that
the features of known classes follow a Gaussian
mixture distribution. It also uses LOF to detect
outliers. SEG-SF (Yan et al., 2020) uses a softmax
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Rate Method
FewRel TACRED

Accuracy Macro F1 Known Novel Accuracy Macro F1 Known Novel

10%

MSP 75.03 80.82 81.42 37.87 66.36 70.46 72.48 34.09
DOC 74.14 79.03 79.70 30.94 72.29 74.24 76.40 35.41
LMCL 75.14 81.07 81.67 37.90 71.24 74.06 76.26 34.37
SEG 68.38 73.90 74.51 30.21 64.23 66.10 67.76 36.15
SEG-SF 69.67 76.17 76.78 32.74 65.73 68.31 70.16 34.90
GDA 75.91 81.38 81.99 37.61 71.08 72.90 74.92 36.53
M3S 77.29 81.99 82.56 40.90 72.62 75.26 77.17 40.97

20%

MSP 74.56 80.21 80.63 53.24 66.32 70.86 72.53 44.05
DOC 70.83 77.42 78.06 36.65 68.82 73.29 75.54 37.42
LMCL 75.12 80.98 81.42 53.03 67.81 73.16 75.33 38.44
SEG 66.19 72.31 72.88 42.57 59.72 64.18 66.33 29.63
SEG-SF 69.67 75.34 75.72 50.97 63.13 66.76 68.58 37.59
GDA 75.10 80.65 81.09 52.64 67.78 72.02 73.96 40.91
M3S 75.91 81.06 81.47 55.02 69.89 73.94 75.59 47.47

30%

MSP 72.00 78.17 78.54 57.63 65.73 68.74 69.74 54.75
DOC 66.11 75.23 75.87 39.24 63.49 68.76 70.84 39.64
LMCL 72.06 78.72 79.09 58.25 64.18 69.44 71.09 46.36
SEG 63.13 70.29 70.69 47.49 57.96 63.44 65.32 37.03
SEG-SF 68.58 75.88 76.32 51.54 62.25 66.63 68.23 44.25
GDA 71.77 78.07 78.46 56.57 64.08 69.13 70.98 43.20
M3S 73.23 78.77 79.09 60.70 68.12 71.18 72.18 57.17

Table 2: Main results (%) with different proportions of OOS relations on FewRel and TACRED datasets. “Known”
and “Novel” denote the macro F1 over the known relations and the novel relation, respectively.

classifier in the original SEG method. GDA (Xu
et al., 2020) utilizes the Mahalanobis distance be-
tween each feature and the class prototype as the
confidence score.

MSP and GDA require a specific validation set
that contains OOS data to adjust their thresholds.
We provide such a validation set for MSP and GDA
by integrating the validation data of OOS relations.
Our method and other baselines only use the data of
known relations for training and validation, which
is a more realistic setting.

6.2 Experimental Settings

We use the HuggingFace’s Transformer library2 to
implement the BERT-based model. To ensure a fair
comparison, all baselines employ the same BERT
encoder. As suggested by Devlin et al. (2019), the
learning rate is 1e-5. The temperature scalar T
is 0.1. The batch sizes for FewRel and TACRED
are 32 and 16. Each self-supervised strategy con-
structs a batch size pseudo-OOS samples. The
hyper-parameters are obtained by a grid search on
the validation set.

2https://github.com/huggingface

6.3 Evaluation Metrics
Following other OOS detection tasks (Yan et al.,
2020; Zhang et al., 2021), we use the overall ac-
curacy and the macro F1 score as evaluation met-
rics. In addition, we report the macro F1 scores
of the known relations and the novel relation sepa-
rately. For each OOS rate, we construct 5 different
datasets and report the average results.

