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Abstract

Factual probing is a method that uses prompts
to test if a language model “knows” certain
world knowledge facts. A problem in factual
probing is that small changes to the prompt can
lead to large changes in model output. Previous
work aimed to alleviate this problem by opti-
mizing prompts via text mining or fine-tuning.
However, such approaches are relation-specific
and do not generalize to unseen relation types.
Here, we propose to use test-time augmentation
(TTA) as a relation-agnostic method for reduc-
ing sensitivity to prompt variations by automat-
ically augmenting and ensembling prompts at
test time. Experiments show improved model
calibration, i.e., with TTA, model confidence
better reflects prediction accuracy. Improve-
ments in prediction accuracy are observed for
some models, but for other models, TTA leads
to degradation. Error analysis identifies the dif-
ficulty of producing high-quality prompt varia-
tions as the main challenge for TTA.

github.com/gokamoda/TTA4FactualProbing

1 Introduction

Pre-trained language models (LMs) such as BERT
(Devlin et al., 2019) and T5 (Raffel et al., 2020) im-
plicitly encode world knowledge from the training
corpus in their parameters (Roberts et al., 2020).
Encoded knowledge can be retrieved from an LM
via a suitable prompt (Petroni et al., 2019). For
example, a prompt such as “Where did Albert Ein-
stein die?” is designed to retrieve the fact that
“Albert Einstein died in Princeton.” However, this
capability is not robust since small changes to the
prompt can lead to drastic output changes (Heinzer-
ling and Inui, 2021; Cao et al., 2022). If the model
fails to answer correctly, it is thus difficult to dis-
tinguish if it did not learn the corresponding fact
during pre-training or if it actually did but did not
produce the correct answer with the given prompt.
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Figure 1: Factual probing with a single prompt (left) and
with test-time augmentation (TTA). The orange com-
ponents are added when using TTA. The Augmenter
automatically augments the original prompt. The aggre-
gator takes the generations from all prompts as input
and outputs the generation with the highest score.

Prior work has aimed at finding better prompts
for factual probing1, typically by employing su-
pervised learning to find an optimal input token
sequence for a given relation (Shin et al., 2020;
Jiang et al., 2020; Zhong et al., 2021). Since these
approaches require supervision for each relation,
they do not generalize to unseen relation types,
which reduces practical applicability.

Here, we propose to use test time augmentation
(TTA) as an unsupervised, relation-agnostic ap-
proach for improving prompt-based factual probing.
TTA originates in computer vision, where given an
input image at test time, the idea is to 1) apply
augmentations such as flipping, cropping, or con-
trast changes, 2) have the model make predictions
for all augmented versions of the image, and then
3) aggregate these predictions to obtain the final
prediction. TTA has been found to increase robust-

1While “probing” more commonly refers to model analysis
via light-weight classifiers, we follow prior work in using
“factual probing” to denote model analysis via knowledge-
eliciting prompts.
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ness and to improve model calibration by reducing
overconfidence in wrong predictions (Krizhevsky
et al., 2012; Wang et al., 2019; Perez et al., 2018;
Matsunaga et al., 2017). The benefits are also desir-
able in factual probing, where LMs should exhibit
robustness to paraphrases and should generate well-
calibrated predictions. However, TTA has found
little use in NLP so far. While it is relatively easy to
create feature-preserving augmentations of images
(e.g., a flipped image of a cat is still an image of
a cat), meaning-preserving augmentation of text
is a challenging problem since even small edits,
such as replacing a single token, can completely
change the meaning of a sentence (Rethmeier and
Augenstein, 2023). In this paper, we empirically
demonstrate the benefits and challenges of TTA for
factual probing.

As a similar approach in the context of chain-
of-thought reasoning, Wang et al. (2023) prepare a
single prompt as model input and aggregate multi-
ple outputs (“reasoning paths”) to improve model
performance. TTA differs from this method in
that it automatically prepares multiple inputs, i.e.,
prompts.

To apply TTA to factual probing, we add a
prompt augmenter and a prediction aggregator to
the prediction process (Figure 1). First, the in-
put prompt is automatically augmented by the aug-
menter. The augmented prompts are then individ-
ually fed to an LM. The aggregator collects the
outputs for each prompt and determines the final
prediction. Our evaluation of this setup consists of
two parts: We 1) evaluated the overall prediction
accuracy and investigated the impact of the num-
ber of augmented prompts on the accuracy, and 2)
inspected the change in the confidence of model
predictions.

