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Abstract

Semantic Change Detection (SCD) of words
is an important task for various NLP applica-
tions that must make time-sensitive predictions.
Some words are used over time in novel ways
to express new meanings, and these new mean-
ings establish themselves as novel senses of
existing words. On the other hand, Word Sense
Disambiguation (WSD) methods associate am-
biguous words with sense ids, depending on the
context in which they occur. Given this relation-
ship between WSD and SCD, we explore the
possibility of predicting whether a target word
has its meaning changed between two corpora
collected at different time steps, by comparing
the distributions of senses of that word in each
corpora. For this purpose, we use pretrained
static sense embeddings to automatically an-
notate each occurrence of the target word in
a corpus with a sense id. Next, we compute
the distribution of sense ids of a target word
in a given corpus. Finally, we use different di-
vergence or distance measures to quantify the
semantic change of the target word across the
two given corpora. Our experimental results on
SemEval 2020 Task 1 dataset show that word
sense distributions can be accurately used to
predict semantic changes of words in English,
German, Swedish and Latin.

1 Introduction

SCD of words over time has provided important
insights for diverse fields such as linguistics, lex-
icography, sociology, and information retrieval
(IR) (Traugott and Dasher, 2001; Cook and Steven-
son, 2010; Michel et al., 2011; Kutuzov et al.,
2018). For example, in IR one must know the sea-
sonal association of keywords used in user queries
to provide relevant results pertaining to a particu-
lar time period. Moreover, it has been shown that
the performance of publicly available pretrained
LLMs declines over time when applied to emerg-
ing data (Su et al., 2022; Loureiro et al., 2022;
Lazaridou et al., 2021) because they are trained

using a static snapshot. Moreover, Su et al. (2022)
showed that the temporal generalisation of LLMs
is closely related to their ability to detect semantic
variations of words.

A word is often associated with multiple senses
as listed in dictionaries, corresponding to its dif-
ferent meanings. Polysemy (i.e. coexistence
of several possible meanings for one word) has
been shown to statistically correlate with the rate
of semantic change in prior work (Bréal, 1897;
Ullmann, 1959; Magué, 2005). For example,
consider the word cell, which has the following
three noun senses according to the WordNet1: (a)
cell%1:03:00 – the basic structural and functional
unit of all organisms, (b) cell%1:06:04 – a hand-
held mobile radiotelephone for use in an area di-
vided into small sections, and (c) cell%1:06:01 – a
room where a prisoner is kept. Here, the WordNet
sense ids for each word sense are shown in boldface
font. Mobile phones were first produced in the late
1970s and came into wider circulation after 1990.
Therefore, the sense (b) is considered as a more
recent association compared to (a) and (c). Given
two sets of documents, one sampled before 1970
and one after, we would expect to encounter (b)
more frequently in the latter set. Likewise, articles
on biology are likely to contain (a). As seen from
this example the sense distributions of a word in
two corpora provide useful information about
its possible meaning changes over time.

Given this relationship between the two tasks
SCD and WSD, a natural question arises – is
the word sense distribution indicative of seman-
tic changes of words? To answer this question, we
design and evaluate an unsupervised SCD method
that uses only the word sense distributions to pre-
dict whether the meaning associated with a target
word w has changed from one text corpora C1 to
another C2. For the ease of future references, we
name this method Sense-based Semantic Change

1https://wordnet.princeton.edu/
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Score (SSCS). Given a target word w, we first
disambiguate each occurrence of w in each cor-
pus. For this purpose, we measure the similar-
ity between the contextualised word embedding of
w, obtained from a pre-trained Masked Language
Model (MLM), from the contexts containing w
with each of the pre-trained static sense embed-
dings corresponding to the different senses of w.
Next, we compute the sense distribution of w in
each corpus separately. Finally, we use multiple
distance/divergence measures to compare the two
sense distributions of w to determine whether its
meaning has changed from C1 to C2.

To evaluate the possibility of using word senses
for SCD, we compare the performance of SSCS
against previously proposed SCD methods us-
ing the SemEval-2020 Task 1 (unsupervised lex-
ical SCD) (Schlechtweg et al., 2020) benchmark
dataset. This task has two subtasks: (1) a binary
classification task, where for a set of target words,
we must decide which words lost or gained sense(s)
from C1 to C2, and (2) a ranking task, where we
must rank target words according to their degree of
lexical semantic change from C1 to C2. We apply
SSCS on two pre-trained static sense embeddings,
and six distance/divergence measures. Despite the
computationally lightweight and unsupervised na-
ture of SSCS, our experimental results show that
it surprisingly outperforms most previously pro-
posed SCD methods for English, demonstrating
the effectiveness of word sense distributions for
SCD. Moreover, evaluations on German, Latin and
Swedish show that this effectiveness holds in other
languages as well, although not to the same levels
as in English. We hope our findings will motivate
future methods for SCD to explicitly incorporate
word sense related information. Source code imple-
mentation for reproducing our experimental results
is publicly available.2

2 Related Work

Semantic Change Detection: SCD is modelled
in the literature as the unsupervised task of detect-
ing words whose meanings change between two
given time-specific corpora (Kutuzov et al., 2018;
Tahmasebi et al., 2021). In recent years, several
shared tasks have been held (Schlechtweg et al.,
2020; Basile et al., 2020; Kutuzov and Pivovarova,
2021), where participants are required to predict the

2https://github.com/LivNLP/
Sense-based-Semantic-Change-Prediction

degree or presence of semantic changes for a given
target word between two given corpora, sampled
from different time periods. Various methods have
been proposed to map vector spaces from differ-
ent time periods, such as initialisation (Kim et al.,
2014), alignment (Kulkarni et al., 2015; Hamilton
et al., 2016), and joint learning (Yao et al., 2018;
Dubossarsky et al., 2019; Aida et al., 2021).

