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Abstract

Attention mechanisms have become a crucial
aspect of deep learning, particularly in natural
language processing (NLP) tasks. However, in
tasks such as constituency parsing, attention
mechanisms can lack the directional informa-
tion needed to form sentence spans. To ad-
dress this issue, we propose a Bidirectional
masked and N-gram span Attention (BNA)
model, which is designed by modifying the
attention mechanisms to capture the explicit
dependencies between each word and enhance
the representation of the output span vectors.
The proposed model achieves state-of-the-art
performance on the Penn Treebank and Chi-
nese Treebank datasets, with F1 scores of 96.47
and 94.15, respectively. Ablation studies and
analysis show that our proposed BNA model
effectively captures sentence structure by con-
textualizing each word in a sentence through
bidirectional dependencies and enhancing span
representation.1

1 Introduction

The concept of attention has become a major as-
pect of deep learning, and improving attention is
essential to enhance the model efficacy. In natu-
ral language processing (NLP), numerous studies
that utilize the sequence-to-sequence model have
achieved significant performance improvements by
modifying the attention mechanisms to specific
tasks. Tasks such as summarization (Duan et al.,
2019; Wang et al., 2018), translation (Zeng et al.,
2021; Lu et al., 2021), question answering (Wang
et al., 2021; Chen et al., 2019), and multi-modal
learning (Nishihara et al., 2020; Liu et al., 2022)
are examples of the efficacy of such mechanisms
in improving model performance.

§Work done while at Hanyang University.
*Corresponding author
1Our code is available at

https://github.com/ToBeSuperior/BNA.

In the constituency parsing task, which involves
identifying constituent phrases and their relation-
ships in a sentence, attention mechanisms, espe-
cially self-attention, improves the performance of a
parser. Many studies on constituency parsing have
emphasized the importance of comprehending sen-
tence spans to improve parser performance (Cross
and Huang, 2016; Stern et al., 2017; Gaddy et al.,
2018). Recent studies that incorporate attention
mechanisms train parsers to comprehend sentence
spans by referring to the n-grams of a sentence as
the span (Tian et al., 2020) or by considering the di-
rectional and positional dependencies from splited
word representation (Kitaev and Klein, 2018; Mrini
et al., 2020).

However, because attention mechanisms com-
pute the dependency of each element simultane-
ously, there can be a lack of the directional infor-
mation that is needed to form sentence spans. This
contrasts with long short-term memory (LSTM)
models that consider directional information. In
attention mechanisms that use attention weights
between the query and key vectors as relational
information between each element, the weights are
computed regardless of the element’s relative po-
sition. Previous studies (Kitaev and Klein, 2018;
Mrini et al., 2020) acknowledged that this method
could be problematic and made efforts to address it.
However, such attempts were conducted under the
assumption of ideal learning conditions, and the
problem in the calculation process has persisted.

The purpose of this paper is to modify the at-
tention mechanism into two types of capability.
The first one obtains explicit directional informa-
tion for each word, similar to the approach used
by bidirectional LSTM (Figure 1(b)). The second
one enhances the representation of each word by
incorporating information from spans, which are
suitable for constituency parsing.

In this work, we propose a novel model called
BNA (Bidirectional masked and Ngram span
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Figure 1: Comparison of the process of capturing di-
rectional information from words using BiMSA (a) and
BiLSTM (b) methods in a matrix representation. In
BiMSA (a), the gray area in the attention score refers to
the region where directional masking has been applied.

Attention). BNA employs a variant of masked
self-attention (MSA) in which each element in a
sequence is considered sequentially by its attention
weights bidirectionally, rather than simultaneously.
Moreover, BNA incorporates a novel span atten-
tion mechanism that represents a key-value matrix
by subtracting the hidden states at the span bound-
aries. This approach enables the query (i.e., word
sequence) to access the contextual information of
n spans in a sentence.

Our parser achieves state-of-the-art performance
with F1 scores of 96.47 and 94.15 for the Penn Tree-
bank and Chinese Treebank datasets, respectively.
In addition, through ablation study and analysis,
we demonstrate that our proposed BNA model ef-
fectively captures sentence structure by contextual-
izing each word in a sentence through bidirectional
dependencies and enhancing span representation.

