
Findings of the Association for Computational Linguistics: EMNLP 2023, pages 3763–3775
December 6-10, 2023 ©2023 Association for Computational Linguistics

FinePrompt: Unveiling the Role of Finetuned
Inductive Bias on Compositional Reasoning in GPT-4

Jeonghwan Kim1∗ Giwon Hong2∗ Sung-Hyon Myaeng3 Joyce Jiyoung Whang3†
1University of Illinois Urbana-Champaign 2University of Edinburgh 3KAIST

jk100@illinois.edu, g.hong@sms.ed.ac.uk
{myaeng, jjwhang}@kaist.ac.kr

Abstract

Compositional reasoning across texts has been
a long-standing challenge in natural language
processing. With large language models like
GPT-4 taking over the field, prompting tech-
niques such as chain-of-thought (CoT) were
proposed to unlock compositional, multi-step
reasoning capabilities of LLMs. Despite their
success, the prompts demand significant hu-
man effort to discover and validate them. Our
work draws attention to the idea of transfer-
ring task-specific inductive biases from fine-
tuned models to prompts, as a way of improv-
ing GPT-4’s compositional reasoning capabil-
ities. To leverage these inductive biases, we
formulate prompt templates to ease the transfer
of inductive biases. The experimental results
on multi-hop question answering and numeri-
cal reasoning over text show that our proposed
prompt scheme shows competitive zero-shot
and few-shot performances compared to exist-
ing prompts on complicated reasoning tasks,
highlighting the importance of adopting the val-
idated biases of the previous paradigm.1

1 Introduction

Large language models (LLM) such as GPT-4 (Ope-
nAI, 2023) have demonstrated impressive capabil-
ity to solve textual understanding problems at a
level parallel to or surpassing state-of-the-art task-
specific models (Brown et al., 2020; Chowdhery
et al., 2022). However, one of the characteristic
pitfalls of LLMs is that they exhibit poor zero-shot
and few-shot performance in tasks such as multi-
hop reasoning (Press et al., 2022) and numerical
reasoning over text (Brown et al., 2020; OpenAI,
2023), both of which involve compositional, multi-
step reasoning across multiple referents in text.

To overcome such limitation of LLMs, previ-
ous works proposed various elicitive prompting

∗Equal contribution
†Corresponding author

1Code at: https://github.com/wjdghks950/FinePrompt.git

Task-
specific
Attributes

Pipeline
Scheme

Structural
Reasoning

2.71 < 10.87

Max(6, 7) = 7

Attribute-
Infused
Prompt

Graph-
Infused
Prompt

GPT-4

Finetuned Models FinePrompt

Pipeline-
Infused
Prompt

Figure 1: FinePrompt transfers the existing task-specific
inductive biases into natural language prompts, guided
by the transfer template proposed in this work.

strategies such as Chain-of-Thought (CoT) (Wei
et al., 2022), Self-Ask (Press et al., 2022) and Least-
to-most Prompting (Zhou et al., 2022). These
prompting techniques have effectively unlocked
the compositional, multi-step reasoning capabili-
ties of LLMs by generating step-by-step rationales
or breaking down an end task into a series of sub-
problems. Regardless of their efficacy in improving
LLM reasoning, these prompting techniques still
entail (i) significant amount of human effort to dis-
cover the right prompting strategy, and (ii) lack task
specificity that takes into account the characteristic
differences between end tasks.

Prior to LLMs and prompt learning, many task-
specific finetuned LMs proposed a novel set of in-
ductive biases to improve the compositional reason-
ing capabilities of finetuned LMs (Min et al., 2019;
Groeneveld et al., 2020; Tu et al., 2020; Fang et al.,
2020; Ran et al., 2019; Geva et al., 2020; Chen
et al., 2020a,b) on tasks like multi-hop question
answering (MHQA) (Yang et al., 2018; Ho et al.,
2020; Trivedi et al., 2022) and numerical reasoning
over text (Dua et al., 2019). For example, NumNet
(Ran et al., 2019) injected the strict inequality in-
ductive bias into LMs to significantly improve its
performance on DROP (Dua et al., 2019), while De-
compRC (Min et al., 2019) divided the multi-hop

3763

https://github.com/wjdghks950/FinePrompt.git

(a) Attribute-Infused Prompt

You will be given a document preceded
by "Document:" and a question …

Attributes that can be
useful for the given task

(b) Pipeline-Infused Prompt

You will be given a set of evidence
documents, a multi-hop question …

(c) Graph-Infused Prompt

You will be given a set of evidence
documents, a multi-hop question …

Question: Which team scored
more points, Texans or Eagles?
Answer: Texans

The sentences are prefixed with
paragraph and sentence numbers.
The prefixes can connect sentences.
There are three connection types:
1) "Question": …
2) "Intra": …
3) "Inter“: …

Nodes

Question Type: Bridging
Answer: Clifton College, London

Numbers have specific relationships ...
where the "<" symbol represents
a is less than b, the ">" symbol
represents a is greater than b …

Document: .. and their 45 points were
the most in franchise history until
Week 4 of the 2017 season, when
they again defeated the Titans 57-14..

14 < 57
2.71 >= 10.87
Max(6, 7) = 7
Min(4, 18) = 4 …

Decompose the given multi-hop
question into three types of …
Generate answers to the sub-questions
Generate the most plausible answer
with question type …

Question: Where did the producer of On
Dangerous Ground study or work?
[Bridging]
Sub-question 1: Who is the producer of
On Dangerous Ground?
Answer: John Houseman
Sub-question 2: Where did John
Houseman study or work?
Answer: Clifton College, London

P2S5 (Inter: P4S2): He was
educated at Clifton College, ... name of
John Houseman. P4S2 (Question: Q |
Inter: P2S5): On Dangerous Ground …
produced by John Houseman.

