
Findings of the Association for Computational Linguistics: EMNLP 2023, pages 3806–3824
December 6-10, 2023 ©2023 Association for Computational Linguistics

LOGIC-LM: Empowering Large Language Models with
Symbolic Solvers for Faithful Logical Reasoning

Liangming Pan Alon Albalak Xinyi Wang William Yang Wang

University of California, Santa Barbara
{liangmingpan, alon_albalak, xinyi_wang, wangwilliamyang}@ucsb.edu

Abstract

Large Language Models (LLMs) have shown
human-like reasoning abilities but still strug-
gle with complex logical problems. This pa-
per introduces a novel framework, LOGIC-
LM, which integrates LLMs with symbolic
solvers to improve logical problem-solving.
Our method first utilizes LLMs to translate
a natural language problem into a symbolic
formulation. Afterward, a deterministic sym-
bolic solver performs inference on the for-
mulated problem. We also introduce a self-
refinement module, which utilizes the symbolic
solver’s error messages to revise symbolic for-
malizations. We demonstrate LOGIC-LM’s ef-
fectiveness on five logical reasoning datasets:
ProofWriter, PrOntoQA, FOLIO, LogicalDe-
duction, and AR-LSAT. On average, LOGIC-
LM achieves a significant performance boost
of 39.2% over using LLM alone with standard
prompting and 18.4% over LLM with chain-of-
thought prompting. Our findings suggest that
LOGIC-LM, by combining LLMs with sym-
bolic logic, offers a promising avenue for faith-
ful logical reasoning. 1

1 Introduction

Logical reasoning is a cognitive process that in-
volves using evidence, arguments, and logic to ar-
rive at conclusions or make judgments (Huang and
Chang, 2023). It plays a central role in intelligent
systems for problem-solving, decision-making, and
critical thinking. Recently, large language models
(LLMs) (Brown et al., 2020; Ouyang et al., 2022a;
OpenAI, 2023) have exhibited emergent ability to
“reason” like human (Wei et al., 2022a). When
prompted with step-wise explanations of reasoning
(“chain of thoughts”), or a simple prompt “Let’s
think step by step.”, these models are able to an-
swer questions with explicit reasoning steps (Wei
et al., 2022b; Kojima et al., 2022).

1Code and data are publicly available at https://github.
com/teacherpeterpan/Logic-LLM.

Problem 
Formulator 

Symbolic 
Reasoner 

Result 
Interpreter 

Symbolic 
Formulation

Symbolic 
Result

Problem Goal

Answer

Self-
Refine

Figure 1: Overview of our LOGIC-LM framework.

Despite the advances of LLMs, they still strug-
gle with complex logical reasoning problems (Liu
et al., 2023b). Recent studies (Golovneva et al.,
2023; Ribeiro et al., 2023b; Lyu et al., 2023) found
that LLMs occasionally make unfaithful reason-
ing, i.e., the derived conclusion does not follow
the previously generated reasoning chain. While
chain-of-thought may imitate human reasoning pro-
cesses, the fundamental nature of LLMs remains
that of black-box probabilistic models, lacking a
mechanism to guarantee the faithfulness of reason-
ing (Shanahan, 2022). In contrast, symbolic infer-
ence engines, such as expert systems (Metaxiotis
et al., 2002), are faithful and transparent because
the reasoning is based on symbolic-represented
knowledge and follows well-defined inference rules
that adhere to logical principles. The main obsta-
cle is how to accurately translate a problem into
symbolic representations, considering the inherent
ambiguity and flexibility of natural language. This
is precisely where LLMs excel, making LLMs a
promising complement to symbolic solvers.

This drives our exploration of neuro-symbolic
methods that integrate LLMs with symbolic reason-
ing. As illustrated in Figure 1, we present LOGIC-

3806

https://github.com/teacherpeterpan/Logic-LLM
https://github.com/teacherpeterpan/Logic-LLM


LM, a novel framework that decomposes a logical
reasoning problem into three stages: Problem For-
mulation, Symbolic Reasoning, and Result Inter-
pretation. During problem formulation, an LLM
converts the natural language description of the
problem into an appropriate symbolic formulation,
identifying key entities, facts, and rules present
in the problem statement. Subsequently, at the
symbolic reasoning stage, a deterministic symbolic
solver performs inference on the symbolic formula-
tion. Lastly, a result interpreter explains the output
and maps it to the correct answer. By incorporating
LLMs with symbolic solvers, we can exploit the
robust natural language understanding capabilities
of LLMs to precisely represent the problem using
symbolic representations, while also taking advan-
tage of the logical faithfulness and transparency
offered by symbolic solvers. To improve the accu-
racy of the symbolic parsing, we also incorporate
the idea of self-refinement to iteratively revise the
generated logical form using the error messages
from the symbolic solver as feedback.

We showcase the adaptability and effective-
ness of LOGIC-LM on five logical reasoning
datasets: ProofWriter (Tafjord et al., 2021), PrOn-
toQA (Saparov and He, 2023), FOLIO (Han et al.,
2022), AR-LSAT (Zhong et al., 2022), and the Log-
icalDeduction dataset from BigBench (Srivastava
et al., 2022). These datasets cover a wide range of
logical reasoning problems, including:
• Deductive Reasoning problems
• First-Order Logic (FOL) reasoning problems
• Constraint Satisfaction Problems (CSP)
• Analytical Reasoning (AR) problems

We integrate four types of symbolic inference tools
tailored to these problems: 1) logic programming
engine that supports deductive reasoning through
forward/backward chaining; 2) FOL inference en-
gine that derives new conclusions based on FOL
rules and facts, 3) constraint optimization engine
that provides solvers for CSP over finite domains,
and 4) boolean satisfiability problem (SAT) solver
that solves analytical reasoning problems.

Our evaluations show that the strategy of inte-
grating LLMs with symbolic solvers performs sig-
nificantly better than purely relying on LLMs for
logical reasoning, with an average improvement
of 39.2% over the standard prompting and 18.4%
over the chain-of-thought prompting (§ 4.1). We
also find that LOGIC-LM becomes increasingly ef-
fective as the required reasoning depth increases

(§ 4.3). Finally, by analyzing the impact of self-
refinement, we highlight the effectiveness of incre-
mentally revising symbolic formalizations when
interacting with the symbolic solver (§ 4.4).

2 Related Work

Language Models for Logical Reasoning. Re-
cent works in adapting LLMs for logical reasoning
tasks can be broadly categorized into two groups:
1) fine-tuning approaches that optimize LLMs’ rea-
soning ability through fine-tuning or training spe-
cialized modules (Clark et al., 2020; Tafjord et al.,
2022; Yang et al., 2022), and 2) in-context learning
approaches that design special prompts to elicit
LLMs’ step-by-step reasoning capabilities. Typical
methods include chain-of-thought prompting (Wei
et al., 2022b; Wang et al., 2023) that generates ex-
planations before the final answer and the least-to-
most prompting (Zhou et al., 2023) that breaks the
problem down into simpler components that can
be solved individually. Both the above approaches
perform reasoning directly over natural language
(NL), providing greater flexibility than symbolic-
based reasoning. However, the intrinsic complexity
and ambiguity of NL also bring undesired issues
such as unfaithful reasoning and hallucinations.

Different from prior works, we use symbolic
language as the basic unit of reasoning. This effec-
tively transfers the burden of executing complex,
precise reasoning from LLMs to more reliable, in-
terpretable external symbolic solvers. Simultane-
ously, we leverage the strong in-context learning
ability of LLMs to formulate the NL-based prob-
lem into suitable symbolic representations, thus
maintaining the benefit of flexibility.

Although prior works (Mao et al., 2019; Gupta
et al., 2020; Manhaeve et al., 2021; Cai et al., 2021;
Tian et al., 2022; Pryor et al., 2023) also propose
neuro-symbolic methods to combine neural net-
works with symbolic reasoning, these methods suf-
fer from limitations such as hand-crafted or spe-
cialized module designs that are not easily gen-
eralizable, or brittleness due to the difficulty of
optimization. In contrast, we propose a more gen-
eralizable framework that integrates modern LLMs
with symbolic logic without the need for training
or designing complex problem-specific modules.

Tool-augmented Language Models. Language
models have inherent limitations such as the inabil-
ity to access up-to-date information, take actions,
or perform precise mathematical reasoning. To

3807



No giant language model could have bad performance. 
If a language model has good performance, it is used by some researchers. 
A work used by some researchers should be popular. 
If BERT is a giant language model, then the same for GPT3. 
BERT is a giant language model.

Is the following statement true, false, or unknown? GPT3 is popular.

Problem Formulator 

Facts:
• ¬(∃𝑥(LanguageModel 𝑥 ∧ Giant 𝑥 ∧ ¬GoodPerformance(𝑥)))
• ∀𝑥(LanguageModel 𝑥 ∧ GoodPerformance 𝑥 → UsedbySomeReseachers(𝑥))
• ∀𝑥 UsedbySomeResearchers 𝑥 → Popular 𝑥
• LanguageModel bert ∧ 𝐺𝑖𝑎𝑛𝑡 bert → LanguageModel gpt3 ∧ Giant gpt3
• Language bert
• Giant bert
Query: Polular gpt3

Metals conduct electricity. 
Insulators do not conduct electricity. 
If something is made of iron, then it is metal. 
Nails are made of iron.

Is the following statement true, false, or 
unknown?  Nails cannot conduct electricity.

Logic Programming

In an antique car show, there are three vehicles: a tractor, 
a convertible, and a minivan. The tractor is the second-
newest. The minivan is newer than the convertible. 

Which of the following is true?
A) The tractor is the oldest.
B) The convertible is the oldest.
C) The minivan is the oldest.

Domain:
1:	oldest
3:	newest

Constraints: 
tractor	==	2	
minivan	>	convertible
AllDifferentConstraint(tractor,	minivan,	convertible)

Variables: 
tractor	∈	[1,	2,	3]
minivan	∈	[1,	2,	3]
convertible	∈	[1,	2,	3]

Rules:
• Metal 𝑥, True → ConductElectricity 𝑥, True
• MadeOfIron 𝑥, True → Metal(𝑥, True)
Facts:
• MadeOfIron Nails, True
• ConductElectricity Insulator, False
Query:
• ConductElectricity Nail, False

First-order Logic Prover Constraint Optimization Symbolic 
Reasoner 

Result 
Interpreter ConductElectricity Nail, True Entailment {convertible: 1, tractor: 2,minivan: 3}

Answer The statement “Nails cannot 
conduct electricity” is false.

The statement “GPT3 
is popular” is true. A) The convertible is the oldest. 