2 Related Work

In the field of constituency parsing, since the in-
troduction of the span-based approach by Stern
et al. (2017), chart-based neural parsers have out-
performed transition-based ones (Zhang, 2020).

The span-based approach involves labeling specific
text spans instead of individual tokens or words,
enabling the parsers to consider the context and re-
lationships between different spans of the sentence.

With the rise of the Transformer model (Vaswani
et al., 2017) in NLP, attention mechanisms have be-
come an attractive alternative to LSTM networks.
In constituency parsing, attention mechanisms have
shown promising results, as demonstrated by Ki-
taev and Klein (2018), who used a self-attentive
network applied to the span-based parser to im-
prove performance. They split the input vector
into content and position representations and per-
formed self-attention on each component sepa-
rately. Building on this work, Mrini et al. (2020)
introduced label attention layers, a modified form
of self-attention that enables the model to learn
label-specific views of the input sentence. In this
mechanism, the attention heads are split into half,
forward and backward representations, which are
then used to construct span vectors of the input sen-
tence. More recently, Tian et al. (2020) proposed
span attention, which assumes no strong depen-
dency between each hidden vector in a transformer-
based encoder. Their method involves enhancing
the span representation by summing the attention
vector of n-grams consisting of embedded word
vectors with the span vector, without using direc-
tional vectors.

However, conventional attention mechanisms
treat all elements simultaneously without consider-
ing directional dependencies, making it challenging
to construct span vectors using an encoder based on
the attention mechanism. Furthermore, construct-
ing arbitrary span vectors from embedded words
that lack contextual information of the sentence
could be improved.

In this paper, we introduce two types of attention
mechanisms that address the issue of directional
dependencies and that strengthen span representa-
tion.

3 Background

Self-attention is a powerful mechanism that enables
neural networks to capture dependencies between
different parts of a sequence. The basic idea behind
self-attention is to compute a representation of the
entire sequence by weighting the importance of
different elements in the sequence based on their
similarity to each other.

In a typical self-attention sub-layer, the sequence
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of input vectors X = [x1, ..., xn] is transformed
into three sequences of vectors: queries Q =
[q1, ..., qn], keys K = [k1, ..., kn], and values
V = [v1, ..., vn]. These sequences are computed
using learned linear projections:

qi = WQxi,

ki = WKxi,

vi = W V xi,

(1)

where WQ, WK , and W V are learned weight ma-
trices.

Attention weights αi,j are computed as the dot
product of the query vector q at position i and the
key vector k at position j, which is subsequently
normalized using the softmax function as follows:

αi,j = Softmax(
qi · k⊺

j√
d

), (2)

where d is the dimensionality of the key vectors.
The

√
d is used to prevent numerical instability.

Finally, the weighted sum of the value vectors is
computed using the attention weights:

hi =
n∑

j

αi,jvj . (3)

This weighted sum hi can be seen as a hidden
representation of the i-th vector that considers the
importance of each of the other vectors in the se-
quence.

4 Approach

Our approach is motivated by the problem that
self-attention mechanisms struggle to encode the
relative positions and sequential order of elements
within the context of a sequence (Ambartsoumian
and Popowich, 2018; Hahn, 2020). Studies have
been conducted to resolve this issue in tasks that
require bidirectional information, such as relation
extraction (Du et al., 2018) and machine translation
(Bugliarello and Okazaki, 2020). To address this
issue, we propose the Bidirectional Masked Self-
Attention (BiMSA) and N-gram Span Attention
(NSA) mechanisms. Together, these two attention
mechanisms comprise our Bidirectional masked
and N-gram span Attention (BNA) model.

Section 4.1 provides a brief overview of the con-
stituency parsing process. Section 4.2 provides a
more detailed explanation of BiMSA and NSA and
how they are integrated into the BNA model.