Q (Question: P4S2): Where did the
producer of On Dangerous Ground
study or work?
Answer: Clifton College

Edges

Figure 2: Illustration of FinePrompt. Each box includes Task-specific Instruction, Finetuned Instruction,
and In-context Samples & Test Input. (a) Attribute-Infused Prompt injects a set of end task-specific features.
(b) Pipeline-Infused Prompt guides the model to break down a complex end task into a series of subtasks and solve
them iteratively. (c) Graph-Infused Prompt infuses the graph’s connectivity information within the input text.

questions into a set of decomposed sub-problems
to improve the performance on MHQA. However,
these finetuning-based methods are difficult to im-
plement in LLMs like GPT-4 because such LLMs
are massive in size and their parameters are of-
ten inaccessible due to the proprietary nature. In
this work, we show that the finetuned models, or
more specifically, the set of inductive biases used
in such models, can serve as prompt materials to
improve GPT-4’s compositional reasoning as illus-
trated in Figure 1. Our contributions are threefold;
(i) Reproducibility2: adopting the previously val-
idated finetuned features into prompts to improve
the LLM reasoning. (ii) Systematicity: providing
a template process to turn a finetuned model into
a prompt. (iii) Enhanced performance: some of
the transferred models exhibit strong zero-shot and
few-shot capabilities in MuSiQue and DROP.

2 FinePrompt

We propose to transfer validated finetuned features
into prompts (hence, the name FinePrompt) to
investigate whether (i) the finetuned features, in
forms of prompts, have the same effect of improv-
ing the performance of GPT-4 on textual compo-
sitional reasoning tasks, and (ii) how the various
models/approaches can be effectively transferred
to structured prompts. To transfer the features into
prompts, we divide models by their properties from

2The term reproducibility in our work is used to emphasize
our contribution that the previously validated fine-tuned ideas
can directly be "reproduced" in a form of prompts.

Sections 2.1 to 2.3 as shown in Figure 2.
In each section, we describe which character-

istic of a finetuned model aligns with one of the
three prompt-infusion strategies; Attribute-Infused
(§2.1), Pipeline-Infused (§2.2) and Graph-Infused
Prompts (§2.3). Note that inductive biases of fine-
tuned models can be manifested in various forms,
because they can be derived from one of the fol-
lowing strategies: (i) integrating additional, task-
related features into the models through training
(e.g., learning to solve basic arithmetic problems
prior to solving complex textual numeric problems
(Geva et al., 2020)), (ii) formulating a pipelined
process that decomposes a complex reasoning task
into a sequential set of sub-problems, and (iii) in-
corporating external graph structures to leverage
the connected, structural inductive bias.

Our work, which aims to transfer the central
inductive biases into prompts, directly adopts the
previous works (Geva et al., 2020; Ran et al., 2019;
Tu et al., 2020; Chen et al., 2020a) to minimize the
human effort of extracting the features previously
leveraged in these models. For example, as shown
in Figure 2, while we have to manually construct
the Task-specific Instruction and Finetuned Instruc-
tion chunks in the prompts, we can simply adopt
the code bases of previous models to extract the
necessary features used in In-context Samples.

2.1 Attribute-Infused Prompt

Attributes are a set of task-specific features con-
ducive to the end task that provide prerequi-

3764

site knowledge. For instance, in order to per-
form numerical reasoning over text, the model
needs to know beforehand how to perform addi-
tion/subtraction (Geva et al., 2020) or the definition
of strict inequality (Ran et al., 2019) in order to
perform a higher-order, compositional reasoning
over numbers appearing in text. We define such
task-specific features as attributes and formulate
them as follows. Given a language model fθ(X; θ),
our prompt input X can be defined as:

X = ([I ∥ Pattr ∥ Sk], xi) (1)

Sk =

{
{s1, s2, ...sk} if k > 0

∅ if k = 0
(2)

where I is a task-specific and finetuned instruc-
tion (for full instruction see Appendix D), Pattr is
the task-specific attribute (e.g., 3 < 11 in Num-
Net (Ran et al., 2019)), and Sk is the optional k-
shot in-context sample from the end tasks’ train-
ing dataset. Note, Pattr can either be in-context
sample dependent or not, depending on how the
model being transferred used these features. For
instance, NumNet leverages the relative magnitude
difference between numbers extracted from each
sample, whereas GenBERT trains the model on an
array of arithmetic tasks (e.g., 19517.4 - 17484 -
10071.75 + 1013.21 = -7025.14). xi is the ith

end task input. ∥ denotes the concatenation opera-
tion. Unlike CoT or Self-Ask, which require man-
ual human annotation of the rationale for the few-
shot samples, our prompt simply provides Pattr

and si to the LLM without any manual annotation.

2.2 Pipeline-Infused Prompt
Pipelines that break down a complex end task into
a series of sub-tasks take the necessary inductive
bias (i.e., decomposition) into account. Such biases
are especially useful when addressing complicated,
multi-hop QA tasks such as MuSiQue (Trivedi
et al., 2022). While existing prompting techniques
(Press et al., 2022; Zhou et al., 2022) also decom-
pose questions into tractable sub-questions, our
pipeline-infused prompts derive directly from ex-
isting pipelines implemented by previous works
(Min et al., 2019; Groeneveld et al., 2020), reusing
the already validated approach as a prompt. The
pipeline-infused prompt input X can be defined as:

X = ([I ∥ Sk], xi) (3)

where Sk = {c(s1), c(c2), ...c(ck)} and c is the
conversion function that converts few-shot samples

into their corresponding pipeline-infused prompt.
Note that c includes the decomposition process
directly adopted from the existing code base of
previous works, providing the decomposed sub-
questions, sub-answers and evidences to form
c(si).