SMT Solver

Figure 2: Overview of our LOGIC-LM model, which consists of three modules: (1) Problem Formulator generates
a symbolic representation for the input problem with LLMs via in-context learning (2) Symbolic Reasoner performs
logical inference on the formulated problem, and (3) Result Interpreter interprets the symbolic answer.

address this, recent work has begun to augment lan-
guage models with access to external tools and re-
sources, such as the information retriever (Nakano
et al., 2021; Shi et al., 2023; Lazaridou et al.,
2022), calculator (Cobbe et al., 2021), code in-
terpreter (Wang et al., 2022), planner (Liu et al.,
2023a), and other pre-trained models (Shen et al.,
2023). Recent works (Gao et al., 2023; Chen et al.,
2022) have achieved improved performance on
arithmetic reasoning tasks by generating Python
programs that specify the reasoning procedure as
chained commands in the order of execution. How-
ever, this idea has not been extended to logical
reasoning problems, primarily due to the challenge
of representing their highly “non-linear” reasoning
procedure (e.g., hypothesizing, case-by-case analy-
sis, and the process of elimination) with functional
programming. Our work provides a novel way
to solve this within the framework of augmented
LLMs. Instead of parsing the problem-solving pro-
cedure as programs, we only describe the problem
with symbolic language using LLMs and then of-
fload the reasoning to external symbolic solvers.

Auto-Formalization. The concept of convert-
ing natural language into symbolic representations
has been widely adopted in auto-formalization for
mathematical reasoning (Wu et al., 2022; Drori

et al., 2022; He-Yueya et al., 2023; Jiang et al.,
2023). These works demonstrate the proficiency
of LLMs in translating a considerable fraction of
mathematical problems into formal specifications
defined in tools like SymPy (Meurer et al., 2017),
Isabelle/HOL (Paulson, 1994), and Lean (de Moura
et al., 2015). Mathematical reasoning can be con-
sidered a specialized subset of logical reasoning,
primarily focused on numeric deductions. Due to
this numeric specificity, mathematical problems are
often more readily translatable to symbolic forms.
In contrast, logical reasoning covers a wider array
of problem types, often requiring a deeper under-
standing of world knowledge and commonsense
for effective parsing into symbolic forms. Despite
plenty of works studying mathematical reasoning,
our work pioneers in extending the concept of auto-
formalization to a broader range of logical reason-
ing tasks with modern LLMs.

3 LOGIC-LM

As shown in Figure 2, the inputs of our model are
a logical reasoning problem P described in natural
language, along with a goal G in the form of a
multiple-choice or free-form question. LOGIC-LM
then follows a problem formulation-and-reasoning
paradigm to solve the problem.

3808



In the Problem Formulation stage, we prompt an
LLM to translate the problem and the goal into a
task-specific symbolic language. In the Symbolic
Reasoning stage, we call a deterministic symbolic
solver, e.g., a logic programming engine, to ob-
tain a symbolic-represented answer. Finally, an
LLM- or rule-based Result Interpreter is respon-
sible for translating the answer back to natural
language. Using this approach, the reasoning is
guaranteed to be faithful as long as the problem
formulation is correct since the answer A is the
result of executing deterministic algorithms (e.g.,
forward/backward-chaining) embedded within the
symbolic reasoner. Compared to previous methods
based on chain-of-thought, our framework reduces
the burden of LLMs by shifting their focus from
“solving the problem by reasoning step-by-step” to
“representing the problem in symbolic language”.

3.1 Problem Formulator

Intuitively, LLMs may struggle with directly solv-
ing complex reasoning problems. However, they
have demonstrated a notable ability to comprehend
textual inputs and translate them into formal pro-
grams, such as mathematical equations (He-Yueya
et al., 2023) or Python codes (Gao et al., 2023). We
posit that this capability to formulate problems into
different languages can be extended to symbolic
languages as well. We leverage the few-shot gener-
alization ability of LLMs to achieve this. By pro-
viding the LLM with detailed instructions about the
grammar of the symbolic language, alongside a few
demonstrations as in-context examples, we observe
that LLMs, like InstructGPT (Ouyang et al., 2022b)
and GPT-4 (OpenAI, 2023), can effectively follow
the instructions to identify key entities, facts, and
rules present in the problem statement, and then
translate these elements into symbolic language
following our defined grammar.

Specifically, we use four different symbolic for-
mulations to cover four common types of logical
reasoning problems: deductive reasoning, first-
order logic reasoning, constraint satisfaction prob-
lem, and analytical reasoning. These formula-
tions provide a foundation for translating natu-
ral language-based problem statements. By defin-
ing additional problem-specific formulations, our
framework retains the flexibility to accommodate a
wider range of reasoning tasks. Next, we will delve
into the grammar of each symbolic formulation.
Examples of each problem type are in Figure 2.

Logic Programming (LP) Language. Deduc-
tive reasoning typically starts from known facts and
rules, and iteratively makes new inferences until the
goal statement can be proved or disproved (Poole
and Mackworth, 2010). The Prolog logic pro-
gramming language (Clocksin and Mellish, 2003;
Körner et al., 2022) is arguably the most prominent
symbolic language to describe deductive reasoning
problems. We adopt its grammar to represent a
problem as facts, rules, and queries.
• Facts: a fact F is a simple statement with a
predicate and a set of arguments, formulated as
P (a1, · · · , an), where P is the predicate name and
each argument ai can be a variable, entity, num-
ber, or bool. For example, Age(Peter, 31) means
“Peter’s age is 31”, and MadeOfIron(Nails, True)
represents the fact “Nails are made of iron”.
• Rules: rules are written in the form of clauses:
F1∧· · ·∧Fm → Fm+1∧· · ·∧Fn, where each Fi is
a fact and the rule means “if the facts F1, · · · , Fm

are true, then the facts Fm+1 · · ·Fn are also true.”
• Queries: a query Q is simply another fact re-
quired to be proved based on known facts and rules.

First-Order Logic (FOL). While the logic pro-
gramming language efficiently represents common
deductive reasoning problems, it may fail to rep-
resent more complex first-order logic (FOL) prob-
lems. To address this, we also include the FOL
grammar (Enderton, 2001) in Appendix A. A prob-
lem is then parsed into a list of FOL formulas,
which are divided into Premises (the known in-
formation from the problem) and Conclusion (the
unknown formula to be proved). An example sen-
tence and its FOL formula are given in Table 1.

Constraint Satisfaction (CSP). Constraint sat-
isfaction problems (CSPs) (Kumar, 1992) aims
to find the value assignment of a set of objects
that satisfy a number of constraints. A CSP
is often defined as a triple (X,D,C), where
X = {x1, · · · , xn} is a set of variables, D =
{D1, · · · , Dn} is a set of their respective domains
of values, and C = {C1, · · · , Cm} is a set of con-
straints. Each variable xi can take on the values
in the nonempty domain Di. Every constraint Cj

is a pair ⟨tj , Rj⟩, where tj ⊂ X is a subset of k
variables and Rj is a k-ary relation on the corre-
sponding subset of domains Dj . We use the above
syntax to define a CSP problem as variables, do-
mains, and constraints. An example is given in
both Figure 2 and Table 1.

3809



Problem Formulation Example Solver Dataset
NL Sentence Symbolic Formulation

Deductive
Reasoning

LP
If the circuit is complete and
the circuit has the light bulb
then the light bulb is glowing.

Complete(Circuit, True)∧
Has(Circuit, LightBulb)
→ Glowing(LightBulb, True)

Pyke
ProntoQA,
ProofWriter

First-Order
Logic

FOL
A Czech person wrote a book
in 1946.

∃x2∃x1(Czech(x1) ∧ Author(x2, x1)
∧Book(x2) ∧ Publish(x2, 1946))

Prover9 FOLIO

Constraint
Satisfaction

CSP
On a shelf, there are five books.
The blue book is to the right
of the yellow book.

blue_book ∈ {1, 2, 3, 4, 5}
yellow_book ∈ {1, 2, 3, 4, 5}
blue_book > yellow_book

python-
constraint

LogicalDeduction

Analytical
Reasoning

SAT
Xena and exactly three other
technicians repair radios

repairs(Xena, radios) ∧
Count([t:technicians], t ̸= Xena
∧ repairs(t, radios))) == 3)

Z3 AR-LSAT

Table 1: A summary of the symbolic formulations (with examples) and symbolic solvers we use for the five datasets
in our study, representing four different types of logical reasoning problems.

Boolean Satisfiability (SAT) Formulation. SAT
is the problem of deciding if there is an assignment
to the variables of a Boolean formula such that
the formula is satisfied. Many analytical reasoning
problems can be formulated as SAT problems. We
adopt the grammar defined in Ye et al. (2023) to
formulate an SAT problem P as (Φ, T ,Q), where
Φ is a set of constraints defined under the theory T ,
and Q is the query of interest.

Table 1 summarizes the four types of logical
reasoning problems, their typical datasets, and the
symbolic formulation used to represent each type of
problem. We also give an example of a natural lan-
guage statement with its corresponding symbolic
formulation for each type. Appendix C shows the
full prompts we use for the problem formulator.
To teach LLMs to better align each statement with
its corresponding symbolic form, we use the for-
mat SYMBOLIC_FORMULA ::: NL_STATEMENT

in in-context examples to enable better grounding.

3.2 Symbolic Reasoner
After the problem formulator parses the problem
P and the goal G into symbolic representations
P̂ and Ĝ, we call a deterministic external solver
depending on the task, to obtain the answer A. Ta-
ble 1 summarizes the symbolic solvers we use for
each type of logical reasoning problem.

LP System. For deductive reasoning, we incor-
porate the Pyke expert system (Frederiksen, 2008),
which makes inferences based on the logic pro-
gramming language. In response to a query, Pyke
first creates a knowledge base, populating it with
known facts and rules. Subsequently, it applies
forward- and backward-chaining algorithms to in-
fer new facts and substantiate the goal.

FOL Prover. We use Prover92 as the FOL in-
ference engine. Prover9 is an automated theorem
prover that supports first-order logic and equational
logic. It initially converts FOL statements to con-
junctive normal form (CNF) and then performs
resolution (Robinson, 1965) on the CNF to deduce
whether a conclusion is true, false, or unknown.

CSP Solver. Solving a CSP is to find value as-
signments for all variables that satisfy all given
constraints. Commonly used algorithms for this
task include backtracking, constraint propagation,
and local search variants. To this end, we incor-
porate the python-constraint3 package which
offers solvers for CSPs over finite domains.

SAT Solver. For solving SAT problems, we use
the Z3 theorem prover (de Moura and Bjørner,
2008), a satisfiability modulo theories (SMT)
solver developed by Microsoft4. The SMT solver
provides algorithms to determine whether a set of
mathematical formulas is satisfiable. It generalizes
the SAT problems to more complex formulas in-
volving real numbers, integers, and various data
structures such as lists, arrays, bit vectors, and
strings. A lot of real-world analytical reasoning
problems can be represented as problems of solv-
ing a system of equations.