Existing SCD methods can be broadly cate-
gorised into two groups: (a) methods that com-
pare word/context clusters (Hu et al., 2019; Giu-
lianelli et al., 2020; Montariol et al., 2021), and
(b) methods that compare embeddings of the tar-
get words computed from different corpora sam-
pled at different time periods (Martinc et al., 2020;
Beck, 2020; Kutuzov and Giulianelli, 2020; Rosin
et al., 2022). Rosin and Radinsky (2022) recently
proposed a temporal attention mechanism, which
achieves SoTA performance for SCD. However,
their method requires additional training of the en-
tire MLM with temporal attention, which is compu-
tationally expensive for large MLMs and corpora.

The change of the grammatical profile (Kutuzov
et al., 2021; Giulianelli et al., 2022) of a word, cre-
ated using its universal dependencies obtained from
UDPipe (Straka and Straková, 2017), has shown to
correlate with the semantic change of that word.
However, the accuracy of the grammatical pro-
file depends on the accuracy of the parser, which
can be low for resource poor languages and noisy
texts. Sabina Uban et al. (2022) used polysemy
as a feature for detecting lexical semantic change
discovery. The distribution of the contextualised
embeddings of a word over its occurrences (aka.
sibling embeddings) in a corpus has shown to be
an accurate representation of the meaning of that
word in a corpus, which can be used to compute
various semantic change detection scores (Kutu-
zov et al., 2022; Aida and Bollegala, 2023). XL-
LEXEME (Cassotti et al., 2023) is a supervised
SCD method where a bi-encoder model is trained
using WiC (Pilehvar and Camacho-Collados, 2019)
dataset to discriminate whether a target word ap-
pears in different senses in a pair of sentences. XL-
LEXEME reports SoTA SCD results for English,
German, Swedish and Russian.

Sense Embeddings: Sense embedding learning
methods represent different senses of an ambiguous
word with different vectors. The concept of multi-
prototype embeddings to represent word senses
was introduced by Reisinger and Mooney (2010).
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This idea was further extended by Huang et al.
(2012), who combined both local and global con-
texts in their approach. Clustering is used in both
works to categorise contexts of a word that belong
to the same meaning. Although the number of
senses a word can take depends on that word, both
approaches assign a predefined fixed number of
senses to all words. To address this limitation, Nee-
lakantan et al. (2014) introduced a non-parametric
model, which is able to dynamically estimate the
number of senses for each word.

Although clustering-based approaches can allo-
cate multi-prototype embeddings to a word, they
still suffer from the fact that the embeddings gener-
ated this way are not linked to any sense invento-
ries (Camacho-Collados and Pilehvar, 2018). On
the other hand, knowledge-based methods obtain
sense embeddings by extracting sense-specific in-
formation from external sense inventories, such
as the WordNet (Fellbaum and Miller, 1998) or
the BabelNet3 (Navigli and Ponzetto, 2012). Chen
et al. (2014) extended word2vec (Mikolov et al.,
2013) to learn sense embeddings using WordNet
synsets. Rothe and Schütze (2015) made use of the
semantic relationships in WordNet to embed words
into a shared vector space. Iacobacci et al. (2015)
used the definitions of word senses in BabelNet and
conducted WSD to extract contextual information
that is unique to each sense.

Recently, contextualised embeddings produced
by MLMs have been used to create sense embed-
dings. To achieve this, Loureiro and Jorge (2019)
created LMMS sense embeddings by averaging
over the contextualised embeddings of the sense
annotated tokens from SemCor (Miller et al., 1993).
Scarlini et al. (2020a) proposed SenseEmBERT
(Sense Embedded BERT), which makes use of the
lexical-semantic information in BabelNet to cre-
ate sense embeddings without relying on sense-
annotated data. ARES (context-AwaRe Embed-
dinS) (Scarlini et al., 2020b) is a knowledge-based
method for generating BERT-based embeddings of
senses by means of the lexical-semantic informa-
tion available in BabelNet and Wikipedia. ARES
and LMMS embeddings are the current SoTA sense
embeddings.

3 Sense-based Semantic Change Score

SSCS consists of two steps. First, in §3.1, we com-
pute the distribution of word senses associated with

3https://babelnet.org/
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Figure 1: Plate diagram showing the dependencies
among the sentences s in the corpus C, the target word
w, and its sense z in s.

a target word in a corpus. Second, in §3.2, we use
different distance (or divergence) measures to com-
pare the sense distributions computed for the same
target word from different corpora to determine
whether its meaning has changed between the two
corpora.

3.1 Computing Sense Distributions
We represent the meaning expressed by a target
word w in a corpus C by the distribution of w’s
word senses, p(zw|w, C). As explained in §1, our
working hypothesis is that if the meaning of w
has changed from C1 to C2, then the correspond-
ing sense distributions of w, p(zw|w, C1) will be
different from p(zw|w, C2). Therefore, we first es-
timate p(zw|w, C) according to the probabilistic
model illustrated in the plate diagram in Figure 1.
We consider the corpus, C to be a collection of
|C| sentences from which a sentence s is randomly
sampled according to p(s|C). Next, for each word
w in vocabulary V that appears in s, we randomly
sample a sense zw from its set of sense ids Zw.
As shown in Figure 1, we assume the sense that a
word takes in a sentence to be independent of the
other sentences in the corpus, which enables us to
factorise p(z|w, C) as in (1).

p(zw|w, C) =
∑

s∈C(w)

p(zw|w, s)p(s|C) (1)

Here, C(w) is the subset of sentences in C where w
occurs. We assume p(s|C) to be uniform and set it
to be 1/|C|, where |C| is the number of sentences
in C.