Results showed that the greater the number of
augmented prompts, the better the performance
when implementing TTA. TTA was also effective in
reducing the number of overconfident and incorrect
outputs. However, in terms of overall accuracy,
TTA was only effective on smaller models.

2 Setup

Dataset We constructed a dataset of 12,500 rela-
tional facts from Wikidata. Each fact is composed
of a subject, a relation, and an object. We filtered
out facts with multiple possible objects and col-
lected 500 unique facts for each of the 25 relations2.

2The relations we selected are shown in the appendix.

For each relation, we manually created an English
prompt template, e.g., “Where did {subject} die?”

Augmenter To yield paraphrases with variety,
the augmenter uses three types of prompt augmen-
tations. The first type is synonym replacement,
which replaces words in the input prompt with a
synonym. For instance, this type of augmentation
replaced the word “buried” with “inhumed”. Syn-
onyms are selected via word embedding similarity
using GLoVe (Pennington et al., 2014) or via Word-
Net (Saedi et al., 2018). The second augmentation
type is back-translation, with French, Russian, Ger-
man, Spanish, and Japanese as target languages.
The third augmentation type is stopword filtering,
which removes stopwords from the prompts.

From a single original prompt, the augmenter
produces one prompt via stopword filtering and
four prompts for each of the seven other augmenta-
tion methods, resulting in a total of 30 prompts.

Model We ran experiments on the following
pre-trained language models: T5 for Closed
Book Question Answering (Small, Large, 3B,
11B) (Roberts et al., 2020), FLAN-T5 (Small,
XL) (Wei et al., 2022), and T0_3B (Sanh et al.,
2022).

Models decode with beam-search where the
beam size is fixed to 10 and return generated se-
quences with scores. Scores are in the order of
log-likelihood (negative), and the exponentiated
scores are in the order of probability.

Aggregator We aggregate generations by taking
the sum of generation probabilities. The model
output with generation probabilities (PLM) for each
of the K augmented prompts (pi) will be fed into
the aggregator to choose one final prediction. The
aggregator recalculates the generation score (s) by
taking the sum of the generation probabilities of
identical generations (Eq.1). The final prediction of
an object y for the fact with subject x and relation
r is the one with the highest score (Eq.2).

s(y′|x, r) =
K∑

i=1

PLM(y′|pi) (1)

y = argmax(s(·|x, r))y′ (2)

Evaluation Metric We quantify the effect of
TTA as the relative change in exact match accu-
racy compared to not using TTA:

relative effect =
(#correct w/ TTA) + 1

(#correct w/o TTA) + 1
(3)

3651



1 5 10 15 20 25 30
Number of prompts (1 K 30)

0.90

0.95

1.00

1.05

1.10

Re
la

tiv
e 

ef
fe

ct
T5-Small
T5-Large

T5-3B
T5-11B

FLAN-T5-Small
FLAN-T5-XL

T0_3B

Figure 2: The relation between the number of prompts
and the average relative effect (Eq.3) of TTA. A relative
effect of 1.0 means no change in accuracy between with
and without TTA.

To prevent division by zero, one is added to the
numerator and the denominator. The metric judges
correct only if the output is a perfect match. How-
ever, we observed cases where FLAN models are
indifferent to capitalizations, e.g., the model gen-
erated “africa” instead of “Africa. For this reason,
we exceptionally adopt case-insensitive match ac-
curacy for the FLAN models.

3 Results

3.1 Positive Effects

Accuracy The top half of Table 1 shows an exam-
ple of TTA increasing the accuracy on the T5-11B
model. The model gave an incorrect answer with
the original prompt but produced the correct answer
with TTA.

Here, we assess the impact of the number of
prompts (K) on TTA performance. As described
in §2, the augmenter produces 29 paraphrases from
an original prompt. For each subset of K prompts
containing the original prompt and K−1(1 ≤ K ≤
30) randomly sampled paraphrases, we measure
the change in model accuracy in terms of relative
effect (Eq.3).