2.3 Graph-Infused Prompt
Graphs are often used by finetuned LMs through
GNN-based modules (Tu et al., 2020; Chen et al.,
2020a) to exploit the connectivity information
among textual units (e.g., entities, sentences) that
help the LM perform multi-step reasoning. To pro-
vide the features conveyed by graphs, we transfer
the graph into prompts by identifying nodes within
texts and directly inserting an edge preceded by
each node as shown in Figure 2(c). Our graph
prompt X is defined as follows:

X = ([I ∥ Sk], g(xi)) (4)

Sk =

{
{g(s1), g(s2), ...g(sk)} if k > 0

∅ if k = 0
(5)

where g is a text conversion function that di-
rectly injects node-to-node information into the
in-context sample si and test input xi. It is worth
noting that we do not manually construct the graph
or identify nodes present in texts; we directly adopt
the graph structures provided by previous finetuned
models (Tu et al., 2020; Chen et al., 2020a) and the
code bases thereof, an automatic process that does
not necessitate manual annotation. The nodes (e.g.,
sentences) supplied by previous works are directly
injected into texts in the form of an indicator token,
e.g., P2S53, along with the edges which are con-
structed as proposed in the finetuned models and
appended to each node, e.g., connecting sentence
nodes based on entity overlap (Tu et al., 2020), or
connecting an entity with a number if they appear
within a sentence (Chen et al., 2020a).

3 Experiments

3.1 Settings
Models We use GPT-4 as our target LLM in this
work, as it is the most powerful LLM on composi-
tional reasoning tasks among other LLMs (OpenAI,
2023). Our experiments are conducted on GPT-4
using OpenAI API, so there is no finetuning of the
model involved in this work. We consider the fol-
lowing finetuned models. GenBERT (Geva et al.,

3P2S5 denotes the fifth sentence in the second paragraph.

3765

Zero-shot Few-shot (k = 3)

Ans. EM Ans. F1 Ans. EM Ans. F1

Baselines
GPT-4 46.41 ±0.29 67.90 ±0.32 73.20 ±2.27 80.50 ±1.45

Self-Ask 49.14 ±0.51 62.82 ±0.51 61.17 ±2.77 75.76 ±2.45

CoT 69.99 ±0.45 81.16 ±0.31 65.44 ±4.52 77.89 ±2.05

Attribute-Infused Prompt
GenBERT 77.81 ±0.63 84.61 ±0.43 77.51 ±2.57 83.34 ±1.83

NumNet 61.79 ±0.29 75.46 ±0.37 75.06 ±0.89 81.72 ±0.41

Graph-Infused Prompt QDGAT 52.73 ±0.66 70.36 ±0.42 70.86 ±3.17 75.58 ±5.58

Table 1: Results of FinePrompt on our sampled DROP dev set (256 instances). We provide the averaged score and
standard deviation over 5 different iterations, each with a different few-shot sample set.

2020) finetunes on synthetic datasets composed of
tasks like addition/subtraction and argmax/argmin.
NumNet (Ran et al., 2019) finetunes on number rep-
resentations to infuse the strict inequality bias into
the model. DecompRC (Min et al., 2019) decom-
poses a multi-hop question into different types of
decomposition, generates an answer and evidence
per type, and scores them to get the final answer.
QUARK (Groeneveld et al., 2020) independently
generates a sentence per retrieved paragraph and
uses the sentences as context for the final answer.
QDGAT (Chen et al., 2020a) is a model with entity-
number and number-number graphs to leverage
the relationships among numbers and entities. SAE
(Tu et al., 2020) is a model with a graph of sentence
nodes that uses the sentence-level connections be-
tween (and within) paragraphs. Details about the
models including CoT and Self-Ask, and hyperpa-
rameters are given in Appendix A.

Datasets The datasets used in this experiment are
a multi-hop QA dataset, MuSiQue (Trivedi et al.,
2022), and a numerical reasoning over text dataset,
DROP (Dua et al., 2019). Due to the heavy ex-
penses incurring from evaluating on the full evalu-
ation datasets, we sample 256 instances from each
dev set as in previous works (Le et al., 2022) and
iterate over them for 5 times to address variance.
To investigate both the zero-shot and the few-shot
performance of the prompt schemes, we test our
proposed schemes and baselines along the two axes;
the number of few-shot, k = 3 follows a previous
work’s setting on DROP (OpenAI, 2023).

Metrics The metrics used for DROP (Dua et al.,
2019) are answer exact match (Ans. EM) and F1
(Ans. F1), as the task is essentially a QA that deals
with the text match of the generated answer. For

MuSiQue (Trivedi et al., 2022), the task requires
the model to perform both the answer generation
and the evidence paragraph prediction. To accom-
modate both tasks and accurately measure whether
the generated output sequence contains the answer
string, we use answer F1 (Ans. F1) and supporting
paragraph F1 (Sup. F1). The supporting para-
graph F1 adopts the implementation by Trivedi
et al. (2022).

3.2 Results

In Tables 1 and 2, we provide our results on both
the zero-shot and few-shot settings over the two
compositional reasoning tasks. Our evaluations
span two axes: reproducibility of the prompts and
their effect on compositional reasoning capability.