Following the prior works that use static sense
embeddings for conducting WSD, the similarity
between the pre-trained static sense embedding
zw of the sense zw of w, and the contextualised
word embedding f(w, s) of w in s (obtained from
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a pre-trained MLM) can be used as the confidence
score for predicting whether w takes the sense zw
in s. Specifically, the LMMS and ARES sense em-
beddings we use in our experiments are computed
using BERT (Devlin et al., 2019) as the back-end,
producing aligned vector spaces where we can com-
pute the confidence scores using the inner-product
as given by (2).

p(zw|w, s) =
⟨zw,f(w, s)⟩∑

z′w∈Zw
⟨z′

w,f(w, s)⟩
(2)

In WSD, an ambiguous word is typically as-
sumed to take only a single sense in a given
context. Therefore, WSD methods assign the
most probable sense z∗w to w in s, where z∗w =
argmax
zw∈Zw

p(zw|w, s). However, not all meanings

of a word might necessarily map to a single word
sense due to the incompleteness of sense invento-
ries. For example, a novel use of an existing word
might be a combination of multiple existing senses
of that word rather than a novel sense. Therefore, it
is important to consider the sense distribution over
word senses, p(zw|w, s), instead of only the most
probable sense. Later in §5.1, we experimentally
study the effect of using top-k senses of a word in
a given sentence.

3.2 Comparing Sense Distributions

Following the procedure described in §3.1, we in-
dependently compute the distributions p(zw|w, C1)
and p(zw|w, C2) respectively from C1 and C2. Next,
we compare those two distributions using different
distance measures, d(p(zw|w, C1), p(zw|w, C2)),
to determine whether the meaning of w has
changed between C1 and C2. For this purpose, we
use five distance measures (i.e. Cosine, Cheby-
shev, Canberra, Bray-Curtis, Euclidean) and two
divergence measures (i.e. Jensen-Shannon (JS),
Kullback–Leibler (KL)) in our experiments. For
computing distance measures, we consider each
sense zw as a dimension in a vector space where the
corresponding value is set to p(zw|w, C). The defi-
nitions of those measures are given in Appendix A.

4 Experiments

Data and Evaluation Metrics: We use the
SemEval-2020 Task 1 dataset (Schlechtweg et al.,
2020) to evaluate SCD of words over time for En-
glish, German, Swedish and Latin in two subtasks:

binary classification and ranking. In the classifica-
tion subtask, the words in the evaluation set must
be classified as to whether they have semantically
changed over time. Classification Accuracy (i.e.
percentage of the correctly predicted words in the
set of test target words) is used as the evaluation
metric for this task.

To predict whether a target word w has
its meaning changed, we use Bayesian opti-
misation to find a threshold on the distance,
d(p(zw|w, C1), p(zw|w, C2)), between the sense
distributions of w computed from C1 and C2.
Specifically, we use the Adaptive Experimentation
Platform4 to find the threshold that maximises the
classification accuracy on a randomly selected held-
out portion of words from the SemEval dataset, re-
served for validation purposes. We found that using
Bayesian optimisation is more efficient than con-
ducting a linear search over the parameter space.
We repeat this threshold estimation process five
times and use the averaged parameter values in the
remainder of the experiments.

In the ranking subtask, the words in the evalu-
ation set must be sorted according to the degree
of semantic change. Spearman’s rank correlation
coefficient (ρ ∈ [−1, 1]) between the human-rated
gold scores and the induced ranking scores is used
as the evaluation metric for this subtask. Higher ρ
values indicate better SCD methods.

Statistics of the data used in our experiments
are shown in Table 4 in Appendix B. The En-
glish dataset includes two corpora from different
centuries extracted from CCOHA (Alatrash et al.,
2020). Let us denote the corpora collected from the
early 1800s and late 1900s to early 2000s respec-
tively by C1 and C2. For each language, its test set
has 30-48 target words that are selected to indicate
whether they have undergone a semantic change
between the two time periods. These words are
annotated by native speakers indicating whether
their meanings have changed over time and if so
the degree of the semantic change.

Sense Embeddings: We use two pre-
trained sense embeddings in our experi-
ments: LMMS (Loureiro and Jorge, 2019) and
ARES (Scarlini et al., 2020b). For English mono-
lingual experiments we use the 2048-dimensional

4https://ax.dev/
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Figure 2: Spearman’s ρ and Accuracy on SemEval En-
glish held-out data when using the top-k senses in the
sense distribution with JS as the divergence.

LMMS5 and ARES6 embeddings computed using
bert-large-cased,7 which use WordNet sense
ids. For the multilingual experiments, we use the
768-dimensional ARES embeddings computed
using multilingual-bert,8 which uses BabelNet
sense ids. As a baseline method that does not
use sense embeddings, we use the English WSD
implementation in NLTK9 to predict WordNet
sense-ids for the target words, when computing the
sense distributions, p(zw|s) in (1).

Hardware and Hyperparameters: We used a
single NVIDIA RTX A6000 and 64 GB RAM in
our experiments. It takes ca. 7 hours to compute
semantic change scores for all target words in the
15.3M sentences in the SemEval datasets for all
languages we consider. The only hyperparame-
ter in SSCS is the threshold used in the binary
classification task, which is tuned using Bayesian
Optimisation. The obtained thresholds for the dif-
ferent distance measures are shown in Table 5 in
Appendix B.

5 Results

5.1 Effect of Top-k Senses

The correct sense of a word might not necessarily
be ranked as the top-1 because of two reasons: (a)
the sense embeddings might not perfectly encode
all sense related information, and (b) the contex-
tualised word embeddings that we use to compute
the inner-product with sense embeddings might en-

5https://github.com/danlou/LMMS/tree/
LMMS ACL19

6http://sensembert.org/
7https://huggingface.co/bert-large-cased
8https://huggingface.co/

bert-base-multilingual-cased
9https://www.nltk.org/howto/wsd.html

code information that is not relevant to the meaning
of the target word in the given context. Therefore,
there is some benefit of not strictly limiting the
sense distribution only to the top-1 ranked sense,
but to consider k(≥ 1) senses for a target word
in a given context. However, when we increase k,
we will consider less likely senses of w in a given
context s, thereby introducing some noise in the
computation of p(zw|w, C).