3.3 Self-Refiner
For complex problems, generating the correct log-
ical form may become challenging for LLMs. To
address this, we introduce a self-refinement mod-
ule that learns to modify inaccurate logical for-

2https://www.cs.unm.edu/~mccune/prover9/
3https://github.com/python-constraint/

python-constraint
4https://github.com/Z3Prover/z3

3810

https://www.cs.unm.edu/~mccune/prover9/
https://github.com/python-constraint/python-constraint
https://github.com/python-constraint/python-constraint
https://github.com/Z3Prover/z3


mulations using the error messages from the sym-
bolic reasoner as feedback. Recent works (Chen
et al., 2023; Madaan et al., 2023) have adopted sim-
ilar ideas to improve code generation, by teaching
LLMs to debug their predicted programs via few-
shot demonstrations. Here we extend this idea to
refine generated logic representations. If the sym-
bolic solver returns an execution error, we instruct
the LLM to refine the incorrect logical form, by
prompting it with the erroneous logic form, the
solver’s error message, and a set of demonstrations
showing common error cases (e.g., a free variable
is not bounded to any quantifier in FOL) and their
remedies. We run this process iteratively until ei-
ther no error messages are returned, or the maxi-
mum number of allowable revisions is reached.

3.4 Result Interpreter

Finally, the result interpreter translates the results
returned from the symbolic solver back to a natural
language answer. For certain problems, this can
be achieved through predefined rules; for example,
mapping Entailment to true. However, this pro-
cess can be more complex for CSPs, e.g., translat-
ing {convertible: 1, tractor: 2, minivan: 3} to “the
convertible is the oldest.”. To handle these varying
levels of complexity, we designed both rule-based
and LLM-based result interpreters. Details of the
result interpreter are given in Appendix D.

4 Experiments

Datasets. We evaluate LOGIC-LM on five com-
mon logical reasoning datasets, as follows.

PrOntoQA (Saparov and He, 2023) is a recent
synthetic dataset created to analyze the capacity of
LLMs for deductive reasoning. We use the hardest
fictional characters version of the dataset, based on
the results in Saparov and He (2023). Each version
is divided into different subsets depending on the
number of reasoning hops required. We use the
hardest 5-hop subset for evaluation. Each question
in PrOntoQA aims to validate a new fact’s veracity,
such as “True or false: Alex is not shy.”.

ProofWriter (Tafjord et al., 2021) is another
commonly used dataset for deductive logical rea-
soning. Compared with PrOntoQA, the problems
are expressed in a more naturalistic language form.
We use the open-world assumption (OWA) subset
in which each example is a (problem, goal) pair
and the label is one of {PROVED, DISPROVED,
UNKNOWN}. The dataset is divided into five parts,

each part requiring 0, ≤ 1, ≤ 2, ≤ 3, and ≤ 5 hops
of reasoning, respectively. We evaluate the hardest
depth-5 subset. To reduce overall experimentation
costs, we randomly sample 600 examples in the
test set and ensure a balanced label distribution.

FOLIO (Han et al., 2022) is a challenging
expert-written dataset for logical reasoning. The
problems are mostly aligned with real-world knowl-
edge and use highly natural wordings, and the ques-
tions require complex first-order logic reasoning to
solve. We use the entire FOLIO test set for evalua-
tion, consisting of 204 examples.

LogicalDeduction is a challenging logical rea-
soning task from the BigBench (Srivastava et al.,
2022) collaborative benchmark. The problems are
mostly about deducing the order of a sequence of
objects from a minimal set of conditions. We use
the full test set consisting of 300 examples.

AR-LSAT (Zhong et al., 2022) is a dataset that
collects all analytical logic reasoning questions
from the Law School Admission Test from 1991 to
2016. We use the test set which has 231 multiple-
choice questions. AR-LSAT is particularly chal-
lenging, with state-of-the-art models only achiev-
ing performance slightly better than random guess-
ing (Liang et al., 2022; Ribeiro et al., 2023a).

We convert all examples into a standard multiple-
choice format, comprising a problem statement, a
question, and potential answers, as shown in Fig-
ure 2. We also select 1-5 examples from the train-
ing set of each dataset as in-context examples. De-
tailed data statistics are in Appendix B.

Baselines. We compare our model against two
baselines that depend solely on LLMs for logical
reasoning: 1) Standard LLMs, which leverage in-
context learning to directly answer the question;
and 2) Chain-of-Thought (CoT) (Wei et al., 2022b),
which adopts a step-by-step problem-solving ap-
proach, generating explanations before providing
the final answer. We separately evaluate the set-
tings that ChatGPT (gpt-3.5-turbo), GPT-3.5
(text-davinci-003) (Ouyang et al., 2022a) and
GPT-4 (gpt-4) (OpenAI, 2023) serve as the under-
lying LLMs for all models. To ensure fair com-
parisons, we use the same in-context examples for
all models. For reproducible results, we set the
temperature to 0 and select the response with the
highest probability from LLMs. Since all examples
are formed as multiple-choice questions, we eval-
uate model performance based on the accuracy of
selecting the correct answer.

3811



Dataset ChatGPT (gpt-3.5-turbo) GPT-3.5 (text-davinci-003) GPT-4 (gpt-4)
Standard CoT Logic-LM Standard CoT Logic-LM Standard CoT Logic-LM

PrOntoQA 47.40 67.80 61.00 51.80 83.00 85.00 77.40 98.79 83.20

ProofWriter 35.50 49.17 58.33 36.16 48.33 71.45 52.67 68.11 79.66

FOLIO 45.09 57.35 62.74 54.60 57.84 61.27 69.11 70.58 78.92

LogicalDeduction 40.00 42.33 65.67 41.33 48.33 62.00 71.33 75.25 87.63

AR-LSAT 20.34 17.31 26.41 22.51 22.51 25.54 33.33 35.06 43.04

Table 2: Accuracy of standard promoting (Standard), chain-of-thought promoting (CoT), and our method (LOGIC-
LM, without self-refinement) on five reasoning datasets. The best results within each base LLM are highlighted.

4.1 Main Results

We report the results of LOGIC-LM (without self-
refinement) and baselines in Table 2. For LOGIC-
LM, a symbolic solver does not return an answer
when there are grammar errors in the symbolic
formulation. For these un-executable cases, we
fall back on using chain-of-thought to predict the
answer. We have three major observations.

1. Logic-LM significantly outperforms stan-
dard LLMs and CoT across all datasets. With GPT-
3.5, our method outperforms standard LLM on all
datasets, with an average improvement of 39.2%.
This highlights the benefit of combining LLMs
with external symbolic solvers for logical reason-
ing. LOGIC-LM also improves CoT by a large mar-
gin of 18.4% on average, showing that offloading
the reasoning to symbolic solvers greatly improves
faithfulness compared with pure language-based
reasoning with CoT.

2. GPT-4 outperforms GPT-3.5 by a large margin
of 48.46% on average for the standard prompting.
This aligns with the assertion that the main en-
hancement of GPT-4 lies in its ability to carry out
complex reasoning (OpenAI, 2023). Although this
may indicate that the logical reasoning capability
can be boosted by scaling up the LLM, we observe
that GPT-4 still makes numerous unfaithful reason-
ing errors. By delegating the reasoning to symbolic
solvers, our method can further improve GPT-4
by an average of 24.98% and 10.44% for standard
prompting and CoT prompting, respectively.

3. While integrating CoT generally enhances
LLM performance, we find its benefits compara-
tively less substantial or even negative on FOLIO,
LogicalDeduction, and AR-LSAT, with a modest
improvement of 11.75%, 9.41%, and -3.2%, re-
spectively. On the contrary, the benefits of CoT
on ProntoQA and ProofWriter are 51.59% and
33.82%, respectively. A plausible explanation is

Dataset SR
GPT-3.5 GPT-4

Exe_Rate Exe_Acc Exe_Rate Exe_Acc

ProntoQA
− 99.4% 84.9 100.0% 83.2
+ 100.0% ↑0.6 85.0 ↑0.1 100.0% 83.2

ProofWriter
− 87.3% 73.6 99.0% 79.6
+ 95.6% ↑8.3 74.1 ↑0.5 99.0% 79.6

FOLIO
− 66.7% 61.8 79.9% 80.4
+ 84.3% ↑17.6 64.3 ↑2.5 85.8% ↑5.9 79.9 ↓0.5

Logical
Deduction

− 100.0% 62.0 100.0% 87.6
+ 100.0% 62.0 100.0% 87.6

AR-LSAT
− 11.3% 57.7 32.6% 60.0
+ 21.8% ↑10.5 60.3 ↑2.6 39.8% ↑7.2 58.8 ↓1.2

Table 3: Analysis of accuracy and execution status of
LOGIC-LM. We present the percentage of executable
logical formulations (Exe_Rate) together with the accu-
racy of the execution (Exe_Acc). SR represents before
(−) and after (+) self-refinement.

that CoT emulates human forward-chain reasoning:
beginning with known facts and sequentially de-
riving new conclusions until the goal is met. This
reasoning style aligns well with problems in the
PrOntoQA and ProofWriter datasets. However,
FOL and CSP problems often necessitate more
sophisticated reasoning strategies that are “non-
linear” compared to standard forward-chain rea-
soning. These include hypothesizing, conditioning,
recursive inference, and the process of elimina-
tion. Compared to CoT, the integration of symbolic
solvers is better suited to these reasoning styles,
hence yielding a more marked improvement on FO-
LIO (+21.85%), LogicalDeduction (+45.67%), and
AR-LSAT (+24.14%).

4.2 Effectiveness of Problem Formulator

We then evaluate how well LLM can translate a
given problem into the symbolic formulation used
by each symbolic solver. In Table 3, we report the
percentage of symbolic formulations that are exe-
cutable by the corresponding symbolic solver for

3812



1

57.7
52.6

47.3

38.3
33.5

76.3 73.6

65.3
59.4

51

81.7
77.3

73.6 71.3 71.1

30

40

50

60

70

80

90

0 1 2 3 5
Reasoning Depth

Standard CoT Logic-LMAccuracy

Figure 3: Accuracy of different models for increasing
size of reasoning depth on the ProofWriter dataset.

each dataset (Exe_Rate). Generally, LLM demon-
strates high proficiency in transcribing problems
into symbolic formats, evidenced by its near 100%
Exe_Rate on ProntoQA, ProofWriter, and Logi-
calDeduction. However, the high performance on
these datasets is somewhat anticipated, given that
their problems are mostly synthetically generated,
limiting language variability. When it comes to
datasets comprising real-world, expertly crafted
problems, such as FOLIO and AR-LSAT, GPT-
4’s performance is notably less promising, with
Exe_Rate scores of 79.9% and 32.6% respectively.
This discrepancy underscores the inherent chal-
lenges associated with converting real-world prob-
lems into their logical equivalents.
Exe_Rate only reflects the grammar correctness

of the logical form. We also report the accuracy
of the executable samples (Exe_Acc) to measure
the semantic correctness. We find that logical
forms generated by GPT-4 generally achieve high
Exe_Acc, even for the most challenging AR-LSAT
dataset. Such performance accentuates the poten-
tial of symbolic solvers in bolstering the model’s
logical reasoning prowess, contingent on the pre-
cise translation of problems into symbolic forms.