4.1 Constituency Parsing
Constituency parsing is the process of analyzing the
grammatical structure of a sentence by separating it
down into a set of labeled spans represented by the
parse tree T . The tree T of a sentence is expressed
as a set of labeled spans,

T = {(it, jt, lt) : t = 1, ..., |T |}, (4)

where the fencepost position of the t-th span is
indicated by it and jt, and the span has the label lt.
The parser assigns a score s(T ) to each parse tree
T , which decomposes as

s(T ) =
∑

(i,j,l)∈T
s(i, j, l). (5)

To generate the parse tree T for a given sentence
X = [x1, x2, ..., xn], the encoder first transforms
the input sequence into a set of hidden representa-
tions H = [h1, h2, ..., hn]. Hidden vector Vi,j for
a span (i, j) is calculated as the difference between
the start and end hidden vectors of that span, fol-
lowing the definition of Gaddy et al. (2018) and
Kitaev and Klein (2018):

Vi,j = [hfj − hfi ;h
b
i − hbj ], (6)

where hk represents the hidden vector at position k
and is constructed from two vectors from different
directions, forward with hfk and backward with hbk.

The multi-layer perceptron (MLP) classifier,
which serves as a decoder, takes the hidden vector
Vi,j as the input and assigns a label score to each
span. The optimal parse tree

T̂ = argmax
T

s(T ) (7)

with the highest score can be identified efficiently
through a variant of the CKY algorithm.2

To find the correct tree T ∗, the model is trained
to meet the margin constraints

s(T ∗) ≥ s(T ) + ∆(T, T ∗) (8)

for all trees T through the process of minimizing
the hinge loss

max(0,max
T

[s(T ) + ∆(T, T ∗)]− s(T ∗)) (9)

where ∆ denotes the Hamming loss.
2We follow the parsing strategy proposed by Stern et al.

(2017) and modified by Gaddy et al. (2018). For more details,
see Gaddy et al. (2018)
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Figure 2: Our parser combines a chart decoder with an encoder, the proposed BNA model. The right side of
the figure illustrates the procedure of each attention mechanism when the input sentence X is provided. The
multiplication symbol denotes the matrix multiplication, and the summation and subtraction symbols represent the
element-wise summation and subtraction, respectively.

4.2 BNA
The proposed BNA encoder is composed of two
variants of the transformer encoder layers: a
BiMSA layer and an NSA layer. The overall archi-
tecture of the parser is illustrated in Figure 2.

The BiMSA layer is composed of BiMSA and
the position-wise feed-forward network (FFN) with
the residual connection. The BiMSA layer is com-
puted as follows:

Ĥ l = LN(H l−1 + BiMSA(H l−1)),

H l = LN(Ĥ l + FFN(Ĥ l)),
(10)

where H l−1 is the hidden state of the previous
encoder layer and LN(·) is the layer normalization.

The NSA layer has the same structure as the
BiMSA layer, but uses NSA instead of BiMSA:

Ĥ l+1 = LN(H l + NSA(H l)),

H l+1 = LN(H l+1 + FFN(Ĥ l+1)).
(11)

Overall, BNA is composed of a sequential struc-
ture that contextualizes each word by leveraging
both the sequential and directional dependencies
using the BiMSA layer first and then enhances the
span representation using the NSA layer.

4.2.1 Bidirectional Masked Self-Attention
BiLSTM uses forward and backward recurrent
operations to produce an output vector with se-
quence information as the inductive bias. However,

attention-based models compute attention weights
solely based on the similarity between the query
and key vectors and do not consider the order of
elements in the sequence, making it challenging to
incorporate sequence directionality.

To overcome this constraint, we introduce
BiMSA to capture the directional dependency of
the context, which is crucial for constructing a span
vector by adding hard mask M to the scaled dot
product of the query and key (Figure 1(a)). In this
way, Eq. (2) is redefined as follows:

αi,j = Softmax(
qi · k⊺

j√
d

+Mi,j). (12)

When Mi,j is equal to negative infinity, the qi word
does not affect the kj word. Conversely, when Mi,j

is equal to 0, it does not influence the attention
weights.

The mask is divided into two distinct directional
segments, namely the forward mask MF and back-
ward mask MB:

MF
i,j =

{
0, i ≤ j

−∞, else

MB
i,j =

{
0, i ≥ j

−∞, else

(13)

We apply a forward and backward mask separately
to split the directional representation of each word
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into its respective forward and backward compo-
nents. Eq. (3) is redefined as follows:

ĥF
i =

n∑

j

αF
i,jvj ,

ĥB
i =

n∑

j

αB
i,jvj .

(14)

The output of BiMSA is produced by concatenating
two directional hidden states into a single output
representation.3

By using directional masks, words are con-
strained to attend solely to the preceding or sub-
sequent words, enabling the model to more effec-
tively capture the temporal dependencies. We adopt
an approach of intentionally separating the bidi-
rectional representations to construct spans from
the hidden states of words. Further details are de-
scribed in the following section.