We study the effect of using more than one sense
in a given context to compute the sense distribution
of a target word. Specifically, we sort the senses
in the descending order of p(zw|w, s), and select
the top-k ranked senses to represent w in s. Set-
ting k = 1 corresponds to considering the most
probable sense, i.e. argzw∈Zw

max p(zw|w, s). In
Figure 2, we plot the accuracy (for the binary clas-
sification subtask) and ρ (for the ranking subtask)
obtained using LMMS sense embeddings and JS
divergence measure against k. For this experiment,
we use a randomly held-out set of English words
from the SemEval dataset. From Figure 2, we see
that both accuracy and ρ increase initially with k
up to a maximum at k = 2, and then start to drop.
Following this result, we limit the sense distribu-
tions to the top 2 senses for the remainder of the
experiments reported in this paper.

5.2 English Monolingual Results

Aida and Bollegala (2023) showed that the perfor-
mance of an SCD method depends on the metric
used for comparisons. Therefore, in Table 1 we
show SCD results for English target words with dif-
ferent distance/divergence measures using LMMS,
ARES sense embeddings against the NLTK WSD
baseline. We see that LMMS sense embeddings
coupled with JS divergence report the best perfor-
mance for both the binary classification and ranking
subtasks across all settings, whereas ARES sense
embeddings with JS divergence obtain similar ac-
curacy for the binary classification subtask. Com-
paring the WSD methods, we see that NLTK is not
performing as well as the sense embedding-based
methods (i.e. LMMS and ARES) in terms of Spear-
man’s ρ for the ranking subtask. Although NLTK
matches the performance of ARES on the classi-
fication subtask, it is still below that of LMMS.
Moreover, the best performance for NLTK for the
classification subtask is achieved with multiple met-
rics such as Cosine, Bray-Curtis, Euclidean and KL.
Therefore, we conclude that the sense embedding-
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Metric Spearman’s ρ Accuracy
N

LT
K

Cosine 0.007 0.595
Chebyshev 0.301 0.541
Canberra 0.423 0.568
Bray-Curtis 0.175 0.595
Euclidean 0.257 0.595
JS 0.302 0.514
KL 0.351 0.595

A
R

E
S

Cosine 0.149 0.595
Chebyshev 0.080 0.568
Canberra 0.447 0.649
Bray-Curtis 0.485 0.622
Euclidean 0.277 0.568
JS 0.529 0.730†
KL 0.233 0.622

L
M

M
S

Cosine 0.274 0.622
Chebyshev 0.124 0.568
Canberra 0.502 0.405
Bray-Curtis 0.541 0.676
Euclidean 0.245 0.568
JS 0.589† 0.730†
KL 0.329 0.676

Table 1: Semantic Change Detection performance on
SemEval 2020 Task 1 English dataset.

based sense distribution computation is superior to
that of the NLTK baseline.

Among the different distance/divergence mea-
sures used, we see that JS divergence measure per-
forms better than the other measures. In particular,
for both ARES and LMMS, JS outperforms other
measures for both subtasks, and emerges as the
overall best metric for SCD. On the other hand,
Cosine distance, which has been used as a base-
line in much prior work on semantic change detec-
tion (Rosin et al., 2022) performs poorly for the
ranking subtask although it does reasonably well
on the classification subtask. Rosin et al. (2022)
predicted semantic changes by thresholding the
cosine distance. They used peak detection meth-
ods (Palshikar, 2009) to determine this threshold,
whereas we use Bayesian optimisation methods.

5.3 English SCD Results

We compare SSCS against the following prior SCD
methods on the SemEval-2020 Task 1 English data.
Due to space limitations, further details of those
methods are given in Appendix C.

BERT + Time Tokens + Cosine is the method

proposed by Rosin et al. (2022) that fine-tunes
pretrained BERT-base models using time tokens.
BERT + APD was proposed by Kutuzov and Giu-
lianelli (2020) that uses the averages pairwise co-
sine distance. Based on this insight, Aida and Bol-
legala (2023) evaluate the performance of BERT
+ TimeTokens + Cosine with the average pair-
wise cosine distance computed using pre-trained
BERT-base as the MLM. BERT+DSCD is the sib-
ling Distribution-based SCD (DSCD) method pro-
posed by Aida and Bollegala (2023).

A Temporal Attention mechanism was pro-
posed by Rosin and Radinsky (2022) where they
add a trainable temporal attention matrix to the pre-
trained BERT models. Because their two proposed
methods (fine-tuning with time tokens and tempo-
ral attention) are independent, Rosin and Radinsky
(2022) proposed to use them simultaneously, which
is denoted by BERT + Time Tokens + Temporal
Attention. Yüksel et al. (2021) extended word2vec
to create Gaussian embeddings (Vilnis and Mc-
Callum, 2015) for target words independently from
each corpus

Rother et al. (2020) proposed Clustering on
Manifolds of Contextualised Embeddings (CMCE)
where they use mBERT embeddings with dimen-
sionality reduction to represent target words, and
then apply clustering algorithms to find the dif-
ferent sense clusters. CMCE is the current SoTA
for the binary classification task. Asgari et al.
(2020) proposed EmbedLexChange, which uses
fasttext (Bojanowski et al., 2017) to create word
embeddings from each corpora separately, and mea-
sures the cosine similarity between a word and a
fixed set of pivotal words to represent a word in a
corpus using the distribution over those pivots.

UWB (Pražák et al., 2020) learns separate word
embeddings for a target word from each cor-
pora and then use Canonical Correlation Analysis
(CCA) to align the two vector spaces. UWB was
ranked 1st for the binary classification subtask at
the official SemEval 2020 Task 1 competition.