4.3 Robustness of Reasoning

Incorporating symbolic solvers also leads to more
robust reasoning. To illustrate this, we report
the performance of LOGIC-LM and baselines for
questions of varying complexity levels. We ran-
domly selected 300 examples from each subset
of ProofWriter, ensuring a balanced label distri-
bution. The problems in these subsets require 0,
<=1, <=2, <=3, and <=5 hops of reasoning, respec-
tively. The results, shown in Figure 3, indicate
that LOGIC-LM becomes increasingly effective as
the required reasoning depth increases. For exam-

57.87

61.27 62.25
64.56 63.84

70.58

78.92 78.43 79.9 79.41

55

60

65

70

75

80

85

0 1 2 3

CoT (GPT-3.5) Logic-LM (GPT-3.5)
CoT (GPT-4) Logic-LM (GPT-4)

Rounds

GPT-3.5 66.7% 79.4% 82.4% 84.3%

GPT-4 79.9% 85.3% 85.3% 85.8%

Accuracy

Figure 4: The accuracy for different rounds of self-
refinement, with the corresponding executable rates.

ple, LOGIC-LM outperforms CoT by 7.1%, 5.0%,
12.7%, 20.0%, and 39.4% on depth-0, depth-1,
depth-2, depth-4, and depth-5 problems, respec-
tively. In LOGIC-LM, multi-step logical reasoning
is delegated to external symbolic solvers, thereby
transitioning the challenge of LLM from problem-
solving to problem representation. Ideally, the com-
plexity of formally representing a problem state-
ment in logical form should remain relatively con-
stant, regardless of whether the questions require
simple or complex reasoning. The trends in Fig-
ure 3 validate this assumption. The performance of
Standard and CoT declines precipitously with the
escalation of problem complexity. However, this
trend is less prominent for LOGIC-LM, indicating
that the robust reasoning capabilities provided by
external solvers substantially mitigate performance
degradation for complex reasoning problems.

4.4 Impact of Self-Refinement
In Table 3, we find that self-refinement is effective
in fixing the in-executable symbolic formulations,
increasing the Exe_Rate by 5.01 on average. For
an in-depth analysis, we then evaluate the accu-
racy and Exe_Rate across different rounds of self-
refinement on FOLIO, namely, 0 (no refinement),
1, 2, and 3 rounds. The results are in Figure 4.

We find that as the rounds of self-refinement in-
crease, the percentage of executable formulations
consistently increases, leading to an enhancement
in the final performance. This suggests that self-
refinement serves as an effective tool in aiding the
LLM to accurately frame the problem. However,
the accuracy tends to stagnate in subsequent rounds,
even though the Exe_Rate continues to increase.
This can be attributed to the type of feedback re-
ceived by the self-refiner, which is the error mes-

3813



Problem: "Stranger Things" is a popular Netflix show. If a Netflix show is popular, Karen will binge-watch it. 
If and only if Karen binge-watches a Netflix show, she will download it. Karen does not download "Black Mirror". 
"Black Mirror" is a Netflix show. If Karen binge-watches a Netflix show, she will share it to Lisa.

Question: Is the following statement true, false, or uncertain? "Black Mirror" is popular.
(A) True                (B) False            (C) Uncertain

Generated symbolic Formulations:
Predicates:

NetflixShow(x) # x is a Netflix show.
Popular(x) # x is popular.
BingeWatch(x, y) # x binge-watches y.
Download(x, y) # x downloads y.
Share(x, y, z) # x shares y to z.

Premises:
NetflixShow(strangerThings) ∧ Popular(strangerThings) # "Stranger Things" is a popular Netflix show. 
∀x (NetflixShow(x) ∧ Popular(x) → BingeWatch(karen, x)) # If a Netflix show is popular, Karen will binge-watch it. 
∀x (NetflixShow(x) ∧ BingeWatch(karen, x) ↔ Download(karen, x)) # If and only if Karen … , she will download it. 
NetflixShow(blackMirror) ∧ ¬Download(karen, blackMirror) # Karen does not … "Black Mirror" is a Netflix show.
∀x (NetflixShow(x) ∧ BingeWatch(karen, x) → Share(karen, x, lisa)) # If Karen … , she will share it to Lisa.

Conclusion:
Popular(blackMirror) # "Black Mirror" is popular.

Predicted answer: B

Figure 5: An example of the generated symbolic representation and the predicted answer by LOGIC-LM.

sage from the symbolic solver. This feedback aids
in converting “invalid” symbolic representations
into valid ones. However, a valid symbolic repre-
sentation does not necessarily equate to a “correct”
problem formulation that accurately represents the
problem. This issue could be tackled by enhanc-
ing the self-refiner to incorporate feedback beyond
the error message, e.g., a reward signal from an
additional module evaluating the accuracy of a gen-
erated symbolic form. We leave this as a promising
direction for future exploration.

4.5 Case Study

In Figure 5, we show an example of the symbolic
representations generated by GPT-4, together with
the predicted answer. In general, LOGIC-LM has
demonstrated a potent capacity to interpret com-
plex problems into symbolic forms. Nonetheless,
there remain certain difficulties in accurately un-
derstanding the semantics of the problem.

We further analyze some error cases in Fig-
ure 6 of Appendix E. Example 1 shows a case
where GPT-4 generates an incorrect FOL represen-
tation, stemming from its inability to define ap-
propriate predicates. Here, instead of creating the
predicate EasternWildTurkey, the model gener-
ates a constant, WildTurkey(eastern), in which
WildTurkey is the predicate and eastern is the
constant. While this representation is valid in iso-
lation, it does not interact well with subsequent
constants. This inconsistency is a recurring issue
in GPT-4’s symbolic form generation, illustrating
that the model sometimes struggles to maintain an
overarching understanding of the problem when
forming logical symbols. Example 3 highlights a
case where GPT-4 struggles to interpret specific

expressions accurately. In this case, the model fails
to distinguish between the meanings of “below”
and “above”, resulting in an incorrect constraint
Dan > Eve. Example 4 exemplifies GPT-4’s chal-
lenge with fully grasping the rules of FOL gram-
mar, evidenced by the invalid generated formula:
Rating(subway, y) ∧ y > 9. These error cases
underscore that transforming problems into logi-
cal forms remains a challenging task for modern
LLMs, due to the intricacies of FOL formulation,
the innate flexibility of natural language, and the
complexity of global problem comprehension.

5 Conclusion and Future Work

In this work, we propose a novel approach to ad-
dress logical reasoning problems by combining
large language models with symbolic solvers. We
introduce Logic-LM, one instantiation of such a
framework, and demonstrate how it significantly
improves performance over pure LLMs and chain-
of-thought prompting techniques.

While Logic-LM has proven to be a capable sys-
tem, it can be further improved with extension to
more flexible and powerful logic systems. For ex-
ample, statistical relational learning (SRL) systems
such as Markov logic networks (Richardson and
Domingos, 2006) and probabilistic soft logic (Bach
et al., 2017) have demonstrated great promise in
reasoning under uncertainty and integration with
our framework would enable even more adaptive
problem-solving capabilities. Additionally, our
method can be extended to reasoning problems
requiring commonsense, which remains a signifi-
cant challenge as they often require reasoning over
complex and ambiguous rules.

3814



Limitations

We identify two main limitations of LOGIC-LM.
First, LOGIC-LM relies on translating reasoning
problems into logical formats that can be tackled by
symbolic solvers. As a consequence, the model’s
applicability is inherently bounded by the expres-
siveness of the symbolic solver, for example, not all
problems can be easily encoded in first-order logic.
Nevertheless, this limitation can be mitigated by
integrating a more diverse set of symbolic solvers.
The flexible design of LOGIC-LM facilitates this
integration. The wide range of reasoning tasks that
we can instantiate our LOGIC-LM framework on
shows its general applicability.

Second, LOGIC-LM depends on in-context
learning coupled with self-refinement to convert
a natural language (NL) problem into the symbolic
representation. While this method has proven to
be effective, it may face difficulties when dealing
with logical representations with intricate grammar
structures, such as probabilistic soft logic. This
arises from the difficulty in conveying complex
grammatical rules to the language model through
a limited number of demonstrations within a con-
strained context size. As a potential solution, future
works could explore the development of specialized
modules to enhance the mapping between NL and
symbolic language, e.g., fine-tuning LLMs with
synthetic data generated via symbolic solvers.

Ethics Statement

The use of large language models requires a signifi-
cant amount of energy for computation for training,
which contributes to global warming (Strubell et al.,
2019). Our work performs few-shot in-context
learning instead of training models from scratch, so
the energy footprint of our work is less. The large
language models whose API we use for inference,
especially GPT-4, consume significant energy.

Acknowledgements

This work was supported by the National Science
Foundation Award #2048122. The views expressed
are those of the authors and do not reflect the offi-
cial policy or position of the US government.

References
Stephen Bach, Matthias Broecheler, Bert Huang, and

Lise Getoor. 2017. Hinge-loss markov random fields

and probabilistic soft logic. Journal of Machine
Learning Research (JMLR), 18(1):1–67.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. In
Proceedings of the Annual Conference on Neural
Information Processing Systems (NeurIPS).

Le-Wen Cai, Wang-Zhou Dai, Yu-Xuan Huang, Yu-
Feng Li, Stephen H. Muggleton, and Yuan Jiang.
2021. Abductive learning with ground knowledge
base. In Proceedings of the 30th International Joint
Conference on Artificial Intelligence (IJCAI), pages
1815–1821.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and
William W. Cohen. 2022. Program of thoughts
prompting: Disentangling computation from rea-
soning for numerical reasoning tasks. CoRR,
abs/2211.12588.

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and
Denny Zhou. 2023. Teaching large language models
to self-debug. CoRR, abs/2304.05128.

Peter Clark, Oyvind Tafjord, and Kyle Richardson. 2020.
Transformers as soft reasoners over language. In Pro-
ceedings of the 29th International Joint Conference
on Artificial Intelligence (IJCAI), pages 3882–3890.

William F Clocksin and Christopher S Mellish. 2003.
Programming in PROLOG. Springer Science & Busi-
ness Media.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Jacob Hilton, Reiichiro Nakano, Christopher Hesse,
and John Schulman. 2021. Training verifiers to solve
math word problems. CoRR, abs/2110.14168.