4.2.2 N-gram Span Attention
The key aspect of constituency parsing is to ac-
curately predict the contextual features of a span,
represented by Vi,j . Achieving this goal requires a
more fine-grained approach to modeling the con-
textual features.

Previous studies in constituency parsing have
empirically shown that encoding spans through the
subtraction of bidirectional hidden states can be ef-
fective (Stern et al., 2017; Kitaev and Klein, 2018;
Kitaev et al., 2019; Zhou and Zhao, 2019; Mrini
et al., 2020) and this approach corresponds to a
bidirectional variant of the LSTM-Minus features
proposed by Wang and Chang (2016). In addi-
tion, Tian et al. (2020) recently showed that span
attention can be effective for enhancing span repre-
sentation. Inspired by these empirical assumptions,
our novel approach NSA enables each word to ref-
erence information from various sizes of n-gram
spans created from contextualized hidden states.

NSA begins by constructing an n-gram span ma-
trix. First, the hidden states H from the previous
layer are split into the forward and backward rep-
resentations HF and HB , respectively. Arbitrary
span vectors are constructed by applying element-
wise subtraction to the separated bidirectional hid-
den states, which is the same as Eq. (6):

Hngram = [hfj − hfi ;h
b
i − hbj ]. (15)

3To ensure that the output of BiMSA matches the size of
the input, the dimension size of the value is set to half that of
the query and key dimensions.

The n-gram of the arbitrary span is adjusted by
varying the distance between the positions i and j.

The n-gram span matrix is constructed by con-
catenating the hidden states of all 1- to n-gram
sequences, as follows:

SpanN = [H1gram,H2gram, ...,Hngram].
(16)

A detailed computational process for constructing
the n-gram span matrix is provided in Appendix
A.3.

In NSA, the query is projected from the word
representation, while the key and value are pro-
jected from the span representations. The attention
process enables each word to reference the contex-
tual features from its corresponding span. Eq. (1)
is redefined as:

Q = WQH,

K = WKSpanN ,

V = W V SpanN .

(17)

The subsequent computations are carried out in the
same manner as the self-attention process described
in Section 3.

NSA allows each word to reference the contex-
tual information from its corresponding span. It
can also handle the diverse tree structures of sen-
tences by incorporating relational information with
other spans within the sentence. For instance, in the
sentence “The cat sat on the mat.” the word “cat”
incorporates span information that can be grouped
as a constituent by referencing the contextual fea-
tures of both the 2-gram span “The cat” and the
4-gram span “sat on the mat”.

5 Experiments

5.1 Datasets

To evaluate the performance of our constituency
parsing model on different languages, we conduct
experiments on the Penn Treebank 3 (PTB) (Mar-
cus et al., 1993) dataset for English and the Penn
Chinese Treebank 5.1 (CTB5.1) (Xue et al., 2005)
dataset for Chinese.4 We use the standard data
splits for both PTB and CTB5.1.

4The PTB and CTB5.1 datasets used in our experiment
were officially released by the Linguistic Data Consortium.
The catalog number for PTB is LDC99T42, while the catalog
number for CTB5.1 is LDC2005T01.
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Model LR LP F1
w/ BERT

Kitaev et al. (2019) 95.46 95.73 95.59
Zhou and Zhao (2019) 95.70 95.98 95.84
Mrini et al. (2020) + POS - - -
Yang and Deng (2020) 95.55 96.04 95.79
Tian et al. (2020) + POS 95.62 96.09 95.86
Xin et al. (2021) 95.55 96.29 95.92
Nguyen et al. (2021) - - 95.70
Cui et al. (2022) 95.70 96.14 95.92
Yang and Tu (2022) 95.83 96.19 96.01
Yang and Tu (2022)♣ 95.76 96.09 95.93
Ours 95.57 96.03 95.80
Ours + POS 95.57 96.14 95.86

w/ XLNet
Zhou and Zhao (2019) 96.21 96.46 96.33
Mrini et al. (2020) + POS 96.24 96.53 96.38
Yang and Deng (2020) 96.13 96.55 96.34
Tian et al. (2020) + POS 96.19 96.61 96.40
Yang and Tu (2022)♣ 96.31 96.51 96.41
Ours 96.25 96.69 96.47
Ours + POS 96.16 96.52 96.34