Reproducibility On both datasets, all our pro-
posed prompts improve markedly over the base
GPT-4, demonstrating the same effect the finetuned
models exhibit when they incorporate the same in-
ductive biases into their models. Although this
work does not exhaustively explore all finetuned
models, this result hints at the possibility of incor-
porating other previously effective inductive biases
into prompts to improve the LLM reasoning ability.

Compositional Reasoning on DROP As shown
in Table 1, attribute-infused prompts, especially
GenBERT, excel in both the zero-shot and few-shot
settings on DROP. While Self-Ask and CoT im-
prove GPT-4’s performance in the zero-shot setting,
they show increased variance in the few-shot set-
ting. This provides a stark contrast to the attribute-
infused prompts, as they outperform other base-
lines in the few-shot setting. The graph-infused
prompt also improves the numerical reasoning abil-
ity, demonstrating that graphs’ usefulness, such as

3766

Zero-shot Few-shot (k = 3)

Ans. F1 Sup. F1 Ans. F1 Sup. F1

Baselines
GPT-4 62.41 ±0.50 82.21 ±0.21 65.34 ±0.36 75.44 ±0.29

Self-Ask 26.63 ±0.57 - 69.50 ±1.20 -
CoT 56.40 ±1.44 - 66.33 ±0.73 -

Pipeline-Infused Prompt
DecompRC 76.67 ±1.04 94.18 ±0.62 71.74 ±0.71 86.70 ±0.57

QUARK 40.17 ±0.74 53.73 ±0.31 58.53 ±1.64 75.60 ±0.62

Graph-Infused Prompt SAE 71.90 ±0.64 80.00 ±1.36 71.11 ±1.54 72.75 ±2.76

Table 2: Results of FinePrompt on our sampled MuSiQue dev set (256 instances). Self-Ask and CoT do not perform
supporting paragraph prediction. We provide the averaged score and standard deviation over 5 different iterations,
each with a different few-shot sample set.

connections between different textual units, can
effectively be infused to LLMs via prompt.

Compositional Reasoning on MuSiQue For
multi-hop reasoning on Table 2, both the pipeline
and graph prompts outperform other baselines, ex-
cept for QUARK. The performance drop after ap-
plying QUARK’s pipeline prompt suggests that,
unlike DecompRC which decomposes the question
into a series of sub-questions, QUARK indepen-
dently interprets a paragraph using the multi-hop
question, which is not helpful in reducing the com-
plexity of multi-hop reasoning. Moreover, SAE’s
performance improvement after injecting the graph
suggests that even without the lengthy pipeline ap-
proach, textual graph prompts better elicit the com-
positional reasoning ability from the LLM.

4 Related Works

Task-Specific Models On tasks such as
MuSiQue (Trivedi et al., 2022) and DROP (Dua
et al., 2019), numerous models have been proposed
to enable multi-step, compositional reasoning
(Min et al., 2019; Groeneveld et al., 2020; Tu et al.,
2020; Fang et al., 2020; Ran et al., 2019; Geva
et al., 2020; Chen et al., 2020a,b). These models,
prior to the LLM prompt learning paradigm took
their place, proposed various novel ideas on this
matter.

Prompt Learning With prompting techniques
like CoT (Wei et al., 2022), Self-Ask (Press et al.,
2022) and Least-to-most prompting (Zhou et al.,
2022) having shown to improve LLMs’ composi-
tional reasoning ability, our work explores how
these prompts compare against the FinePrompt
scheme. We do not deal with Least-to-most prompt-

ing as it does not deal with compositional reasoning
in a textual understanding setting.

5 Conclusion

This work studies the transfer of validated induc-
tive biases from finetuned models to prompts and
their effectiveness on compositional reasoning of
GPT-4. Our empirical results suggest that (i) end
task-related attributes and graphs help elicit robust
multi-step reasoning capability from LLMs, and (ii)
previous finetuned model pipelines, if they involve
decomposing a task into a smaller sub-problems,
are also effective for prompting. Our work sug-
gests that more can be exploited from the previous
pretrain-then-finetuned models and our proposed
template can incorporate those features seemlessly
into LLM prompting paradigm. We hope future
works can explore further in this direction and eas-
ily leverage the power of LLMs with FinePrompt.

Limitations

Limited Dataset Size Using GPT-4 for our study
incurs substantial cost because of its price ($0.03
per 1,000 tokens), which led us to randomly sam-
ple 256 instances from the evaluation sets of both
datasets instead of evaluating on the full dataset.
Following other previous works (Bai et al., 2023),
we deal with reduced dataset size to address the
high-cost of using OpenAI GPT model APIs.

Symbolic Compositional Reasoning Datasets
While our work deals with compositional reasoning
datasets within the textual understanding environ-
ment, there are other tasks like last-letter concate-
nation task (Wei et al., 2022) and action sequence
prediction such as SCAN (Lake, 2019). However,

3767

they do not deal with textual context understanding.
Future works may explore other models on these
end tasks as well.

Extension to other LLMs While there are other
LLMs available such as Alpaca (Peng et al., 2023)
and Vicuna (Chiang et al., 2023), which are
LLAMA-based (Touvron et al., 2023), instruction-
tuned models, they use GPT-generated instruction
data to finetune their models. We also note that
such LLMs are too compute-heavy to train in our
local environment.

Additional Finetuned Models We are aware that
there are numerous pretrain-then-finetuned LMs for
MHQA and DROP. Nevertheless, since we cannot
exhaustively consider every single model that has
been proposed to date, we select a few models that
share commonalities as in Sections 2.1 to 2.3 to
investigate their impact on LLMs as prompts.