6.4 Main Results
The main results are shown in Table 2. From these
results, we can see that:

(1) Our method M3S significantly outperforms
other baselines and achieves state-of-the-art per-
formance on all datasets. For example, compared
to GDA, our method achieves 2.38% and 6.56%
improvements in terms of the F1 of the novel re-
lation type on FewRel-NRE-20% and TACRED-
NRE-20% datasets, respectively. It verifies the
effectiveness of our method on the NRE task.

(2) Under each rate, there is a significant perfor-
mance gap between the baselines and our method.
The reason is that previous methods ignore the shal-
low semantic similarity problem in the NRE task,
which makes them difficult to identify OOS data
with similar surface information. Besides, we find
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Rate Method
FewRel TACRED

Accuracy Macro F1 Known Novel Accuracy Macro F1 Known Novel

20%

M3S 75.91 81.06 81.47 55.02 69.89 73.94 75.59 47.47
- CC 75.70 80.80 81.21 54.08 68.35 72.64 74.29 46.19
- RR 75.49 80.68 81.09 54.25 68.77 72.90 74.57 46.24
- IR 75.31 80.47 80.89 53.98 68.83 72.94 74.62 46.18
- CC & RR 75.02 80.27 80.68 53.53 67.90 72.32 74.03 45.03
- CC & IR 74.81 80.03 80.44 53.28 67.65 71.71 73.33 45.80
- RR & IR 74.72 79.97 80.38 53.41 67.50 71.55 73.26 44.17
- M3S 69.36 77.44 78.65 0.00 64.44 68.55 72.84 0.00

Table 3: Ablation studies (%) on the effectiveness of multi-strategy self-supervised learning.

that, without additional OOS validation data, SEG
tends to overfit known relations quickly, leading to
performance degradation.

(3) Although MSP and GDA achieve acceptable
performance, they require additional OOS valida-
tion data to adjust their thresholds. Our method
does not require such data and still outperforms
MSP and GDA methods.

6.5 Ablation Study

To gain more insights into the multi-strategy self-
supervised learning, we conduct ablation studies
by evaluating multiple variants of M3S. The re-
sults are shown in Table 3. To reduce the effect
of the number of pseudo-OOS data, we keep the
total number of pseudo-OOS data per batch for all
variants the same as M3S.

From the results, we can see that: Removing
any self-supervised strategy, i.e., convex combi-
nation (CC), regional replacement (RR), or irreg-
ular replacement (IR), brings performance degra-
dation. This proves the effectiveness of each self-
supervised strategy. We infer that these strategies
can effectively construct diverse pseudo-OOS data
to improve performance. When we remove the
three strategies (- M3S), the performance drops
significantly. This indicates that OOS detection is
critical for RE models in real-world applications.

6.6 Effect of the Number of Pseudo-OOS Data

We further investigate the effect of varying the num-
ber of pseudo-OOS data. As shown in Figure 6,
we increase the number of pseudo-OOS data con-
structed by each self-supervised strategy from 0 to
160. Note that 32 is the default value of our method
on the FewRel-NRE dataset. From the results, we
can see that:

(1) As shown in Figure 6 (d), with the increase
of synthetic OOS data, M3S achieves comparable

performance in terms of the F1 of the novel rela-
tion. This proves that our method is robust over
a wide range of numbers. Our method is capable
of constructing effective and precise pseudo-OOS
data for the novel relation type.

(2) For the other metrics, the performance first
increases and then slightly drops as the number in-
creases. We speculate that as the number increases,
the constructed OOS data grows rapidly, which
leads to a severe data imbalance between the novel
relation and the known relations. The data imbal-
ance problem makes the model significantly biased
towards learning the synthetic OOS data, affecting
the performance of known relations. In this paper,
we leave this problem for future work.

(3) Compared to the model without pseudo data,
our method not only achieves improvements in the
novel relation but also brings a positive effect on
known relations. This is mainly due to the fact that
our method is able to correctly assign the novel
relation to OOS data rather than known relations,
thus boosting the overall performance.