We ran five iterations of random sampling and
report the result in Figure 2. The sudden drop from
K = 13 to K = 2 shows that models are highly
sensitive to prompt variations. The relative effect
appears to stabilize in the range of 20 ≤ K ≤ 30
prompts, suggesting that aggregation of multiple
prompts via TTA mitigates model sensitivity to
variation of individual prompts. A comparison of

3K = 1 setting indicates the baseline setting without TTA.
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Figure 3: Comparison of model calibration with TTA
and without TTA.TTA improves the model calibration
of all four models in the comparison. Dotted lines rep-
resent ideal calibration, i.e., model confidence is equal
to prediction accuracy.

the result between K = 1 and K = 30 shows that
TTA leads to better performance for three models,
namely T5-Small, T5-3B, and T0_3B.

Calibration In addition to increased accuracy,
a second potential benefit of TTA is to improve
model calibration by reducing overconfidence in
incorrect answers. In this section, we investigate
the effect of TTA on model calibration.

In our setup, the aggregator re-ranks generations
by calculating the sum of the generation probability
of identical generations for each fact instance. Be-
cause the original generation scores cannot be used
as confidence after aggregation, we define the con-
fidence of the aggregator as the ratio of the score
to the final output and the sum of calculated scores
for all candidate generations from all prompts for
each fact instance.

confidence =
scorefinal output∑

candidates score
(4)

To enable a comparison of the relationship be-
tween the defined confidence and accuracy with
and without TTA, we normalize scores to a max-
imum of 1. We then calculate the accuracy of
model prediction with confidence between 0.1i and
0.1(i+ 1) for each 0 ≤ i < 10 (i ∈ N).

Figure 3 shows the relation between the calcu-
lated confidence and accuracy before and after ap-
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Type Prompt Generation

Original What continent is Para District located on? Africa
WordNet What continent is Para District based on? North America
bt-fr What continent is the Para District located on? South America
bt-ru What continent is Pará County on? South America
bt-de On which continent is the Para District located? South America

Original Where is Hans-Georg Gadamer buried? Heidelberg

GLoVe Accordingly is Hans-Georg Gadamer buried? in Bonn
WordNet Where is Hans-Georg Gadamer inhumed? Erlangen

bt-fr Where’s Hans-Georg Gadamer buried. Erlangen, Germany

bt-ru Where’s Hans-George Gadmer buried? Wiesbaden, Baden-Württemberg

bt-de Where’s Hans-Georg Gadamer buried? Erlangen, Germany

bt-es Where is Hans-Georg Gadamer buried? Heidelberg

bt-ja Where are the goodly places? where is the plac... Mount of Olives
Stopword-filtering Where Hans-Georg Gadamer buried? in Marburg

Table 1: Examples of TTA improving and degrading performance. While Para District is located in
“ South America ”, the model gives a wrong answer under the original prompt. Applying TTA yields the cor-
rect answer (top half). The bottom half of the table shows an example of TTA degrading performance. The correct
answer is “ Heidelberg ”, but TTA yields “ Erlangen, Germany ”. The Type column specifies the augmentation type,
with “GLoVe” and “WordNet” referring to synonym replacement and the “bt-” prefix indicating back-translation.
Further examples are given in Appendix Table 3.

plying TTA. Without TTA, models tend to exhibit
overconfidence by generating high-confidence an-
swers with relatively low accuracy. This effect is es-
pecially pronounced in larger LMs, i.e., T5-3b and
T5-11B. In contrast, after aggregation of multiple
answers with TTA, confidence much better reflects
accuracy since the accuracy of high-confidence pre-
dictions improved. These results show that TTA
can improve model calibration.

3.2 Negative Effects

Accuracy Accuracy declines when the original
prompt elicits the correct answer, but the TTA re-
sults in an incorrect answer. The bottom half of
Table 1 shows an example of this. The 30 prompts
yielded 18 unique model answers, among which
seven prompts yielded the wrong answer “Erlangen,
Germany”, while only four prompted the correct
answer “Heidelberg” (Table 1 shows only a subset
of these answers). Overall, TTA led to performance
degradation with the T5-Large, T5-11B, and the
FLAN-T5 models (Figure 2).

Error Analysis Manual inspection suggests that
the negative effects of TTA are mainly due to
the low quality of the augmented prompts. Ide-
ally, paraphrases should be grammatical, meaning-
preserving, and exhibit variety in vocabulary choice
and sentence structure. However, many augmented

prompts, such as those shown in the bottom half of
Table 1, do not meet these criteria. For example,
not all augmented prompts preserve the meaning
of the original prompt.