Manual Annotation Manual annotation is un-
avoidable in FinePrompt since it requires a human
annotator to understand the central inductive bias
of a model and translate them into textual prompts.
Nonetheless, one of the main contributions of this
work, which is to reduce the human effort in search-
ing for an effective prompting strategy like CoT
(Wei et al., 2022) and Self-Ask (Press et al., 2022)
by transferring previously validated inductive bi-
ases, holds regardless of the manual effort. More-
over, FinePrompt adopts the code and data bases of
previous finetuned models to further mitigate hu-
man effort of extracting the inductive bias features.

Acknowledgements

This research was supported by an NRF grant
funded by MSIT 2022R1A2C4001594 (Extendable
Graph Representation Learning) and an IITP grant
funded by MSIT 2022-0-00369 (Development of
AI Technology to support Expert Decision-making
that can Explain the Reasons/Grounds for Judg-
ment Results based on Expert Knowledge).

References
Fan Bai, Junmo Kang, Gabriel Stanovsky, Dayne Fre-

itag, and Alan Ritter. 2023. Schema-driven informa-
tion extraction from heterogeneous tables.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot

learners. Advances in neural information processing
systems, 33:1877–1901.

Kunlong Chen, Weidi Xu, Xingyi Cheng, Zou Xi-
aochuan, Yuyu Zhang, Le Song, Taifeng Wang, Yuan
Qi, and Wei Chu. 2020a. Question directed graph
attention network for numerical reasoning over text.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 6759–6768, Online. Association for Computa-
tional Linguistics.

Xinyun Chen, Chen Liang, Adams Wei Yu, Denny Zhou,
Dawn Song, and Quoc V Le. 2020b. Neural sym-
bolic reader: Scalable integration of distributed and
symbolic representations for reading comprehension.
In International Conference on Learning Representa-
tions.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng,
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan
Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion
Stoica, and Eric P. Xing. 2023. Vicuna: An open-
source chatbot impressing gpt-4 with 90%* chatgpt
quality.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, et al. 2022. Palm: Scaling
language modeling with pathways. arXiv preprint
arXiv:2204.02311.

Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel
Stanovsky, Sameer Singh, and Matt Gardner. 2019.
Drop: A reading comprehension benchmark requir-
ing discrete reasoning over paragraphs. In Proceed-
ings of NAACL-HLT, pages 2368–2378.

Yuwei Fang, Siqi Sun, Zhe Gan, Rohit Pillai, Shuo-
hang Wang, and Jingjing Liu. 2020. Hierarchical
graph network for multi-hop question answering. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 8823–8838, Online. Association for Computa-
tional Linguistics.

Mor Geva, Ankit Gupta, and Jonathan Berant. 2020.
Injecting numerical reasoning skills into language
models. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 946–958, Online. Association for Computa-
tional Linguistics.

Dirk Groeneveld, Tushar Khot, Mausam, and Ashish
Sabharwal. 2020. A simple yet strong pipeline for
HotpotQA. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 8839–8845, Online. Association
for Computational Linguistics.

Xanh Ho, Anh-Khoa Duong Nguyen, Saku Sugawara,
and Akiko Aizawa. 2020. Constructing a multi-
hop QA dataset for comprehensive evaluation of
reasoning steps. In Proceedings of the 28th Inter-
national Conference on Computational Linguistics,

3768

http://arxiv.org/abs/2305.14336
http://arxiv.org/abs/2305.14336
https://doi.org/10.18653/v1/2020.emnlp-main.549
https://doi.org/10.18653/v1/2020.emnlp-main.549
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://doi.org/10.18653/v1/2020.emnlp-main.710
https://doi.org/10.18653/v1/2020.emnlp-main.710
https://doi.org/10.18653/v1/2020.acl-main.89
https://doi.org/10.18653/v1/2020.acl-main.89
https://doi.org/10.18653/v1/2020.emnlp-main.711
https://doi.org/10.18653/v1/2020.emnlp-main.711
https://doi.org/10.18653/v1/2020.coling-main.580
https://doi.org/10.18653/v1/2020.coling-main.580
https://doi.org/10.18653/v1/2020.coling-main.580

pages 6609–6625, Barcelona, Spain (Online). Inter-
national Committee on Computational Linguistics.

Brenden M Lake. 2019. Compositional generalization
through meta sequence-to-sequence learning. Ad-
vances in neural information processing systems, 32.

Nghia Le, Fan Bai, and Alan Ritter. 2022. Few-shot
anaphora resolution in scientific protocols via mix-
tures of in-context experts. In Findings of the Associ-
ation for Computational Linguistics: EMNLP 2022,
Abu Dhabi, United Arab Emirates. Association for
Computational Linguistics.

Sewon Min, Victor Zhong, Luke Zettlemoyer, and Han-
naneh Hajishirzi. 2019. Multi-hop reading compre-
hension through question decomposition and rescor-
ing. In Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics, pages
6097–6109, Florence, Italy. Association for Compu-
tational Linguistics.

OpenAI. 2023. Gpt-4 technical report.

Baolin Peng, Chunyuan Li, Pengcheng He, Michel Gal-
ley, and Jianfeng Gao. 2023. Instruction tuning with
gpt-4. arXiv preprint arXiv:2304.03277.

Ofir Press, Muru Zhang, Sewon Min, Ludwig Schmidt,
Noah A Smith, and Mike Lewis. 2022. Measuring
and narrowing the compositionality gap in language
models. arXiv preprint arXiv:2210.03350.