6.7 Efficiency

To demonstrate the efficiency of our method, we
compare the average training time per epoch and
the total test time of different methods. The results
are shown in Figure 7. Even with pseudo-OOS
samples, the training time of our method M3S is
comparable to that of these baselines. The training
time per epoch of our method is even lower than
that of the SEG model. Importantly, the test time
of our method is comparable to that of the MSP
model and significantly lower than other baselines.
This is due to the fact that our method does not
require additional post-processing modules and it
classifies all test data in a uniform manner.
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Figure 6: Effect (%) of the number of self-supervised OOS data on the FewRel-NRE-20% dataset. (a), (b), (c),
and (d) show the overall accuracy, overall macro F1, macro F1 of known relations, and F1 of the novel relation,
respectively. “#” indicates the number of pseudo-OOS data constructed by each self-supervised strategy.
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Figure 7: Comparison (in seconds) of the training time
per epoch and the total test time on the FewRel-NRE-
20% dataset.

7 Related Work

7.1 Relation Extraction

Recently, there are many research works on RE
(Zelenko et al., 2002; Zeng et al., 2018; Li et al.,
2019; Ye et al., 2022). Guo et al. (2019) propose
attention-guided graph convolutional networks to
select useful substructures from dependency trees
for RE. Wang et al. (2021) use a unified label space
to model the information between entities and re-
lations. In addition, the few-shot RE task aims to
train an RE model using a few samples (Han et al.,
2018; Sainz et al., 2021). The continual RE task en-
ables RE models to continually learn new labeled
data (Wang et al., 2019; Cui et al., 2021).

Despite the great progress in RE tasks, these
existing methods usually ignore the discovery of
novel relations, which limits their application in

the real world. Open RE extracts phrases and argu-
ments as specific relations and discovers new rela-
tions by clustering or heuristics (Yao et al., 2011;
Cui et al., 2018; Kolluru et al., 2022). However,
it can not automatically discover novel relations
that are not in the predefined relation set. Gao et al.
(2019) focus on OOS detection in the few-shot
RE task. Compared to these works, we formally
propose a realistic and challenging task, i.e., OOS
detection for the traditional RE task.

7.2 Out-of-Scope Detection

Out-of-scope detection is a long-standing research
topic in machine learning, which enables models to
identify OOS data as a new/open class (Hodge and
Austin, 2004; Zimek et al., 2012; Lee et al., 2018;
Zhang et al., 2021). Existing mainstream OOS de-
tection methods can be roughly divided into two
categories: probability-based methods (Hendrycks
and Gimpel, 2017; Shu et al., 2017) and feature-
based methods (Lin and Xu, 2019; Yan et al., 2020;
Xu et al., 2020). Probability-based methods derive
the confidence score from the probability distri-
bution. Feature-based methods generally employ
outlier detection methods, such as LOF (Breunig
et al., 2000) or one-class SVM (Schölkopf et al.,
2001), to detect OOS data. In addition, there are
some research efforts that use synthetic or real OOS
data to aid model training (Ryu et al., 2018; Lee
et al., 2018; Hendrycks et al., 2019). Zhan et al.
(2021) utilize a data augmentation method similar
to Mixup (Zhang et al., 2018) to synthesize outliers.
Inspired by Zhan et al. (2021) and other data aug-
mentation methods (Yun et al., 2019; Harris et al.,
2020), we propose multi-strategy self-supervised
learning for the NRE task.
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8 Conclusion

In this paper, we introduce OOS detection into re-
lation detection, which can automatically discover
the data with OOS relations while correctly clas-
sifying the data with known relations. To cope
with shallow semantic similarity, we propose multi-
strategy self-supervised learning. We construct two
datasets for the NRE task and compare our method
with multiple strong baselines. The results demon-
strate the effectiveness of our method.

Limitations

In this paper, each self-supervised strategy con-
structs the same amount of pseudo-OOS data. In
fact, different strategies bring different improve-
ments as shown in Table 3. Therefore, in future
work, we hope to find better ways to fuse these
strategies.
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