Best score comparison
Mrini et al. (2020) 96.24 96.53 96.38
Yang and Deng (2020) 96.13 96.55 96.34
Tian et al. (2020) 96.19 96.61 96.40
Xin et al. (2021) 95.55 96.29 95.92
Nguyen et al. (2021) - - 95.70
Cui et al. (2022) 96.14 95.7 95.92
Yang and Tu (2022)♣ 96.31 96.51 96.41
Ours 96.25 96.69 96.47

Table 1: Comparison of labeled recall (LR), labeled
precision (LP), and F1 scores of our models with those
of previous studies on the PTB test dataset. Models with
♣ are trained in our experimental environment.

5.2 Implementation details

To ensure a fair comparison with previous studies,
we construct our model with and without the use
of pre-trained models as the basic encoder. For
the experiment on PTB, we utilize BERT (Devlin
et al., 2019) and XLNet (Yang et al., 2019) pre-
trained large models in the cased version, while
for CTB5.1, we use BERT pre-trained base model.
Following Tian et al. (2020), we use the default
settings of the hyperparameters in the pre-trained
models.

Kitaev and Klein (2018) experimentally demon-
strated that using a character-LSTM (CharLSTM)
instead of word embeddings can enhance the pars-
ing accuracy. Therefore, to provide a fair compari-
son, we compare the test performance of a model
that incorporates CharLSTM when a pre-trained
model is not used.

In line with Kitaev and Klein (2018), Mrini et al.
(2020), and Tian et al. (2020), we compare the
performance of our models with and without Part-
Of-Speech (POS) tagging. The POS tags are prede-

Model LR LP F1
w/ BERT

Zhou and Zhao (2019) 92.03 92.33 92.18
Mrini et al. (2020) + POS 91.85 93.45 92.64
Yang and Deng (2020) + POS 93.40 93.80 93.59
Tian et al. (2020) + POS 92.50 92.83 92.66
Xin et al. (2021) 92.06 92.94 92.50
Cui et al. (2022) 92.17 92.45 92.31
Ours 92.55 92.59 92.57
Ours + POS 94.05 94.24 94.15

Table 2: Comparison of labeled recall (LR), labeled
precision (LP), and F1 scores of our models with those
of previous studies on the CTB5.1 test dataset.

termined for the input sentences using the Stanford
tagger (Toutanova et al., 2003). The POS tags of a
given sentence are passed through the embedding
layer and added element-wise to the hidden word
vectors of the sentence to form the input of the
model.

In our proposed NSA approach, the length of
the n-gram sequence, n, should be designated as
a hyperparameter. We test the performance of our
model by setting n to 2, 3, 4, and 5, respectively,
and select the model with the highest performance
to compare it with those of previous studies. The
experimental results when n is modified under the
same parameter setting can be found in Section
5.5.3.

Further details on the setting of the hyperparame-
ters for our models in all experiments are provided
in Appendix A.1.

5.3 Performance comparison

The experimental results of our models and those
of previous studies on the test sets are presented in
Table 1 and Table 2. Our models outperform the
previous state-of-the-art results on both datasets.
Specifically, our BNA model, which does not use
POS tags but employs a pre-trained XLNet model,
achieves state-of-the-art performance with an F1
score improvement of 0.06, surpassing the improve-
ment range of 0.01 to 0.02 observed in recent mod-
els. Furthermore, the recall and precision scores
show uniform improvement without bias, resulting
in the highest scores among all the methods.

In the CTB5.1 dataset experiments, our models
outperform the previous results by a larger margin
than in the PTB experiments. Our model that uses
POS tags exceeds the previous best performance
and achieves state-of-the-art performance with an
F1 score improvement of 0.56.