Peng Qi, Yuhao Zhang, Yuhui Zhang, Jason Bolton, and
Christopher D Manning. 2020. Stanza: A python
natural language processing toolkit for many human
languages. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics:
System Demonstrations, pages 101–108.

Qiu Ran, Yankai Lin, Peng Li, Jie Zhou, and Zhiyuan
Liu. 2019. NumNet: Machine reading comprehen-
sion with numerical reasoning. In Proceedings of
the 2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 2474–2484, Hong Kong,
China. Association for Computational Linguistics.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023. Llama: Open
and efficient foundation language models.

Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot,
and Ashish Sabharwal. 2022. MuSiQue: Multi-
hop questions via single-hop question composition.
Transactions of the Association for Computational
Linguistics, 10:539–554.

Ming Tu, Kevin Huang, Guangtao Wang, Jing Huang,
Xiaodong He, and Bowen Zhou. 2020. Select, an-
swer and explain: Interpretable multi-hop reading

comprehension over multiple documents. In Proceed-
ings of the AAAI conference on artificial intelligence,
volume 34, pages 9073–9080.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, brian ichter, Fei Xia, Ed H. Chi, Quoc V Le,
and Denny Zhou. 2022. Chain of thought prompt-
ing elicits reasoning in large language models. In
Advances in Neural Information Processing Systems.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio,
William Cohen, Ruslan Salakhutdinov, and Christo-
pher D Manning. 2018. Hotpotqa: A dataset for
diverse, explainable multi-hop question answering.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2369–2380.

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei,
Nathan Scales, Xuezhi Wang, Dale Schuurmans,
Olivier Bousquet, Quoc Le, and Ed Chi. 2022.
Least-to-most prompting enables complex reason-
ing in large language models. arXiv preprint
arXiv:2205.10625.

3769

https://doi.org/10.18653/v1/P19-1613
https://doi.org/10.18653/v1/P19-1613
https://doi.org/10.18653/v1/P19-1613
http://arxiv.org/abs/2303.08774
https://doi.org/10.18653/v1/D19-1251
https://doi.org/10.18653/v1/D19-1251
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2302.13971
https://doi.org/10.1162/tacl_a_00475
https://doi.org/10.1162/tacl_a_00475
https://openreview.net/forum?id=_VjQlMeSB_J
https://openreview.net/forum?id=_VjQlMeSB_J

A Additional Settings on Experiments

Hyperparameters & Datasets We explain de-
tailed settings such as the hyperparameter setting
of GPT-4 and changes to the existing data settings
to accommodate the LLM. GPT-4 hyperparameters
used in this work is as follows: the temperature
of GPT-4 is set to 0.0 to offset randomness during
generation. For MuSiQue, there are originally 20
question-related documents for each QA instance.
However, due to the context length limit (8K) of
GPT-4 and delayed API response, we consider 5
documents; all of which are randomly sampled
and consist of 2 gold documents (we adopt the 2-
hop question tasks from Press et al. (2022)) and 3
non-gold documents. This setting is unanimously
applied to all baselines. For DROP, there is no ad-
ditional change to the experiment setting as it deals
with a single paragraph and a question.

Models We adopt the Self-Ask (Press et al.,
2022) and CoT (Wei et al., 2022) prompt tech-
niques directly from their papers. While exper-
iments conducted by Press et al. (2022) do not
take into account the provided question-related doc-
uments (contexts) from MuSiQue (Trivedi et al.,
2022), for the fairness of comparing the effective-
ness of prompts, we report in Table 2 the results of
prompting with the contexts.

For QDGAT, as the official code on the Github
repository of the model was not replicable, we
implement the QDGAT graph generation with
Stanza (Qi et al., 2020); it is used to extract en-
tities and numbers from each document. Note
that "DURATION" number type is removed in
the process as Stanza does not support the num-
ber type. This leaves 7 number types (NUMBER,
PERCENT, MONEY, TIME, DATE, ORDINAL,
YARD). Moreover, in order to adopt the two es-
sential connections from the QDGAT graph, entity-
number and number-number edges, without having
to modulate a prolonged text, we denote number-
number edges as a group after NUMBER-NUMBER:
(e.g., NUMBER-NUMBER: YARD).

On NumNet, we note that while it uses GNN
to finetune number representations, it does not use
the connectivity inductive bias as in other graph
leveraging models like SAE and QDGAT. There-
fore, we add number-specific features of NumNet
as Attribute-infused prompt, not Graph-infused
prompt.

Zero-shot Few-shot (k = 3)

Self-Ask 26.63 ±0.57 69.50 ±1.20

w/o context 10.95 ±0.26 37.85 ±0.32

CoT 56.40 ±1.44 66.33 ±0.73

w/o context 27.36 ±0.21 36.84 ±1.78

Table 3: Additional results on the Self-Ask and CoT
performance with and without providing the question-
related documents in our sampled MuSiQue dev set.

EM F1

GenBERT finetuned 59.38 71.48
GenBERT 0-shot 77.81 84.61
GenBERT 3-shot 77.51 83.34

SAE finetuned 55.61 54.76
SAE 0-shot 71.90 80.00
SAE 3-shot 71.11 72.75

Table 4: Additional results on the original finetuned
GenBERT on DROP and SAE on MuSiQue against
our FinePrompt counterparts to compare the original
finetuned models and FinePrompt. Each FinePrompt
variant is denoted by the number of k-shot samples used.

Few-shot In-Context Samples For our Few-
shot (k = 3) setting in Tables 1 and 2, we ran-
dom sample k instances from the training datasets
of DROP and MuSiQue for 5 times. With a total
of 15 randomly sampled instances, we manually
construct k-shot in-context samples for CoT and
Self-Ask as both requires humans to provide an
intermediate rationale to a question in each sample.