To better understand the impact of the quality of
automatically augmented prompts, we conducted
additional evaluations. The first is to remove ex-
tremely poor paraphrases. Inspection of TTA errors
revealed that one of the relations, namely “follows”,
was particularly error-prone in the augmentation
step, likely due to the large variety of different en-
tity and event types4 for which this relation is used
in Wikidata. We thus analyze the impact of TTA
after removing all instances of the “follows” rela-
tion from the dataset. The second evaluation aims
to improve the quality of paraphrases by using a
large language model, namely GPT-3 text-davinci-
003 (Brown et al., 2020), assuming that this larger
LM produces better paraphrases than the simple
augmentation methods used in our original setup.
Figure 4 shows how GPT-3-based augmentation
changed the effect of TTA on the T5 models. With
the exception of T5-11B, augmentations produced
by GPT-3 show a positive effect for all models.

4Arguments of the “follows” relation include: numbers (2
follows 1), months (February follows January) and events (the
2024 Paris Olympics follows the 2020 Tokyo Olympics).
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Figure 4: The relation between the number of prompts
and the average relative effect (Eq.3) of TTA when re-
moved “follows” relation and paraphrased using GPT-3.

4 Conclusions

We applied the idea of test-time augmentation
(TTA) to language models, motivated by the ob-
servation that models are not robust to prompt vari-
ations. Specifically, we examined the effect of TTA
on model accuracy and calibration in a factual prob-
ing setting.

Out of the seven models we investigated, TTA
had a positive effect on the accuracy of smaller
models, namely T5-Small, T5-3B, T0_3B. When
controlling for the quality of augmentations, TTA
also improved the accuracy of one more model
(T5-Large). On other models, TTA had a negative
effect in terms of accuracy. In terms of model
calibration, we observed a positive effect since TTA
reduced the number of high-confidence incorrect
model answers.

The main remaining question is why the effect
of TTA is inconsistent. We hypothesized that the
inconsistent effect of TTA is due to the poor quality
of automatically augmented prompts, and our anal-
ysis showed that the high quality of paraphrases
is one of the important conditions for TTA to be
effective. A related question we left to future work
is how to enable TTA for relations that are difficult
to paraphrase automatically, such as the “follows”
relation (See Section 3.2).

While the ultimate goal is arguably to make lan-
guage models robust against paraphrases without
extensions like TTA, the results presented in this
work show the potential benefit of TTA, especially
for smaller LMs.

Limitations

The TTA setup we present in this paper can be
applied to short-answer generation tasks such as
factual probing or classification tasks. A different
setup would be necessary to apply TTA to tasks
involving more complex model outputs, such as
summarization or long-form question answering,
since the aggregation step in our setup is not suited
for such outputs.

In factual probing, TTA showed improvement
in overall accuracy on three out of seven models.
This means that whether or not TTA would improve
the accuracy is unsure beforehand in practical uses.
Deeper analyses of what improves/degrades the
performance are needed to judge whether to use
TTA or not.

Ethics

Our experiments involved pre-trained language
models and Wikidata, both of which are charac-
terized by various forms of social biases. Conse-
quently, our experiments and conclusions inherit
and possibly amplify these biases.
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A Dataset

Property ID Property Name

P17 Country
P19 Place of birth
P20 Place of death
P27 Country of citizenship
P30 Continent
P36 Capital
P37 Official language
P50 Author
P69 Educated at
P103 Native language
P119 Place of burial
P131 Located in the administrative territorial entity
P140 Religion or worldview
P155 Follows
P156 Followed by
P159 Headquarters location
P407 Language of work or name
P495 Country of origin
P641 Sport
P740 Location of information
P937 Work location
P1365 Replaces
P1366 Replaced by
P1376 Capital of
P1412 Languages spoken, written, or signed

Table 2: Wikidata property IDs and English labels used for constructing our dataset.

We collected 500 relational facts for each of the 25 relations selected from WikiData. Table 2 shows
the corresponding Wikidata property ID and English property names.
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B Augmentation Methods

Synonym Replacement We use the Python library “TextAttack” to replace words with their synonyms.
Specifically, for synonym replacement using WordNet, we use the WordNetAugmenter, and for synonym
replacement using GloVe embeddings, we use the WordSwapEmbedding class.
Back-translation We first translate the original prompt to eight candidates in the target language. Each
candidate is then translated back into eight candidates in the source language, resulting in a total of 64
back-translated prompt candidates. We adopt the round-trip probability as the score of the back-translated
prompt candidates and select four candidates using the aggregation method mentioned in Section 2. For
translations, we used OPUS-MT models (Tiedemann and Thottingal, 2020) The OPUS-MT models occupy
roughly the same memory size as the T5-Small model.
Stopwords-filtering This method removes stopwords and diacritics from the original prompt using the
Python library “Texthero”.
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C Count-based Aggregation of Model Answers
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Figure 5: The relation between the number of prompts and the average relative effect of TTA when aggregated using
a count-based method. A relative effect of 1.0 means no change in accuracy between with and without TTA.