These improved results demonstrate the effec-
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PLM BiMSA NSA POS LR LP F1

w/o ✗ ✗ ✗ 91.37 92.25 91.81
✓ ✗ ✗ 91.33 92.28 91.80
✗ ✓ ✗ 91.03 92.21 91.61
✓ ✓ ✗ 91.36 92.48 91.92
✓ ✓ ✓ 91.52 92.76 92.13

w/ ✗ ✗ ✗ 96.27 96.53 96.40
✓ ✗ ✗ 96.13 96.57 96.35
✗ ✓ ✗ 95.95 96.54 96.25
✓ ✓ ✗ 96.25 96.69 96.47
✓ ✓ ✓ 96.16 96.52 96.34

Table 3: Ablation study of the effectiveness of each
approach on the PTB test split. The models that do not
utilize BiMSA and NSA both employ a Self-Attention
layer. PLM denotes the pre-trained XLNet model.

tiveness of our BNA model in resolving the critical
problem of constructing span representations from
the hidden states of words, which is due to the
lack of dependencies between elements in attention
mechanisms.

5.4 Ablation study

To evaluate the effectiveness of the BiMSA and
NSA modules in the BNA model, we conduct an
ablation study. We compare our models with a sin-
gle model of the self-attention layer, which serves
as the baseline, as it is the same self-attention mech-
anism as the transformer encoder. The hyperparam-
eters of each model in the ablation study follow the
best-performing model in Table 1. The results for
the PTB test split are presented in Table 3, while
the results for the CTB test split can be found in
Appendix A.2.

The results demonstrate a consistent improve-
ment in performance. Specifically, while the per-
formance of the single model of BiMSA is com-
parable or inferior to that of self-attention, the in-
clusion of NSA leads to a performance improve-
ment that surpasses that of the single model of
self-attention. Using a pre-trained model and POS
tags has been observed to be beneficial in improv-
ing performance. This finding is consistent with
the results of previous studies. In particular, POS
tags lead to a greater performance improvement in
Chinese than in English. Also we observed a dimin-
ishing improvement tendency when the model used
a pre-trained model as the encoder. This suggests
that the pre-trained model may already possess pat-
tern or knowledge related to POS tags.

Overall, it can be observed that the BiMSA and
NSA models complement each other while contin-
uously improving performance on both datasets.

PLM NSA POS BiMSA Self-Attn ∆

w/o ✗ ✗ 91.80 91.81 -0.01
✗ ✓ 92.13 91.92 0.21
✓ ✗ 91.92 91.60 0.32
✓ ✓ 92.13 91.91 0.22

w/ ✗ ✗ 96.35 96.40 -0.05
✗ ✓ 96.35 96.27 0.08
✓ ✗ 96.47 96.23 0.24
✓ ✓ 96.34 96.31 0.03

Table 4: Comparison between the BiMSA and self-
attention approaches on the PTB test split. ∆ indicates
the difference between the model performances. PLM
denotes the pre-trained XLNet model.

5.5 Analysis

5.5.1 Directional feature for Parsing
In this section, we investigate whether the BiMSA
can address the lack of directional and relative po-
sitional dependencies between words. We conduct
a performance comparison between the BiMSA
single model and the self-attention model. We eval-
uate their performances on the test dataset using
the F1 score metric. The results for the PTB test
split are presented in Table 4, while the results for
the CTB test split can be found in Appendix A.2.

Similar to the previous ablation study results, the
single BiMSA model exhibits comparable or lower
performance than the single self-attention model.
However, the addition of NSA significantly im-
proves performance. This suggests that combining
a model with insufficient temporal dependency and
NSA may lead to a decrease in performance, but
the performance enhancement in BiMSA can be
attributed to the synergistic effect between BiMSA
and NSA layers.

The directional and relative positional depen-
dencies captured by the BiMSA module enable
the BNA model to better handle complex syntactic
structures, which is demonstrated by the higher F1
score on both the CTB5.1 and PTB datasets. This
finding indicates that directional features are es-
sential for improving parsing model performance,
particularly for tasks with complex sentence struc-
tures. Moreover, the advantage of using the BNA
model is even more significant for Chinese datasets,
which are known for having more complex sen-
tence structures than English.

5.5.2 Span Attention
In this section, we explore the impact of the number
of NSA layers in the BNA model. Specifically, we
train and evaluate models with 1, 3, 5, and 8 NSA
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Figure 3: Comparison of the variants in NSA layers of
our best-performing model and their corresponding test
set F1 scores.

layers, including a variant in which the order of the
layers alternates between the BiMSA and NSA lay-
ers. We maintain the total number of layers in the
model as 8, and we use the same hyperparameters
as those of the single model. Figure 3 illustrates
the experimental results, where "Alt" refers to the
alternatively applied model.