Leonardo Mendonça de Moura and Nikolaj S. Bjørner.
2008. Z3: an efficient SMT solver. In Proceedings of
the 14th International Conference of Tools and Algo-
rithms for the Construction and Analysis of Systems
(TACAS), volume 4963 of Lecture Notes in Computer
Science, pages 337–340.

Leonardo Mendonça de Moura, Soonho Kong, Jeremy
Avigad, Floris van Doorn, and Jakob von Raumer.
2015. The lean theorem prover (system description).
In Proceedings of the 25th International Conference
on Automated Deduction (ICAD), volume 9195 of
Lecture Notes in Computer Science, pages 378–388.

Iddo Drori, Sarah Zhang, Reece Shuttleworth, Leonard
Tang, Albert Lu, Elizabeth Ke, Kevin Liu, Linda
Chen, Sunny Tran, Newman Cheng, et al. 2022. A

3815

http://jmlr.org/papers/v18/15-631.html
http://jmlr.org/papers/v18/15-631.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://doi.org/10.24963/ijcai.2021/250
https://doi.org/10.24963/ijcai.2021/250
https://doi.org/10.48550/arXiv.2211.12588
https://doi.org/10.48550/arXiv.2211.12588
https://doi.org/10.48550/arXiv.2211.12588
https://doi.org/10.48550/arXiv.2304.05128
https://doi.org/10.48550/arXiv.2304.05128
https://doi.org/10.24963/ijcai.2020/537
https://athena.ecs.csus.edu/~mei/logicp/Programming_in_Prolog.pdf
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-319-21401-6_26


neural network solves, explains, and generates uni-
versity math problems by program synthesis and few-
shot learning at human level. Proceedings of the Na-
tional Academy of Sciences, 119(32):e2123433119.

Herbert B Enderton. 2001. A mathematical introduction
to logic. Elsevier.

Bruce Frederiksen. 2008. Applying expert system tech-
nology to code reuse with pyke. PyCon: Chicago.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon,
Pengfei Liu, Yiming Yang, Jamie Callan, and Gra-
ham Neubig. 2023. PAL: program-aided language
models. In Proceedings of the International Con-
ference on Machine Learning (ICML), volume 202,
pages 10764–10799.

Olga Golovneva, Moya Chen, Spencer Poff, Martin
Corredor, Luke Zettlemoyer, Maryam Fazel-Zarandi,
and Asli Celikyilmaz. 2023. ROSCOE: A suite of
metrics for scoring step-by-step reasoning. In Pro-
ceedings of the 11th International Conference on
Learning Representations (ICLR).

Nitish Gupta, Kevin Lin, Dan Roth, Sameer Singh, and
Matt Gardner. 2020. Neural module networks for
reasoning over text. In Proceedings of the 8th In-
ternational Conference on Learning Representations
(ICLR).

Simeng Han, Hailey Schoelkopf, Yilun Zhao, Zhenting
Qi, Martin Riddell, Luke Benson, Lucy Sun, Eka-
terina Zubova, Yujie Qiao, Matthew Burtell, David
Peng, Jonathan Fan, Yixin Liu, Brian Wong, Mal-
colm Sailor, Ansong Ni, Linyong Nan, Jungo Kasai,
Tao Yu, Rui Zhang, Shafiq R. Joty, Alexander R. Fab-
bri, Wojciech Kryscinski, Xi Victoria Lin, Caiming
Xiong, and Dragomir Radev. 2022. FOLIO: natu-
ral language reasoning with first-order logic. CoRR,
abs/2209.00840.

Joy He-Yueya, Gabriel Poesia, Rose E Wang, and
Noah D Goodman. 2023. Solving math word prob-
lems by combining language models with symbolic
solvers. CoRR, abs/2304.09102.

Jie Huang and Kevin Chen-Chuan Chang. 2023. To-
wards reasoning in large language models: A survey.
In Findings of the 61st Annual Meeting of the Asso-
ciation for Computational Linguistics (ACL), pages
1049–1065.

Albert Qiaochu Jiang, Sean Welleck, Jin Peng Zhou,
Timothée Lacroix, Jiacheng Liu, Wenda Li, Mateja
Jamnik, Guillaume Lample, and Yuhuai Wu. 2023.
Draft, sketch, and prove: Guiding formal theorem
provers with informal proofs. In Proceedings of the
11th International Conference on Learning Represen-
tations (ICLR).

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-
guage models are zero-shot reasoners. In Proceed-
ings of the Annual Conference on Neural Information
Processing Systems (NeurIPS).

Philipp Körner, Michael Leuschel, João Barbosa,
Vítor Santos Costa, Verónica Dahl, Manuel V.
Hermenegildo, José F. Morales, Jan Wielemaker,
Daniel Diaz, and Salvador Abreu. 2022. Fifty years
of prolog and beyond. Theory Pract. Log. Program.,
22(6):776–858.

Vipin Kumar. 1992. Algorithms for constraint-
satisfaction problems: A survey. AI Mag., 13(1):32–
44.

Angeliki Lazaridou, Elena Gribovskaya, Wojciech
Stokowiec, and Nikolai Grigorev. 2022. Internet-
augmented language models through few-shot
prompting for open-domain question answering.
CoRR, abs/2203.05115.

Percy Liang, Rishi Bommasani, Tony Lee, Dimitris
Tsipras, Dilara Soylu, Michihiro Yasunaga, Yian
Zhang, Deepak Narayanan, Yuhuai Wu, Ananya Ku-
mar, Benjamin Newman, Binhang Yuan, Bobby Yan,
Ce Zhang, Christian Cosgrove, Christopher D. Man-
ning, Christopher Ré, Diana Acosta-Navas, Drew A.
Hudson, Eric Zelikman, Esin Durmus, Faisal Ladhak,
Frieda Rong, Hongyu Ren, Huaxiu Yao, Jue Wang,
Keshav Santhanam, Laurel J. Orr, Lucia Zheng, Mert
Yüksekgönül, Mirac Suzgun, Nathan Kim, Neel
Guha, Niladri S. Chatterji, Omar Khattab, Peter
Henderson, Qian Huang, Ryan Chi, Sang Michael
Xie, Shibani Santurkar, Surya Ganguli, Tatsunori
Hashimoto, Thomas Icard, Tianyi Zhang, Vishrav
Chaudhary, William Wang, Xuechen Li, Yifan Mai,
Yuhui Zhang, and Yuta Koreeda. 2022. Holistic eval-
uation of language models. CoRR, abs/2211.09110.

Bo Liu, Yuqian Jiang, Xiaohan Zhang, Qiang Liu, Shiqi
Zhang, Joydeep Biswas, and Peter Stone. 2023a.
LLM+P: empowering large language models with op-
timal planning proficiency. CoRR, abs/2304.11477.

Hanmeng Liu, Ruoxi Ning, Zhiyang Teng, Jian Liu, Qiji
Zhou, and Yue Zhang. 2023b. Evaluating the logi-
cal reasoning ability of chatgpt and GPT-4. CoRR,
abs/2304.03439.

Qing Lyu, Shreya Havaldar, Adam Stein, Li Zhang,
Delip Rao, Eric Wong, Marianna Apidianaki, and
Chris Callison-Burch. 2023. Faithful chain-of-
thought reasoning. CoRR, abs/2301.13379.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,
Sean Welleck, Bodhisattwa Prasad Majumder,
Shashank Gupta, Amir Yazdanbakhsh, and Peter
Clark. 2023. Self-refine: Iterative refinement with
self-feedback. CoRR, abs/2303.17651.

Robin Manhaeve, Sebastijan Dumancic, Angelika Kim-
mig, Thomas Demeester, and Luc De Raedt. 2021.
Neural probabilistic logic programming in deep-
problog. The Journal of Artificial Intelligence (AIJ),
298:103504.

3816

https://www.sciencedirect.com/book/9780122384523/a-mathematical-introduction-to-logic
https://www.sciencedirect.com/book/9780122384523/a-mathematical-introduction-to-logic
https://pyke.sourceforge.net/PyCon2008-paper.html
https://pyke.sourceforge.net/PyCon2008-paper.html
https://proceedings.mlr.press/v202/gao23f.html
https://proceedings.mlr.press/v202/gao23f.html
https://doi.org/10.48550/arXiv.2212.07919
https://doi.org/10.48550/arXiv.2212.07919
https://arxiv.org/abs/1912.04971
https://arxiv.org/abs/1912.04971
https://doi.org/10.48550/arXiv.2209.00840
https://doi.org/10.48550/arXiv.2209.00840
https://arxiv.org/abs/2304.09102
https://arxiv.org/abs/2304.09102
https://arxiv.org/abs/2304.09102
https://doi.org/10.18653/v1/2023.findings-acl.67
https://doi.org/10.18653/v1/2023.findings-acl.67
https://openreview.net/pdf?id=SMa9EAovKMC
https://openreview.net/pdf?id=SMa9EAovKMC
http://papers.nips.cc/paper_files/paper/2022/hash/8bb0d291acd4acf06ef112099c16f326-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/8bb0d291acd4acf06ef112099c16f326-Abstract-Conference.html
https://doi.org/10.1017/S1471068422000102
https://doi.org/10.1017/S1471068422000102
https://doi.org/10.1609/aimag.v13i1.976
https://doi.org/10.1609/aimag.v13i1.976
https://doi.org/10.48550/arXiv.2203.05115
https://doi.org/10.48550/arXiv.2203.05115
https://doi.org/10.48550/arXiv.2203.05115
https://doi.org/10.48550/arXiv.2211.09110
https://doi.org/10.48550/arXiv.2211.09110
https://doi.org/10.48550/arXiv.2304.11477
https://doi.org/10.48550/arXiv.2304.11477
https://doi.org/10.48550/arXiv.2304.03439
https://doi.org/10.48550/arXiv.2304.03439
https://doi.org/10.48550/arXiv.2301.13379
https://doi.org/10.48550/arXiv.2301.13379
https://doi.org/10.48550/arXiv.2303.17651
https://doi.org/10.48550/arXiv.2303.17651
https://doi.org/10.1016/j.artint.2021.103504
https://doi.org/10.1016/j.artint.2021.103504


Jiayuan Mao, Chuang Gan, Pushmeet Kohli, Joshua B.
Tenenbaum, and Jiajun Wu. 2019. The neuro-
symbolic concept learner: Interpreting scenes, words,
and sentences from natural supervision. In Proceed-
ings of the 7th International Conference on Learning
Representations (ICLR).

Kostas S. Metaxiotis, Dimitris Askounis, and John E.
Psarras. 2002. Expert systems in production planning
and scheduling: A state-of-the-art survey. Journal of
Intelligent Manufacturing, 13(4):253–260.