In Table 2, we compare our SSCS with JS using
LMMS sense embeddings (which reported the best
performance according to Table 1) against prior
work. For prior SCD methods, we report perfor-
mance from the original publications, without re-
running those methods. However, not all prior SCD
methods evaluate on both binary classification and
ranking subtasks as we do in this paper, which is
indicated by N/A (not available) in Table 2. XL-
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Model Accuracy Spearman

BERT-base + TimeTokens + Cosine (Rosin et al., 2022) N/A 0.467
BERT-base + APD (Kutuzov and Giulianelli, 2020) N/A 0.479
BERT-base + Temporal Attention (Rosin and Radinsky, 2022) N/A 0.520
BERT-base + TimeTokens + DSCD (Aida and Bollegala, 2023) N/A 0.529
BERT-base + TimeTokens + Temporal Attention (Rosin and Radinsky, 2022) N/A 0.548
Gaussian Embeddings (Yüksel et al., 2021) 0.649 0.400
CMCE (Rother et al., 2020) 0.730 0.440
EmbedLexChange (Asgari et al., 2020) 0.703 0.300
UWE (Pražák et al., 2020) 0.622 0.365
XL-LEXEME (Cassotti et al., 2023) (supervised) N/A 0.757
SSCS (LMMS + JS) 0.730 0.589

Table 2: Comparison against previously proposed SCD methods on the English data in SemEval-2020 Task 1.

LEXEME is a supervised SCD method that is the
current SoTA on this dataset.

From Table 2, we see that SSCS obtains compet-
itive results for both binary classification and rank-
ing subtasks on the SemEval-2020 Task 1 English
dataset, showing the effectiveness of word sense in-
formation for SCD. It matches the performance of
CMCE for the binary classification subtask, while
outperforming Temporal attention with Time To-
ken fine-tuning (Rosin and Radinsky, 2022) on the
ranking subtask.

Although models such as CMCE and EmbedLex-
Change have good performance for the binary clas-
sification subtask, their performance on the ranking
subtask is poor. Both of those methods learn static
word embeddings for a target word independently
from each corpus. Therefore, those methods must
first learn comparable distributions before a dis-
tance measure can be used to calculate a semantic
change score for a target word. As explained above,
CMCE learns CCA-based vector space alignments,
while EmbedLexChange uses the cosine similar-
ity over a set of fixed pivotal words selected from
the two corpora. Both vector space alignments
and pivot selection are error prone, and add ad-
ditional noise to SCD. On the other hand, SSCS
uses the same MLM and sense embeddings on both
corpora when computing the sense distributions,
thus obviating the need for any costly vector space
alignments.

Both TimeToken and Temporal Attention meth-
ods require retraining a transformer model (i.e.
BERT models are used in the original papers).
TimeToken prepends each sentence with a times-
tamp, thereby increasing the input length, which
results in longer training times with transformer-

based LLMs. On the other hand, Temporal At-
tention increases the number of parameters in
the transformer as it uses an additional time-
specific weight matrix. Interestingly, from Ta-
ble 2 we see that SSCS outperforms both those
methods convincingly despite not requiring any
fine-tuning/retraining of the sense embeddings nor
MLMs, which is computationally attractive.

SSCS (which is unsupervised) does not outper-
form XL-LEXEME (which is trained on WiC data)
for the ranking subtask. In particular, we see a sig-
nificant performance gap between XL-LEXEME
and the rest of the unsupervised methods, indicat-
ing that future work on SCD should explore the
possibility of incorporating some form a supervi-
sion to further improve performance. Although in
SSCS, we used pre-trained static sense embeddings
without any further fine-tuning, we could have used
WiC data to select the classification threshold. Dur-
ing inference time, XL-LEXEME computes the
average pair-wise cosine distance between the em-
beddings of sentences that contain the target word
(which we are interested in predicting whether its
meaning has changed over time), selected from
each corpora. However, as already discussed in
§ 5.2, JS divergence outperforms cosine distance
for SCD. Therefore, it would be an interesting fu-
ture research direction would be to incorporate the
findings from unsupervised SCD to further improve
performance in supervised SCD methods.

5.4 Multilingual SCD Results

To evaluate the effectiveness of word sense
distributions for detecting semantic change of
words in other languages, we use the 768-
dimensional ARES multilingual sense embed-
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Figure 3: Multilingual semantic change detection of
SSCS for ranking task in English, German, Latin and
Swedish.

dings,10 trained using BabelNet concept ids. We
use bert-base-multilingual-cased11 as the
multilingual MLM in this evaluation because it
is compatible with the ARES multilingual sense
embeddings. For evaluations, we use the ranking
subtask data in the SemEval 2020 Task 1 for Ger-
man, Swedish and Latin.

In Figure 3 we compare ρ values obtained us-
ing different distance/divergence measures. We see
that JS performs best for English, KL for German
and Latin, whereas Canberra for Swedish. Overall,
the divergence-based measures (i.e. KL and JS)
report better results than distance-based measures
across languages, except in Swedish. Various fac-
tors affect the performance such as the coverage
and sparseness of sense distributions, size of the
corpora in each time period, and the number of
test target words in each evaluation dataset. There-
fore, it is difficult to attribute the performance dif-
ferences across languages purely to the different
distance/divergence measures used to compare the
sense distributions.

The performance for non-English languages is
much lower compared to that for English. This is
due to three main reasons: (a) the limited sense
coverage in BabelNet for non-English languages
(especially Latin and Swedish in this case), (b) the
accuracy of ARES sense embedding for German
and Latin being lower compared to that for English,
and (c) the multilingual contextualised embeddings

10http://sensembert.org/resources/ares
embedding.tar.gz

11https://huggingface.co/
bert-base-multilingual-cased

obtained from mBERT has poor coverage for Latin.
Although more language-specialised MLMs are
available such as GermanBERT12, LatinBERT,13

and SwedishBERT14, we must have compatible
sense embeddings to compute the sense distribu-
tions. Learning accurate multilingual sense embed-
dings is an active research area (Rezaee et al., 2021;
Upadhyay et al., 2017) on its own and is beyond
the scope of this paper which focuses on SCD.