Counting the number of appearances in the generations is one method of aggregation. We did not use
count-based aggregation in our main experiments because the possibility of having multiple generations
with the same counts is high. The phenomenon is predicted to occur more often when we increase the
number of sequences the model outputs. In addition, this method cannot take confidence into account as
all generations by beam-search are equally weighted.

The result of using count-based aggregation is shown in figure 5. TTA degrades model performance
with count-based aggregation.
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D Additional output examples

Table 3 gives a complete example of all augmented prompts and corresponding model outputs. (A subset
of these is also shown in Table 1 in the main part of the paper).

Type Prompt Generation

Original Where is Hans-Georg Gadamer buried? Heidelberg

GLoVe Accordingly is Hans-Georg Gadamer buried? in Bonn
GLoVe Consequently is Hans-Georg Gadamer buried? in Bonn
GLoVe Where poses Hans-Georg Gadamer buried? Erlangen

GLoVe Where represents Hans-Georg Gadamer buried? Erlangen, Germany

WordNet Where is Hans-Georg Gadamer immerse? German philosophical neo-Kantia

WordNet Where is Hans-Georg Gadamer inhume? Erlangen, Germany

WordNet Where is Hans-Georg Gadamer inhumed? Erlangen

WordNet Where is Hans-Georg Gadamer swallow? the throat
bt-fr Where is Hans-Georg Gadamer buried? Heidelberg

bt-fr Where’s Hans-Georg Gadamer buried? Erlangen, Germany

bt-fr Where’s Hans-Georg Gadamer buried. Erlangen, Germany

bt-fr Where’s Hans-Georg Gadamer buried in the house? in the garden

bt-ru Where is Hans-George Gadmer buried? Basel
bt-ru Where is Hans-George Gadamer buried? Erlangen, Germany

bt-ru Where’s Hans-George Gadmer buried? Wiesbaden, Baden-Württemberg

bt-ru Where is Hans-Gorg Gadmer buried? Wiesbaden, Baden-Württemberg

bt-de Where’s Hans-Georg Gadamer buried? Erlangen, Germany

bt-de Where is Hans-Georg Gadamer buried? Heidelberg

bt-de Where was Hans-Georg Gadamer buried? in the Munich Waldfriedhof
bt-de Where will Hans-Georg Gadamer be buried? in the Cathedral of Speyer

bt-es Where is Hans-Georg Gadamer buried? Heidelberg

bt-es Where’s Hans-Georg Gadamer buried? Erlangen, Germany

bt-es Where is Hans-Georg Qadamer buried? In a Munich cemetery

bt-es Where is Hans-Georg Gadhamer buried? Innsbruck
bt-ja Where are the goodly places? where is the plac... Mount of Olives
bt-ja Where are the goodly places? Where is the plac... Bethel
bt-ja Where are the goodly places? where are the pla... the mountain of God
bt-ja Where are the goodly places? where is the plac... the place of his fathers

Stopword-filtering Where Hans-Georg Gadamer buried? in Marburg

Table 3: An example of a case in which TTA degrades the accuracy of LM answers. The correct answer
to the question “Where is Hans-Georg Gadamer buried?” is “ Heidelberg ”, but the aggregator returned

“ Erlangen, Germany ”.
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E GenBench Evaluation Card

To situate our work in the broader context of efforts to understand and improve the generalization of
machine learning models for natural language processing, Table 4 provides a GenBench evaluation card
(Hupkes et al., 2022).

Motivation
Practical Cognitive Intrinsic Fairness

□
Generalisation type

Compositional Structural Cross Task Cross Language Cross Domain Robustness
□

Shift type
Covariate Label Full Assumed

□
Shift source

Naturally occuring Partitioned natural Generated shift Fully generated
□

Shift locus
Train–test Finetune train–test Pretrain–train Pretrain–test

□

Table 4: GenBench Evaluation Card
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