Aaron Meurer, Christopher P. Smith, Mateusz Pa-
procki, Ondrej Certík, Sergey B. Kirpichev, Matthew
Rocklin, Amit Kumar, Sergiu Ivanov, Jason Keith
Moore, Sartaj Singh, Thilina Rathnayake, Sean Vig,
Brian E. Granger, Richard P. Muller, Francesco
Bonazzi, Harsh Gupta, Shivam Vats, Fredrik Johans-
son, Fabian Pedregosa, Matthew J. Curry, Andy R.
Terrel, Stepán Roucka, Ashutosh Saboo, Isuru Fer-
nando, Sumith Kulal, Robert Cimrman, and An-
thony M. Scopatz. 2017. Sympy: symbolic com-
puting in python. PeerJ Computer Science, 3:e103.

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu,
Long Ouyang, Christina Kim, Christopher Hesse,
Shantanu Jain, Vineet Kosaraju, William Saunders,
Xu Jiang, Karl Cobbe, Tyna Eloundou, Gretchen
Krueger, Kevin Button, Matthew Knight, Benjamin
Chess, and John Schulman. 2021. Webgpt: Browser-
assisted question-answering with human feedback.
CoRR, abs/2112.09332.

OpenAI. 2023. GPT-4 technical report. CoRR,
abs/2303.08774.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray,
John Schulman, Jacob Hilton, Fraser Kelton, Luke
Miller, Maddie Simens, Amanda Askell, Peter Welin-
der, Paul F. Christiano, Jan Leike, and Ryan Lowe.
2022a. Training language models to follow instruc-
tions with human feedback. In Proceedings of the
Annual Conference on Neural Information Process-
ing Systems (NeurIPS).

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray,
John Schulman, Jacob Hilton, Fraser Kelton, Luke
Miller, Maddie Simens, Amanda Askell, Peter Welin-
der, Paul F. Christiano, Jan Leike, and Ryan Lowe.
2022b. Training language models to follow instruc-
tions with human feedback. In Proceedings of the
Annual Conference on Neural Information Process-
ing Systems (NeurIPS.

Lawrence C. Paulson. 1994. Isabelle - A Generic The-
orem Prover (with a contribution by T. Nipkow),
volume 828 of Lecture Notes in Computer Science.
Springer.

David Poole and Alan K. Mackworth. 2010. Artificial
Intelligence - Foundations of Computational Agents.
Cambridge University Press.

Connor Pryor, Charles Dickens, Eriq Augustine, Alon
Albalak, William Yang Wang, and Lise Getoor. 2023.
Neupsl: Neural probabilistic soft logic. In Proceed-
ings of the 32nd International Joint Conference on
Artificial Intelligence (IJCAI), pages 4145–4153.

Danilo Neves Ribeiro, Shen Wang, Xiaofei Ma,
Henghui Zhu, Rui Dong, Deguang Kong, Juli-
ette Burger, Anjelica Ramos, Zhiheng Huang,
William Yang Wang, George Karypis, Bing Xiang,
and Dan Roth. 2023a. STREET: A multi-task struc-
tured reasoning and explanation benchmark. In Pro-
ceedings of the Eleventh International Conference on
Learning Representations (ICLR).

Danilo Neves Ribeiro, Shen Wang, Xiaofei Ma, Henry
Zhu, Rui Dong, Deguang Kong, Juliette Burger, An-
jelica Ramos, William Yang Wang, Zhiheng Huang,
George Karypis, Bing Xiang, and Dan Roth. 2023b.
STREET: A multi-task structured reasoning and ex-
planation benchmark. In Proceedings of the 11th
International Conference on Learning Representa-
tions (ICLR).

Matthew Richardson and Pedro M. Domingos. 2006.
Markov logic networks. Machine Learning, 62(1-
2):107–136.

John Alan Robinson. 1965. A machine-oriented logic
based on the resolution principle. The Journal of the
ACM (JACM), 12(1):23–41.

Abulhair Saparov and He He. 2023. Language models
are greedy reasoners: A systematic formal analysis
of chain-of-thought. In Proceedings of the 11th In-
ternational Conference on Learning Representations
(ICLR).

Murray Shanahan. 2022. Talking about large language
models. CoRR, abs/2212.03551.

Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li,
Weiming Lu, and Yueting Zhuang. 2023. Hugging-
gpt: Solving AI tasks with chatgpt and its friends in
huggingface. CoRR, abs/2303.17580.

Weijia Shi, Sewon Min, Michihiro Yasunaga, Minjoon
Seo, Rich James, Mike Lewis, Luke Zettlemoyer, and
Wen-tau Yih. 2023. REPLUG: retrieval-augmented
black-box language models. CoRR, abs/2301.12652.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao,
Abu Awal Md Shoeb, Abubakar Abid, Adam
Fisch, Adam R. Brown, Adam Santoro, Aditya
Gupta, Adrià Garriga-Alonso, Agnieszka Kluska,
Aitor Lewkowycz, Akshat Agarwal, Alethea Power,
Alex Ray, Alex Warstadt, Alexander W. Kocurek,
Ali Safaya, Ali Tazarv, Alice Xiang, Alicia Par-
rish, Allen Nie, Aman Hussain, Amanda Askell,
Amanda Dsouza, Ameet Rahane, Anantharaman S.
Iyer, Anders Andreassen, Andrea Santilli, Andreas
Stuhlmüller, Andrew M. Dai, Andrew La, Andrew K.
Lampinen, Andy Zou, Angela Jiang, Angelica Chen,
Anh Vuong, Animesh Gupta, Anna Gottardi, Anto-
nio Norelli, Anu Venkatesh, Arash Gholamidavoodi,

3817

https://arxiv.org/abs/1904.12584
https://arxiv.org/abs/1904.12584
https://arxiv.org/abs/1904.12584
https://doi.org/10.1023/A%3A1016064126976
https://doi.org/10.1023/A%3A1016064126976
https://doi.org/10.7717/peerj-cs.103
https://doi.org/10.7717/peerj-cs.103
https://arxiv.org/abs/2112.09332
https://arxiv.org/abs/2112.09332
https://doi.org/10.48550/arXiv.2303.08774
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
https://doi.org/10.1007/BFb0030541
https://doi.org/10.1007/BFb0030541
http://www.cambridge.org/uk/catalogue/catalogue.asp?isbn=9780521519007
http://www.cambridge.org/uk/catalogue/catalogue.asp?isbn=9780521519007
https://doi.org/10.24963/ijcai.2023/461
https://openreview.net/pdf?id=1C_kSW1-k0
https://openreview.net/pdf?id=1C_kSW1-k0
https://doi.org/10.48550/arXiv.2302.06729
https://doi.org/10.48550/arXiv.2302.06729
https://doi.org/10.1007/s10994-006-5833-1
https://doi.org/10.1145/321250.321253
https://doi.org/10.1145/321250.321253
https://doi.org/10.48550/arXiv.2210.01240
https://doi.org/10.48550/arXiv.2210.01240
https://doi.org/10.48550/arXiv.2210.01240
https://doi.org/10.48550/arXiv.2212.03551
https://doi.org/10.48550/arXiv.2212.03551
https://doi.org/10.48550/arXiv.2303.17580
https://doi.org/10.48550/arXiv.2303.17580
https://doi.org/10.48550/arXiv.2303.17580
https://doi.org/10.48550/arXiv.2301.12652
https://doi.org/10.48550/arXiv.2301.12652


Arfa Tabassum, Arul Menezes, Arun Kirubarajan,
Asher Mullokandov, Ashish Sabharwal, Austin Her-
rick, Avia Efrat, Aykut Erdem, Ayla Karakas, and
et al. 2022. Beyond the imitation game: Quantifying
and extrapolating the capabilities of language models.
CoRR, abs/2206.04615.

Emma Strubell, Ananya Ganesh, and Andrew McCal-
lum. 2019. Energy and policy considerations for
deep learning in NLP. In Proceedings of the 57th
Annual Meeting of the Association for Computational
Linguistics (ACL), pages 3645–3650.

Oyvind Tafjord, Bhavana Dalvi, and Peter Clark. 2021.
Proofwriter: Generating implications, proofs, and
abductive statements over natural language. In Find-
ings of the 59th Annual Meeting of the Association for
Computational Linguistics (ACL), pages 3621–3634.

Oyvind Tafjord, Bhavana Dalvi Mishra, and Peter Clark.
2022. Entailer: Answering questions with faithful
and truthful chains of reasoning. In Proceedings
of the 2022 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages 2078–
2093.

Jidong Tian, Yitian Li, Wenqing Chen, Liqiang Xiao,
Hao He, and Yaohui Jin. 2022. Weakly supervised
neural symbolic learning for cognitive tasks. In Pro-
ceedings of 36th Conference on Artificial Intelligence
(AAAI), pages 5888–5896.

Xingyao Wang, Sha Li, and Heng Ji. 2022. Code4struct:
Code generation for few-shot structured prediction
from natural language. CoRR, abs/2210.12810.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V.
Le, Ed H. Chi, Sharan Narang, Aakanksha Chowd-
hery, and Denny Zhou. 2023. Self-consistency im-
proves chain of thought reasoning in language mod-
els. In Proceedings of the 11th International Confer-
ence on Learning Representations (ICLR).

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel,
Barret Zoph, Sebastian Borgeaud, Dani Yogatama,
Maarten Bosma, Denny Zhou, Donald Metzler, Ed H.
Chi, Tatsunori Hashimoto, Oriol Vinyals, Percy
Liang, Jeff Dean, and William Fedus. 2022a. Emer-
gent abilities of large language models. Transactions
on Machine Learning Research, 2022.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Ed H. Chi, Quoc Le, and Denny Zhou. 2022b.
Chain of thought prompting elicits reasoning in large
language models. CoRR, abs/2201.11903.

Yuhuai Wu, Albert Qiaochu Jiang, Wenda Li, Markus N.
Rabe, Charles Staats, Mateja Jamnik, and Christian
Szegedy. 2022. Autoformalization with large lan-
guage models. In Proceedings of the Annual Con-
ference on Neural Information Processing Systems
(NeurIPS).

Kaiyu Yang, Jia Deng, and Danqi Chen. 2022. Gen-
erating natural language proofs with verifier-guided
search. In Proceedings of the 2022 Conference on

Empirical Methods in Natural Language Processing
(EMNLP), pages 89–105.

Xi Ye, Qiaochu Chen, Isil Dillig, and Greg Durrett.
2023. Satisfiability-aided language models using
declarative prompting. In Proceedings of the An-
nual Conference on Neural Information Processing
Systems (NeurIPS).