5.5 Qualitative Analysis

Figure 4 shows example sense distributions and the
corresponding JS divergence scores for the words
plane (a word that has changed meaning according
to SemEval annotators, giving a rating of 0.882)
and pin (a word that has not changed its meaning,
with a rating of 0.207) from the SemEval English
binary classification subtask. We see that the two
distributions for plane are significantly different
from each other (the second peak at sense-id 5 vs.
6, respectively in C1 and C2), as indicated by a high
JS divergence (i.e. 0.221). On the other hand, the
sense distributions for pin are similar, resulting in
a relatively smaller (i.e. 0.027) JS divergence. This
result supports our claim that sense distributions
provide useful clues for SCD of words.

In Table 3, we show the top- and bottom-8
ranked words according to their semantic change
scores in the SemEval English dataset. We compare
the ranks assigned to words according to SSCS
against the NLTK baseline (used in Table 1) and
DSCD (Aida and Bollegala, 2023). From Table 3
we see that for 6 (i.e. plane, tip, graft, record,
stab, head) out of the top-8 ranked words with a se-
mantic change between the corpora, SSCS assigns
equal or lower ranks than either of NLTK or DSCD.
Moreover, we see that SSCS assigns lower ranks
to words that have not changed meaning across
corpora.

As an error analysis, let us consider risk, which
is assigned a higher rank (8) incorrectly by SSCS,
despite not changing its meaning. Further inves-
tigations (see Appendix D) reveal that the sense
distributions for risk computed from the two cor-
pora are indeed very similar, except that C2 has
two additional senses not present in C1. However,
those additional senses are highly similar to ones

12https://huggingface.co/
bert-base-german-cased

13https://github.com/dbamman/latin-bert
14https://huggingface.co/KB/

bert-base-swedish-cased
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(a) plane in C1 (b) plane in C2 (c) pin in C1 (d) pin in C2

Figure 4: Sense distributions of pin and plane in the two corpora in SemEval 2020 Task 1 English dataset. In each
subfigure, probability (in y-axis) is shown against the sense ids (in x-axis). The sense distributions of plane have
changed across corpora, while that of pin remain similar. The human ratings for plane and pin are respectively
0.882 and 0.207, indicating that plane has changed its meaning between the two corpora, while pin has not. The
JS divergence between the two sense distributions for plane is 0.221, while that for pin is 0.027.

Word Gold NLTK SSCS DSCD
rank ∆ rank rank rank

plane 1 ✓ 2 1 15
tip 2 ✓ 17 6 7
prop 3 ✓ 24 17 4
graft 4 ✓ 23 4 36
record 5 ✓ 7 2 14
stab 6 ✓ 11 11 11
bit 7 ✓ 8 15 9
head 8 ✓ 14 10 28

multitude 30 ✗ 26 23 35
savage 31 ✗ 22 29 26
contemplation 32 ✗ 13 35 37
tree 33 ✗ 12 27 30
relationship 34 ✗ 37 31 34
fiction 35 ✗ 35 33 29
chairman 36 ✗ 27 34 33
risk 37 ✗ 31 8 21

Spearman 1.000 0.462 0.589 0.529

Table 3: Ablation study on the top-8 semantically
changed (∆ = ✓) words with the highest degree of
semantic change and the bottom-8 stable words (∆ =
✗) with the lowest degree of semantic change. NLTK
baseline performs WSD using NLTK’s WSD functional-
ity and uses KL to compare sense distributions. DSCD
is proposed by Aida and Bollegala (2023) and approxi-
mates sibling embeddings using multivariate Gaussians.
SSCS is our proposed method, which uses LMMS sense
embeddings and JS as the distance metric.

present in C1 and imply the semantic invariance of
risk. Explicitly incorporating sense similarity into
SSCS could further improve its performance.

6 Conclusion

We proposed, SSCS, a sense distribution-based
method for predicting the semantic change of a
word from one corpus to another. SSCS obtains
good performance among the unsuupervised meth-
ods for both binary classification and ranking sub-
tasks for the English unsupervised SCD on the Se-

mEval 2020 Task 1 dataset. The experimental re-
sults highlight the effectiveness of using word sense
distribution to detect semantic changes of words in
different languages.
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7 Limitations

An important limitation in our proposed sense
distribution-based SCD method is its reliance on
sense labels. Sense labels could be obtained us-
ing WSD tools (as demonstrated by the use of
NLTK baseline in our experiments) or by perform-
ing WSD using pre-trained static sense embeddings
with contextualised word embeddings, obtained
from pre-trained MLMs (as demonstrated by the
use of LMMS and ARES in our experiments). Even
if the WSD accuracy is not high for the top-1 pre-
dicted sense, SSCS can still accurately predict SCD
because it uses the sense distribution for a target
word, and not just the top-1 predicted sense. More-
over, SSCS uses the sense distribution of a target
word over the entire corpus and not for a single sen-
tence. Both WSD and sense embedding learning
are active research topics in NLP (Bevilacqua and
Navigli, 2020). We can expect the performance
of WSD tools and sense embeddings to improve
further in the future, which will further improve the
SCD accuracy of SSCS.