B Additional Experiments: FinePrompt
and finetuned Models

While our work seeks to investigate the effective-
ness of the validated, finetuned inductive biases in
the form of prompts, we provide additional exper-
iments on how the finetuned models used in this
work fare against their FinePrompt counterparts.
We have conducted additional experiments with
GenBERT on DROP and SAE on MuSiQue to com-
pare the original finetuned models and FinePrompt
(shown in Table 4). The results demonstrate that
our FinePrompt scheme outperforms its original
finetuned counterparts, exhibiting the potential to
understudy the finetuned models in a low-resource
setting by leveraging LLMs.

3770

C CoT and Self-Ask without Contexts

In Press et al. (2022), the base settings of Self-
Ask and CoT do not take question-related docu-
ments (contexts) into account on the multi-hop
question answering task, and do not perform sup-
porting evidence paragraph prediction either; they
use their parametric knowledge to decompose the
given questions and generate answer rationales.
However, as our models applying FinePrompt re-
quire contexts provided by documents, we present
the performance of CoT and Self-Ask with contexts
for a fair comparison in Table 2.

To evaluate how the previous elicitive prompt-
ing strategies perform in our experimental setting
when contexts not provided, we provide additional
experiments in Table 3. Providing the question-
related documents shows a substantial increase in
both Self-Ask and CoT, notably in the few-shot
setting.

D Full Prompts

Here we provide the actual prompts used in our
work. Each prompt, divided into three distinct
groups (Attribute, Pipline, Graph), consists of the
following format: (i) Task Instruction, (ii) Fine-
tuned Instruction, (iii) In-context Samples & Test
Input. For the Attribute-Infused Prompt, we also
inject the Input-related Attributes (see Figure 2 for
details). At the end of each instruction, the few-
shot samples (optional in case of zero-shot) and the
end task query (Question:) will be appended for
GPT-4 to responsd to.

In the following, the DROP task instructions will
be denoted by blue boxes, whereas the MuSiQue
task instructions will be denoted by red boxes. The
baselines like Self-Ask (Press et al., 2022) and CoT
(Wei et al., 2022) are denoted by green as their
zero-shot setting shares the same prompt in both
datasets.

Base Instruction for DROP (Dua et al.,
2019)

You are a question answering machine
that answers a question based on a given
document. You will be given a document
preceded by "Document:" and a question
preceded by "Question:". When you
generate the answer, simply generate the
answer after "Answer:"

Document: ...
Question: ...
Answer: ...

Instruction for GenBERT(Geva et al.,
2020)

You are a question answering machine
that answers a question based on a given
document. You will be given a document
preceded by "Document:" and a question
preceded by "Question:". When you
generate the answer, simply generate the
answer after "Answer:".

You will also be given a set of related task
examples to help you acquire the necessary
knowledge to answer a given question
based on the document.

Document: ...
Question: ...
Answer: ...

Related Examples:
1) 19517.4 - 17484 - 10071.75 + 1013.21 =
-7025.14
2) most(1072.1, 17938, 5708.65, 14739.16)
= 17938
3) argmax(toppy 8105.5, cockney 7111.0,
nickelic 1463.16, tiredom 6929) = toppy
4) most recent(July 16, 134; June 23, 134;
24 July 134; 28 October 134) = 28 October
134
5) difference in days(April 21, 1381; 13
April 1381) = 7
6) percent not photochemist, floodgate, retir-
ingly :: photochemist 0.82%, morningward
54.4%, floodgate 2.0%, reline 0.78%, retir-
ingly 42% = 55.18

3771

7) Document: "The commander recruited
16426 asian citizens and 15986 asian
voters.
The commander borrowed 7 foreign groups
from the government. The government
passed 3 foreign groups to the commander."
Question: How many foreign groups did
the commander recruit?
Answer: 10

Instruction for NumNet (Ran et al., 2019)

You are a question answering machine
that answers a question based on a given
document. You will be given a document
preceded by "Document:" and a question
preceded by "Question:". When you
generate the answer, simply generate the
answer after "Answer:"

Numbers have specific relationships as
shown in the following examples, where
the "<" symbol represents "a < b" (a is less
than b), the ">" symbol represents "a > b"
(a is greater than b), and the "=" symbol
represents "a = b" (a is equal to b):

Document: ...
Question: ...
Answer: ...

5 < 6
10 > 6
117 > 25
978 < 979
0 = 0
1.6 < 7.2
9.0 > 8.9
2.6 < 2.9

Instruction for QDGAT (Chen et al.,
2020a)

You are a question answering machine
that answers a question based on a given
document. You will be given a document
preceded by "Document:" and a question
preceded by "Question:". When you
generate the answer, simply generate the
answer after "Answer:"

Some entities and numbers in the provided
document can have special connections.
There are a total of two connection types.
1) "ENTITY-NUMBER": Connections
between entity and number in the same
sentence.
2) "NUMBER-NUMBER": Connections
between numbers of the same type. A
NUMBER-NUMBER connection is rep-
resented by specifying the corresponding
number type.

Document: ... ENTITY1 (ENTITY-
NUMBER: NUMBER1) ... NUMBER1
(ENTITY-NUMBER: ENTITY1) ... NUM-
BER2 (ENTITY-NUMBER: ENTITY2,
ENTITY3 | NUMBER-NUMBER: YARD)

Question: ...
Answer: ...