Wanjun Zhong, Siyuan Wang, Duyu Tang, Zenan Xu,
Daya Guo, Yining Chen, Jiahai Wang, Jian Yin, Ming
Zhou, and Nan Duan. 2022. Analytical reasoning of
text. In Findings of the 2022 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies
(NAACL-HLT), pages 2306–2319.

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei,
Nathan Scales, Xuezhi Wang, Dale Schuurmans,
Claire Cui, Olivier Bousquet, Quoc V. Le, and Ed H.
Chi. 2023. Least-to-most prompting enables complex
reasoning in large language models. In Proceedings
of the 11th International Conference on Learning
Representations (ICLR).

3818

https://doi.org/10.48550/arXiv.2206.04615
https://doi.org/10.48550/arXiv.2206.04615
https://doi.org/10.18653/v1/p19-1355
https://doi.org/10.18653/v1/p19-1355
https://doi.org/10.18653/v1/2021.findings-acl.317
https://doi.org/10.18653/v1/2021.findings-acl.317
https://aclanthology.org/2022.emnlp-main.134
https://aclanthology.org/2022.emnlp-main.134
https://doi.org/10.1609/aaai.v36i5.20533
https://doi.org/10.1609/aaai.v36i5.20533
https://doi.org/10.48550/arXiv.2210.12810
https://doi.org/10.48550/arXiv.2210.12810
https://doi.org/10.48550/arXiv.2210.12810
https://openreview.net/pdf?id=1PL1NIMMrw
https://openreview.net/pdf?id=1PL1NIMMrw
https://openreview.net/pdf?id=1PL1NIMMrw
https://openreview.net/forum?id=yzkSU5zdwD
https://openreview.net/forum?id=yzkSU5zdwD
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
http://papers.nips.cc/paper_files/paper/2022/hash/d0c6bc641a56bebee9d985b937307367-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/d0c6bc641a56bebee9d985b937307367-Abstract-Conference.html
https://aclanthology.org/2022.emnlp-main.7
https://aclanthology.org/2022.emnlp-main.7
https://aclanthology.org/2022.emnlp-main.7
https://arxiv.org/abs/2305.09656
https://arxiv.org/abs/2305.09656
https://doi.org/10.18653/v1/2022.findings-naacl.177
https://doi.org/10.18653/v1/2022.findings-naacl.177
https://openreview.net/pdf?id=WZH7099tgfM
https://openreview.net/pdf?id=WZH7099tgfM


A Syntax for First-order Logic (FOL)

Name FOL Notation

Constant lowercase letters

Variable x, y, z, · · ·
Atom P (a1, · · · , an)
Negation ¬P

Conjunction
P1 ∧ P2

P1∧, · · · ,∧Pn

Disjunction
P1 ∨ P2

P1∨, · · · ,∨Pn

Implication P1 → P2

Equivalence P1 ↔ P2

Existential Quantifier ∃xP (x, · · · )
Universal Quantifier ∀xP (x, · · · )

Table 4: First-Order Logic Grammar.

B Dataset Statistics

Dataset Reasoning Test Size #Opts
PrOntoQA Deductive 500 2
ProofWriter Deductive 600 3
FOLIO FOL 204 3
LogicalDeduction CSP 300 3,5,7
AR-LSAT AR 230 5

Table 5: Statistics of the logical reasoning datasets.

C Prompt Examples

In this section we provide examples of the prompts
used for each dataset and method. Prompts for stan-
dard in-context learning contain 2 demonstrations
consisting of 3 parts each: a context, a question,
and options. Prompts for chain-of-thought prompt-
ing contain 2 demonstrations consisting of 5 parts
each: a task description, a context, a question, op-
tions, and a chain of reasoning. Prompts for Logic-
LM contain 2 demonstrations with 5 parts each: a
task description, a context, a question, options, and
a domain-specific symbolic program. For brevity,
we show only a single demonstration for each set-
ting in the following sections.

C.1 PrOntoQA Prompts
Standard In-Context Learning
Context: Jompuses are not shy. Jompuses are yumpuses.
(· · · more context here · · · )
Zumpuses are rompuses. Max is a yumpus.

Question: Is the following statement true or false?
Max is sour.

Options:
A) True
B) False

The correct option is: B

Chain-of-Thought Prompting
Task Description: Given a problem statement as
contexts , the task is to answer a logical reasoning
question.

Context: Jompuses are not shy. Jompuses are yumpuses.
(· · · more context here · · · )
Zumpuses are rompuses. Max is a yumpus.

Question: Is the following statement true or false?
Max is sour.

Options:
A) True
B) False

Reasoning: Max is a yumpus. Each yumpus is a dumpus.
(· · · more reasoning here · · · )
Tumpuses are not sour. So Max is not sour.

The correct option is: B

Logic-LM
Task Description: You are given a problem description
and a question. The task is to:
1) define all the predicates in the problem
2) parse the problem into logic rules based on
the defined predicates
3) write all the facts mentioned in the problem
4) parse the question into the logic form

Context: Each jompus is fruity.
(· · · more context here · · · )
Rompuses are zumpuses. Alex is a tumpus.

Question: True or false: Alex is not shy.

Predicates:
Jompus (\$x , bool) ::: Does x belong to Jompus?
(· · · more predicates here · · · )
Zumpus (\$x , bool) ::: Does x belong to Zumpus?

Facts:
Tumpuses(Alex , True)

Rules:
Jompus($x, True) >>> Fruity($x , True)
(· · · more rules here · · · )
Dumpus (\$x , True) >>> Rompus (\$x , True)

Query:
Shy(Alex , False)

3819



C.2 ProofWriter Prompts
Standard In-Context Learning
Context: The cow is blue. The cow is round.
(· · · more context here · · · )
If the cow is cold and the cow visits the lion then
the lion sees the squirrel.

Question: Based on the above information , is the
following statement true , false , or unknown?
The tiger is not young.

Options:
A) True
B) False
C) Unknown

The correct option is: B

Chain-of-Thought Prompting
Task Description: Given a problem statement as
contexts , the task is to answer a logical reasoning
question.

Context: The cow is blue. The cow is round.
(· · · more context here · · · )
If the cow is cold and the cow visits the lion then
the lion sees the squirrel.

Question: Based on the above information , is the
following statement true , false , or unknown?
The tiger is not young.

Options:
A) True
B) False
C) Unknown

Reasoning: The tiger likes the cow.
The tiger likes the squirrel.
(· · · more reasoning here · · · )
If something is nice and it sees the tiger then
it is young. So the tiger is young.

The correct option is: B

Logic-LM
Task Description: You are given a problem description
and a question. The task is to:
1) define all the predicates in the problem
2) parse the problem into logic rules based on
the defined predicates
3) write all the facts mentioned in the problem
4) parse the question into the logic form

Context: Anne is quiet. Erin is furry.
(· · · more context here · · · )
All red people are young.

Question: Based on the above information , is the
following statement true , false , or unknown?
Anne is white.

Predicates:
Quiet($x, bool) ::: Is x quiet?
Furry($x, bool) ::: Is x furry?
(· · · more predicates here · · · )
White($x, bool) ::: Is x white?
Young($x, bool) ::: Is x young?

Facts:
Quite(Anne , True) ::: Anne is quiet.
(· · · more facts here · · · )
White(Harry , True) ::: Harry is white.

Rules:
Young($x, True) >>> Furry($x, True) ::: Young people

are furry.
(· · · more rules here · · · )
Red($x , True) >>> Young($x , True) ::: All red people

are young.

Query:
White(Anne , True) ::: Anne is white

3820



C.3 FOLIO Prompts
Standard In-Context Learning
Context: All people who regularly drink coffee are
dependent on caffeine.
(· · · more context here · · · )
If Rina is not a person dependent on caffeine and
a student , then Rina is either a person dependent
on caffeine and a student , or neither a person
dependent on caffeine nor a student.

Question: Based on the above information , is the
following statement true , false , or uncertain? Rina
is a person who jokes about being addicted to
caffeine or unaware that caffeine is a drug.

Options:
A) True
B) False
C) Uncertain

The correct option is: A

Chain-of-Thought Prompting
Task Description: Given a problem statement as
contexts , the task is to answer a logical reasoning
question.

Context: The Blake McFall Company Building is a
commercial warehouse listed on the National Register
of Historic Places.
(· · · more context here · · · )
John works at the Emmet Building.

Question: Based on the above information , is the
following statement true , false , or uncertain?
The Blake McFall Company Building is located in
Portland , Oregon.

Options:
A) True
B) False
C) Uncertain

Reasoning: The Blake McFall Company Building is
another name for the Emmet Building.
(· · · more reasoning here · · · )
Therefore , the Blake McFall Company Building is
located in Portland , Oregon.

The correct option is: A

Logic-LM
Task Description: Given a problem description and a

question. The task is to parse the problem and
the question into first -order logic formulas.
The grammar of the first -order logic formula is
defined as follows:

1) logical conjunction: expr1 ∧ expr2
2) logical disjunction: expr1 ∨ expr2
3) logical exclusive disjunction: expr1 ⊕ expr2
4) logical negation: ¬expr1
5) expr1 implies expr2: expr1 → expr2
6) expr1 if and only if expr2: expr1 ↔ expr2
7) logical universal quantification: ∀ x
8) logical existential quantification: ∃ x
Output format: logic form ::: description

Context: All people who regularly drink coffee are
dependent on caffeine.
(· · · more context here · · · )
If Rina is not a person dependent on caffeine and a
student , then Rina is either a person dependent
on caffeine and a student , or neither a person
dependent on caffeine nor a student.

Question: Based on the above information , is the
following statement true , false , or uncertain?
Rina is either a person who jokes about being
addicted to caffeine or is unaware that caffeine
is a drug.

Predicates:
Dependent(x) ::: x is a person dependent on caffeine
(· · · more predicates here · · · )
Student(x) ::: x is a student

Premises:
∀x (Drinks(x) → Dependent(x)) ::: All people who

regularly drink coffee are dependent on
caffeine.

(· · · more premises here · · · )
∀x (Jokes(x) → ¬Unaware(x)) ::: No one who jokes

about being addicted to caffeine is unaware
that caffeine is a drug.

Conclusion:
Jokes(rina) ⊕ Unaware(rina) ::: Rina is either a

person who jokes about being addicted to
caffeine or is unaware that caffeine is a drug.

3821



C.4 LogicalDeduction Prompts
Standard In-Context Learning
Context: The following paragraphs each describe a
set of seven objects arranged in a fixed order.
(· · · more context here · · · )
Eve finished below Ada. Rob finished below Joe.

Question: Which of the following is true?

Options:
A) Ana finished third.
B) Eve finished third.
C) Ada finished third.
D) Dan finished third.
E) Rob finished third.
F) Amy finished third.
G) Joe finished third.

The correct option is: A

Chain-of-Thought Prompting
Task Description: Given a problem statement as
contexts , the task is to answer a logical reasoning
question.