Although we evaluated the performance of SSCS
in German, Latin and Swedish in addition to En-
glish, this is still a limited set of languages. How-
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ever, conducting a large-scale multilingual evalua-
tion for SCD remains a formidable task due to the
unavailability of human annotated semantic change
scores/labels for words in many different languages.
As demonstrated by the difficulties in data anno-
tation tasks during the SemEval 2020 Task 1 on
Unsupervised SCD (Schlechtweg et al., 2020), it is
difficult to recruit native speakers for all languages
of interest. Indeed for Latin it has been reported
that each test word was annotated by only a single
expert because it was not possible to recruit native
speakers via crowd-sourcing for Latin, which is not
a language in active usage. Therefore, we can ex-
pect similar challenges when evaluating SCD per-
formance for rare or resource poor languages, with
limited native speakers. Moreover, providing clear
annotation guidelines for the semantic changes of
a word in a corpus is difficult, especially when the
semantic change happens gradually over a longer
period of time.

The semantic changes of words considered in
SemEval 2020 Task 1 dataset span relatively longer
time periods, such as 50-200 years. Although it
is possible to evaluate the performance of SCD
methods for detecting semantic changes of words
that happen over a longer period, it is unclear from
the evaluations on this dataset whether SSCS can
detect more short term semantic changes. For ex-
ample, the word corona gained a novel meaning in
2019 with the wide spread of COVID-19 pandemic
compared to its previous meanings (e.g. sun’s
corona rings and a beer brand). We believe that it is
important for an SCD method to accurately detect
such short term semantic changes, especially when
used in applications such as information retrieval,
where keywords associated with user interests vary
over a relatively shorter period of time (e.g. sea-
sonality related queries can vary over a few weeks
to a few months).

8 Ethical Considerations

We considered the problem of SCD of words across
corpora, sampled at different points in time. To
evaluate our proposed method, SSCS, against pre-
viously proposed methods for SCD we use the pub-
licly available SemEval 2020 Task 1 datasets. We
are unaware of any social biases or other ethical is-
sues reported regarding this dataset. Moreover, we
did not collect, annotate, or distribute any datasets
as part of this work. Therefore, we do not foresee
any ethical concerns regarding our work.

Having said that, we would like to point out that
we are using pre-trained MLMs and static sense
embeddings in SSCS. MLMs are known to encode
unfair social biases such as gender- or race-related
biases (Basta et al., 2019). Moreover, Zhou et al.
(2022) showed that static sense embeddings also
encode unfair social biases. Therefore, it is unclear
how such biases would affect the SCD performance
of SSCS. On the other hand, some gender-related
words such as gay have changed their meaning
over the years (e.g. offering fun and gaiety vs.
someone who is sexually attracted to persons of
the same sex). The ability to correctly detect such
changes will be important for NLP models to make
fair and unbiased decisions and generate unbiased
responses when interacting with human users in
real-world applications.
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Dani Yogatama, Kris Cao, Susannah Young, and
Phil Blunsom. 2021. Mind the gap: As-
sessing temporal generalization in neural lan-
guage models. In A. Beygelzimer, Y. Dauphin,
P. Liang, and J. Wortman Vaughan, editors, Ad-
vances in Neural Information Processing Systems.
https://openreview.net/forum?id=73OmmrCfSyy.

Daniel Loureiro, Francesco Barbieri, Leonardo Neves,
Luis Espinosa Anke, and Jose Camacho-collados.
2022. TimeLMs: Diachronic language models from
Twitter. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics:
System Demonstrations. Association for Computa-
tional Linguistics, Dublin, Ireland, pages 251–260.
https://doi.org/10.18653/v1/2022.acl-demo.25.

Daniel Loureiro and Alipio Jorge. 2019. Language
Modelling Makes Sense: Propagating Represen-
tations through WordNet for Full-Coverage Word
Sense Disambiguation. In Proceedings of the 57th
Annual Meeting of the Association for Computa-
tional Linguistics. Florence, Italy, pages 5682–5691.
https://aclanthology.org/P19-1569.
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A Distance and Divergence Measures

We describe the distance and divergence measures
d used in our experiments to compare the sense
distributions p1(z) = p(zw|w, C1) and p2(z) =
p(zw|w, C2) computed respectively from C1 and
C2.

Kullback-Liebler (KL) Divergence:

KL(p1||p2) =
∑

z∈Zw

(p1(z) log

(
p1(z)

p2(z)

)
(3)

Jensen-Shannon (JS) Divergence:

JS(p1||p2)

=
1

2
KL (p1||q) + 1

2
KL (p2||q) (4)

Here,

q(z) =
1

2
(p1(z) + p2(z)) (5)

Bray-Curtis Distance:

d(p1, p2) =

∑
z∈Zw

|p1(z)− p2(z)|∑
z∈Zw

|p1(z) + p2(z)|
(6)

Canberra Distance:

d(p1, p2) =
∑

z∈Zw

|p1(z)− p2(z)|
|p1(z) + p2(z)|

(7)

Chebyshev Distance:
d(p1, p2) = max

z∈Zw

|p1(z)− p2(z)| (8)

Cosine Distance:

d(p1, p2) = 1−
∑

z∈Zw
p1(z)p2(z)√∑

z∈Zw
p1(z)

2
√∑

z∈Zw
p1(z)

2

(9)

Euclidean Distance:

d(p1, p2) =

√∑

z

(p1(z)− p2(z))2 (10)

B Experimental Settings

Statistics of the SemEval 2020 Task 1 Unsuper-
vised Semantic Change Detection Dataset is shown
in Table 4. Thresholds found with Bayesian op-
timisation for the classification task are listed in
Table 5. We used random seed of 42 while perform-
ing the Bayesian optimisation. From Table 5 we
see that the classification thresholds that are learnt
for different divergence/distance metrics are largely
different.

C Previously Proposed SCD Methods

We compare SSCS against the following prior SCD
methods on the SemEval-2020 Task 1 English data.