3772

Base Instruction for MuSiQue (Trivedi
et al., 2022)

You are a question answering assistant. You
will be given a set of evidence paragraphs,
a multi-hop question and you will be asked
to do the following:
1) You will read a list of paragraphs (P1,
P2, ..., PN) and a multi-hop question
("Question:").
2) You should give the paragraph id you
used to derive the answer after "Evidence:".
3) You should provide the answer to the
multi-hop question after "Answer:".

Paragraphs: ...
P1: ...
P2: ...
...
PN: ...
Question: ...
Evidence: Pi, Pj, ...
Answer: ...

Instruction for DecompRC (Min et al.,
2019)

You are a question answering assistant. You
will be given a set of evidence paragraphs,
a multi-hop question and you will be asked
to do the following:

First, decompose the given multi-hop
question ("Question:") into all three differ-
ent versions of single-hop, sub-question sets
("Sub-question 1:", "Sub-question 2:"). The
three different question types are as follows:

1) Bridging Type: requires finding
the first-hop evidence for Sub-question 1 to
find the evidence to answer Sub-question 2.
2) Intersection Type: requires finding
an entity that satifies two independent
conditions of the two Sub-questions.
3) Comparison Type: requires comparing
the property of two different entities in the
Sub-questions.

Then, given a question, generate the
sub-questions, the corresponding answer
and the evidence paragraph ids for each
sub-question in the following format:

Paragraphs:
P1: ...
P2: ...
...
PN: ...

Question: ...

[Bridging]
Sub-question 1: ... | Sub-question 1 Answer:
... | Evidence: Pi, Pj, ...
Sub-question 2: ... | Sub-question 2 Answer:
... | Evidence: Pi, Pj, ...

[Intersection]
Sub-question 1: ... | Sub-question 1 Answer:
... | Evidence: Pi, Pj, ...
Sub-question 2: ... | Sub-question 2 Answer:
... | Evidence: Pi, Pj, ...

3773

[Comparison]
Sub-question 1: ... | Sub-question 1 Answer:
... | Evidence: Pi, Pj, ...
Sub-question 2: ... | Sub-question 2 Answer:
... | Evidence: Pi, Pj, ...

Using the previously generated infor-
mation about the sub-questions, the
answers and evidence paragraphs, generate
the most plausible answer to the question
("Question:") after "Answer:", and also
generate which question type your answer
is from as follows:

Question Type: ...
Answer: ...

Instruction for QUARK (Groeneveld
et al., 2020)

You are a question answering assistant.
You will be given a set of evidence
paragraphs, a multi-hop question and you
will be asked to do the following:

1) You will read a list of paragraphs
(P1, P2, ..., PN) and a multi-hop question
("Question:").
2) Find one question-related sentence
for each paragraph ("Paragraph:") and
write that sentence id after "Evidence
Sentences:".
3) Read the given set of sentences after
"Evidence Sentences for Pi:", where "i"
refers to the paragraph id. This set of
predicted sentences will serve as your new
context to help you answer the question.
4) You should provide the answer to the
multi-hop question after "Answer:".

Paragraphs: ...
P1: ...
P2: ...
...
PN: ...

Question: ...

Evidence Sentences for P1: Si
Evidence Sentences for P2: Sj
...
Evidence Sentences for PN: Sk

Answer: ...
Evidence Paragraphs: Pi, Pj, ...

3774

Instruction for SAE (Tu et al., 2020)

You are a question answering assistant.
You will be given a set of evidence
paragraphs, a multi-hop question and you
will be asked to do the following:

1) You will read a list of paragraphs
(P1, P2, ..., PN) and a multi-hop question
("Question:").
2) You should provide the answer to the
multi-hop question after "Answer:".
3) You should give the paragraph id you
used to derive the answer after "Evidence:".

The provided paragraphs and sentences
within are prefixed with paragraph numbers
and sentence numbers. For example, the
prefix "P2S1" indicates the 1st sentence of
the 2nd paragraph.
Also, if sentences are related to other
sentences, prefixes can connect them to
each other in some form of connection.
There are a total of three connection types:
1) "Question": Connections between
sentences that are related to the question.
2) "Intra": Connections between sentences
within the same paragraph.
3) "Inter": Connections between sentences
that are related but belong to different
paragraphs.

Paragraphs:
P1S1 (Inter: P2S2 | Intra: P1S2): ...
P1S2 (Intra: P1S2): ...
P2S1 (Intra: P2S2): ... P2S2 (Question: Q,
P3S2 | Inter: P1S1 | Intra: P2S1): ...
P3S1 (Intra: P3S2): ... P3S2 (Question:
P2S2 | Intra: P3S1): ...
...
PNS1 (Question: Q | Intra: PNS2): ...
PNS2 (Intra: PNS1): ...
Q (Question: P1S1, PNS1): ...
Answer: ...
Evidence: P1, P3, ...

Instruction for Self-Ask (Press et al.,
2022)

You are a question answering assistant.
1) You will be given a question ("Ques-
tion:").
2) Figure out if any follow up question is
needed ("Are follow up questions needed
here:") with "Yes" or "No" answer.
3) For each follow up question, give the
corresponding "Intermediate answer:".
4) When you generate the final answer,
generate the answer after "So the final
answer is:".

Question: ...
Are follow up questions needed here: ...
Follow up: ...
Intermediate answer: ...
So the final answer is: ...

Instruction for CoT (Wei et al., 2022)

You are a question answering assistant.
1) You will be given a question ("Ques-
tion:").
2) Generate an explanation for your answer
after "Answer:".
4) When you generate the final answer,
generate the answer after "So the final
answer is:".

Question: ...
Answer: ...
So the final answer is: ...

3775