Context: The following paragraphs each describe a
set of five objects arranged in a fixed order.
(· · · more context here · · · )
The raven is the third from the left.

Question: Which of the following is true?

Options:
A) The quail is the rightmost.
B) The owl is the rightmost.
C) The raven is the rightmost.
D) The falcon is the rightmost.
E) The robin is the rightmost.

Reasoning: The owl is the leftmost. This means owl
is not the rightmost.
(· · · more reasoning here · · · )
This means raven is also not the rightmost. So ,
the answer is: A) The quail is the rightmost.

The correct option is: A

Logic-LM
Task Description: You are given a problem description.
The task is to parse the problem as a constraint
satisfaction problem , defining the domain ,
variables , and contraints.

Context: The following paragraphs each describe a
set of three objects arranged in a fixed order.
(· · · more context here · · · )
The minivan is newer than the convertible.

Question: Which of the following is true?

Options:
A) The station wagon is the second -newest.
B) The convertible is the second -newest.
C) The minivan is the second -newest.

Domain:
1: oldest
3: newest

Variables:
station\_wagon [IN] [1, 2, 3]
convertible [IN] [1, 2, 3]
minivan [IN] [1, 2, 3]

Constraints:
station\_wagon == 1 ::: The station wagon is the

oldest.
minivan > convertible ::: The minivan is newer than

the convertible.
AllDifferentConstraint ([ station\_wagon , convertible ,

minivan ]) ::: All vehicles have different
values.

Query:
A) station\_wagon == 2 ::: The station wagon is the

second -newest.
B) convertible == 2 ::: The convertible is the

second -newest.
C) minivan == 2 ::: The minivan is the second -newest

.

3822



C.5 AR-LSAT Prompts
Standard In-Context Learning
Context: During a single week , from Monday through

Friday , tours will be conducted of a company 's
three divisions: Operations , Production , and
Sales. Exactly five tours will be conducted
that week , one each day. (· · · more context here
· · · ) If the Operations division is toured on
Thursday , then the Production division is
toured on Friday.

Question: Which one of the following CANNOT be true
of the week's tour schedule?

Options:
A) The division that is toured on Monday is also

toured on Tuesday.
B) The division that is toured on Monday is also

toured on Friday.
C) The division that is toured on Tuesday is also

toured on Thursday.
D) The division that is toured on Wednesday is also

toured on Friday.
E) The division that is toured on Thursday is also

toured on Friday.

The correct option is: C

Chain-of-Thought Prompting
Task Description: Given a problem statement as
contexts , the task is to answer a logical reasoning
question.

Context: During a single week , from Monday through
Friday , tours will be conducted of a company 's
three divisions: Operations , Production , and
Sales. Exactly five tours will be conducted
that week , one each day. (· · · more context here
· · · ) If the Operations division is toured on
Thursday , then the Production division is
toured on Friday.

Question: Which one of the following CANNOT be true
of the week's tour schedule?

Options:
A) The division that is toured on Monday is also

toured on Tuesday.
B) The division that is toured on Monday is also

toured on Friday.
C) The division that is toured on Tuesday is also

toured on Thursday.
D) The division that is toured on Wednesday is also

toured on Friday.
E) The division that is toured on Thursday is also

toured on Friday.

Reasoning: Since Thursday and Friday already have
tours planned , only Monday , Tuesday and Wednesday
tours need to be determined.
(· · · more reasoning here · · · )
A different division is toured on Thursday.
Therefore , the final answer is C.

The correct option is: C

Logic-LM
Task Description: You are given a problem description.
The task is to parse the problem as a constraint
satisfaction problem , defining the domain ,
variables , and contraints.

Context: A travel magazine has hired six interns -
Farber , Gombarick , Hall , Jackson , Kanze , and
Lha - to assist in covering three stories:
Romania , Spain , and Tuscany. (· · · more context here
· · · ) Jackson is assigned to Tuscany. Kanze is
not assigned to Spain.

Question: Which one of the following interns CANNOT
be assigned to Tuscany?

Options:
(A) Farber
(B) Gombarick
(C) Hall
(D) Kanze
(E) Lha

Declarations:
stories = EnumSort ([Romania , Spain , Tuscany ])
assistants = EnumSort ([ photographer , writer ])
(· · · more declarations here · · · )
trained = Function ([ interns] -> [assistants ])

Constraints:
trained(Gombarick) == trained(Lha) ::: Gombarick and

Lha will be trained in the same field
trained(Farber) != trained(Kanze) ::: Farber and

Kanze will be trained in different fields
(· · · more contraints here · · · )
assigned(Jackson) == Tuscany ::: Jackson is assigned

to Tuscany
assigned(Kanze) != Spain ::: Kanze is not assigned

to Spain

Options:
is_unsat(assigned(Farber) == Tuscany) ::: (A)
is_unsat(assigned(Gombarick) == Tuscany) ::: (B)
is_unsat(assigned(Hall) == Tuscany) ::: (C)
is_unsat(assigned(Kanze) == Tuscany) ::: (D)
is_unsat(assigned(Lha) == Tuscany) ::: (E)

D Result Interpreter Implementation

For PrOntoQA and ProofWriter, the Pyke logic
programming engine returns the inferred value
of the variable in the query or Unknown if the
variable cannot be determined. For example, for
the query ConductElectricity(Nail, x), Pyke
may return x =True. By comparing with the goal
statement ConductElectricity(Nail, False),
we can know that goal to be proved is False.
For FOLIO, the FOL inference engine directly re-
turns the veracity label of the goal as ENTAILMENT,
CONTRADICTION, and CONTINGENT, which can be
mapped to True, False, and Unknown, respectively.
For LogicalDeduction, the solver returns all the
possible value assignments in an array. We write
rules to parse each option into the corresponding
value and check it is in the generated array. For AR-
LSAT, we attempt to separately prove each option
to find the correct answer.

E Example Generations of LOGIC-LM

3823



Problem: The following paragraphs each describe a set of five objects arranged in a fixed order. The statements are logically consistent within 
each paragraph. In a golf tournament, there were five golfers: Rob, Eve, Eli, Amy, and Dan. Dan finished second. Amy finished below Eve. Dan 
finished above Eve. Amy finished above Eli.
Question: Which of the following is true?
(A) Rob finished third (B) Eve finished third (C) Eli finished third   (D) Amy finished third    (E) Dan finished third

Predicted logic programs:
Domain:
1: first
5: last

Query:
(A) Rob == 3    (B) Eve == 3    (C) Eli == 3    (D) Amy == 3    (E) Dan == 3

Predicted answer: E → B

Problem: A Japanese game company created the game the Legend of Zelda. All games in the Top 10 list are made by Japanese game companies. If a 
game sells more than one million copies, then it will be selected into the Top 10 list. The Legend of Zelda sold more than one million copies.
Question: Based on the above information, is the following statement true, false, or uncertain? The Legend of Zelda is in the Top 10 list.
(A) True                (B) False            (C) Uncertain

Predicted logic programs:
Premises:
JapaneseGameCompany(legend_of_zelda)
∀x (Top10List(x) → JapaneseGameCompany(x))
∀x (SellMoreThanOneMillionCopies(x) → Top10List(x))
SellMoreThanOneMillionCopies(legend_of_zelda)
Conclusion:
Top10List(legend_of_zelda)

Predicted answer: A

Problem: There are six types of wild turkeys: Eastern wild turkey, Osceola wild turkey, Gould's wild turkey, Merriam's wild turkey, Rio Grande 
wild turkey, and Ocellated wild turkey. Tom is not an Eastern wild turkey. Tom is not an Osceola wild turkey. Tom is also not a Gould's wild 
turkey, or a Merriam's wild turkey, or a Rio Grande wild turkey. Tom is a wild turkey.
Question: Based on the above information, is the following statement true, false, or uncertain? Tom is an Ocellated wild turkey.
(A) True                (B) False            (C) Uncertain

Predicted logic programs:
Premises:
WildTurkey(eastern) ∧ WildTurkey(osceola) ∧ WildTurkey(gould) ∧ WildTurkey(merriams) ∧ WildTurkey(rio_grande) ∧ WildTurkey(ocellated) 
→ ∀x (WildTurkey(x) → (OcellatedWildTurkey(x) ∨ EasternWildTurkey(x) ∨ OsceolaWildTurkey(x) ∨ GouldsWildTurkey(x) ∨ MerriamsWildTurkey(x) 
∨ RioGrandeWildTurkey(x)))
WildTurkey(tom) ∧ ¬EasternWildTurkey(tom) ∧ ¬OsceolaWildTurkey(tom) ∧ ¬GouldsWildTurkey(tom) ∧ ¬MerriamsWildTurkey(tom) ∧
¬RioGrandeWildTurkey(tom)
Conclusion:
OcellatedWildTurkey(tom)

Predicted answer: C → A

Constraints:
Dan == 2 
Amy > Eve
Dan > Eve → Dan < Eve
Amy < Eli 
AllDifferentConstraint([Rob, Eve, Eli, Amy, Dan])

Variables:
Rob [IN] [1, 2, 3, 4, 5]
Eve [IN] [1, 2, 3, 4, 5]
Eli [IN] [1, 2, 3, 4, 5]
Amy [IN] [1, 2, 3, 4, 5]
Dan [IN] [1, 2, 3, 4, 5]

Problem: If the restaurant is listed in Yelp’s recommendations, then the restaurant does not receive many negative reviews. All restaurants with 
a rating greater than 9 are listed in Yelp’s recommendations. Some restaurants that do not provide take-out service receive many negative 
reviews. All restaurants that are popular among local residents have ratings greater than 9. Subway has a rating greater than 9 or is popular 
among local residents.
Question: Based on the above information, is the following statement true, false, or uncertain? Subway provides take-out service and does not 
receive many negative reviews.
(A) True                (B) False            (C) Uncertain

Predicted logic programs:
Premises:
∀x (Listed(x) → ¬NegativeReviews(x)) 
∀x (Rating(x, y) ∧ y > 9 → Listed(x)) → ∀x (GreaterThanNine(x) → Listed(x))
∃x (¬TakeOut(x) ∧ NegativeReviews(x)) 
∀x (Popular(x) → (Rating(x, y) ∧ y > 9)) → ∀x (Popular(x) → GreaterThanNine(x))
Rating(subway, y) ∧ y > 9 ∨ Popular(subway) → GreaterThanNine(subway) ∨ Popular(subway)
Conclusion:
TakeOut(subway) ∧ ¬NegativeReviews(subway)

Predicted answer: C → A

Example 1

Example 2

Example 4

Example 3

Figure 6: Examples of generated symbolic representations and predicted answers. The incorrect segment(s) and
their correspondence in the problem are marked in red, and the correct revisions are marked in green.

3824