BERT + Time Tokens + Cosine : Rosin et al.
(2022) performed fine-tuning of the published pre-
trained BERT-base models using time tokens. They
add a time token (e.g. <2023>) to the beginning
of a sentence. In the fine-tuning step, the mod-
els use two types of masked language modelling
objectives: 1) predicting the masked time tokens
from given contexts, and 2) predicting the masked
tokens from given contexts with time tokens. They
make predictions with the average distance of the
target token probabilities or the cosine distance of
the average sibling embeddings. According to their
results, the cosine distance achieves better perfor-
mance than the average distance of the probabilities.
Therefore, we use cosine distance as the distance
metric for this method.
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Language Time Period #Targets #Sentences #Tokens #Types

English 1810–1860
37

254k 6.5M 87k
1960–2010 354k 6.7M 150k

German 1800–1899
48

2.6M 70.2M 1.0M
1946–1990 3.5M 72.3M 2.3M

Latin B.C. 200–0
40

96k 1.7M 65k
0-2000 463k 9.4M 253k

Table 4: Statistics of the SemEval 2020 Task 1 Unsupervised Semantic Change Detection Dataset.

(a) risk in C1 (b) risk in C2

Figure 5: Sense distributions computed for the word risk from C1 and C2.

BERT + APD : Kutuzov and Giulianelli (2020)
report that the average pairwise cosine distance
outperforms the cosine distance. Based on this
insight, Aida and Bollegala (2023) evaluate the
performance of BERT + TimeTokens + Cosine
with the average pairwise cosine distance computed
using pre-trained BERT-base as the MLM.

BERT+DSCD : Aida and Bollegala (2023) pro-
posed a Distribution-based Semantic Change De-
tection (DSCD), considering distributions of sib-
ling embeddings (sibling distribution). During pre-
diction, they sample an equal number of target
word vectors from the sibling distribution (approx-
imated by a multivariate diagonal Gaussian) for
each time period and calculate the average distance.
They report that the Chebyshev distance function
achieves the best performance.

Temporal Attention : Rosin and Radinsky
(2022) proposed a temporal attention mechanism,
where they add a trainable temporal attention ma-
trix to the pretrained BERT models. Subsequently,
additional training is performed on the target cor-

pus. They use the cosine distance following their
earlier work (Rosin et al., 2022).

BERT + Time Tokens + Temporal Attention :
Because their two proposed methods (fine-tuning
with time tokens and temporal attention) are inde-
pendent, Rosin and Radinsky (2022) proposed to
use them simultaneously. They also use the cosine
distance for prediction and report that this model
achieves current state-of-the-art performance in se-
mantic change detection.

Gaussian Embeddings: Yüksel et al. (2021) ex-
tend word2vec to create Gaussian embeddings (Vil-
nis and McCallum, 2015) for target words indepen-
dently in each corpus. They then learn a mapping
between the two vector spaces for computing a
semantic change score.

CMCE: Rother et al. (2020) proposed Cluster-
ing on Manifolds of Contextualised Embeddings
(CMCE) where they use mBERT embeddings with
dimensionality reduction to represent target words,
and then apply clustering algorithms to find the
different sense clusters. CMCE is the current SoTA
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Metric Threshold

N
LT

K

Cosine 0.132
Chebyshev 146.808
Canberra 0.829
Bray-Curtis 0.046
Euclidean 63.024
JS 0.0285
KL 0.024

A
R

E
S

Cosine 0.3238
Chebyshev 212.995
Canberra 0.901
Bray-Curtis 0.036
Euclidean 509.011
JS 0.080
KL 0.108

L
M

M
S

Cosine 0.052
Chebyshev 206.235
Canberra 0
Bray-Curtis 0.103
Euclidean 331.680
JS 0.117
KL 0.065

Table 5: Thresholds found with Bayesian optimisation
for the classification task on English datasets.

for the binary classification task.

EmbedLexChange: Asgari et al. (2020) used
fasttext (Bojanowski et al., 2017) to create word
embeddings from each corpora separately, and mea-
sure the cosine similarity between a word and a
selected fixed set of pivotal words to represent a
word in a corpus using the distribution over those
pivots. They used KL divergence to measure the
similarity between the two distributions associated
with a target word to compute a semantic change
score.

UWB: Pražák et al. (2020) learnt separate word
embeddings for a target word from each cor-
pora and then use Canonical Correlation Analysis
(CCA) to align the two vector spaces. They use
the average cosine similarity between the two em-
beddings over all target words as the threshold for
predicting semantic changes of words. UWB was
ranked 1st for the binary classification subtask at
the official SemEval 2020 Task 1 competition.

D Error Analysis

As a concrete example of computing semantic
change scores using sense distributions where
SSCS assigned a low JS divergence value using
LMMS incorrectly to a word that had not changed
its meaning, we consider the word risk. The
sense distributions, p(zw|w,C1) and p(zw|w,C2),
of risk in the two corpora, respectively C1 and C2
are shown in Figure 5. The word risk is consid-
ered as a noun in the SemEval 2020 Task 1 dataset,
and the annotator-assigned semantic change score
is 0, indicating that it has not changed meaning
between the two corpora. Looking at the sense
distributions in Figure 5, we see that they are al-
most similar with two peaks at sense-ids 2 and
4. However, two additional senses, correspond-
ing sense-id 3 (’risk%1:07:02::’, risk of exposure,
the probability of being exposed to an infectious
agent) and sense-id 5 (’risk%1:07:01::’, expose to
a chance of loss or damage) can be observed in
Figure 5b in C2. According to the sense definitions
in the WordNet for those two senses, they are very
similar (i.e. expressing different types of risks),
which could be considered to be a case where the
meaning of risk remains largely the same in the
two corpora. Because of this reason the JS diver-
gence score between the two distributions tends to
be higher at 0.2139, giving it a lower rank (rank 8
among 37 words in Table 3, indicating that risk has
changed its meaning). This is a typical example
where although a word might take different senses
in different corpora (or within different sentences
in the same corpora), some of those senses could
be highly similar and could be mapped to the same
meaning for the purpose of SCD.
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