The results demonstrate that a reduced num-
ber of NSA layers leads to superior performance.
This finding suggests that conducting span atten-
tion with a lack of dependency between each word
in the given sentence may result in a degradation
of performance. In particular, a model structure
that alternates between the BiMSA and NSA layers
shows no significant difference from the one that
entirely consists of the NSA layer.

Overall, our experiments suggest that the selec-
tion of the number of NSA layers in the BNA model
should be carefully considered, and a reduced num-
ber of layers may prove to be more effective.

5.5.3 Variations of the N-gram

To determine the optimal n-gram length for each
language used in the NSA module, we conduct
experiments using the best-performing BNA mod-
els in both English and Chinese. To compare the
results, we vary n from 2 to 5 while keeping all
hyperparameters as constant.

As shown in Figure 4, the results indicate that
an n-gram length of 4 achieves the highest perfor-
mance for PTB, while a 3-gram does for CTB5.1.
However, extending the n-gram length beyond a
certain point can lead to a decrease in model per-
formance. As the n-gram increases, the arbitrary
span becomes more similar to the given sentence.
As a result, referring to a broader range of spans

Figure 4: Comparison of the variants in the n-grams of
our best-performing model and their corresponding test
set F1 scores. Red stars represent our best-performing
result.

can dilute the span information that corresponds to
each word.

However, since constituents are hierarchically
composed of 2-3 words or constituents, the NSA
layer allows words to refer to arbitrary spans of
various positions, enabling the representation of
longer spans even with a shorter span length. While
it may be necessary to adjust the arbitrary span
length that each word refers to depending on the
language, constructing a wide range of arbitrary
spans is not essential for representing sentences as
constituent trees.

6 Conclusions

The primary goal of this study was to design at-
tention mechanisms to capture the explicit depen-
dencies between each word and enhance the repre-
sentation of the output span vectors. Through our
experiments, we demonstrated that our proposed
BiMSA more effectively contextualizes each word
in a sentence by considering the bidirectional de-
pendencies, while NSA improves the span represen-
tation by attending to arbitrary n-gram spans. Our
findings have major implications for span-based
approaches in constituency parsing tasks. Specifi-
cally, applying the span representation method to
the attention mechanism leads to a significant per-
formance improvement.

In conclusion, constructing a span representa-
tion from words contextualized within a given sen-
tence can lead to additional improvement in parsing.
Overall, our study contributes to the advancement
of attention mechanisms in NLP. We hope that our
findings will inspire further research in this area.
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Limitations

However, the weight of the model remains a signif-
icant issue for high-performance inference, espe-
cially for preprocessors that deconstruct and ana-
lyze the sentence structure before understanding it.
Using a costly parser in real-time machine learn-
ing tasks can present limitations as rapid data pro-
cessing is a crucial objective in this current area
of research. To address this concern, future stud-
ies should focus on developing a lightweight span
attention module that considers the bidirectional
dependencies.

Although the n-gram span attention operation
can be robust for trees of various sizes and struc-
tures, it involves concatenating n-grams from 1
to n to create an n-gram span matrix, making it
a heavy operation. This limitation becomes in-
creasingly evident as sentences become longer, re-
sulting in a discrepancy in learning speed when
compared to existing parsers during comparative
experiments. Tian et al. (2020) suggested catego-
rizing extracted n-grams in a span (i, j) by their
length so that n-grams in different categories are
weighted separately instead of using all n-grams.
It may be helpful to modify the attention to focus
only on a limited range of spans to improve the
speed of the n-gram span attention module. This
modification remains as future work.
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A Appendix

A.1 Further implementation details
We employ a grid search to identify the optimal pa-
rameter settings for our model with a random seed
fixed at 42. The parameter tuning was conducted
across various ranges, including learning rates of
1e-5, 2e-5, and 3e-5, batch sizes of 50, 100, and
200, n-gram values of 1, 2, 3, and 4, and dropout
ratios of 0.1 and 0.2 on the development set.

In the PTB dataset experiments, the optimal
model achieves the highest performance with a
learning rate of 2e-5, a batch size of 200, and an
n-gram value of 4 for the NSA layer. The dropout
ratios for the residual connections, feed-forward
layer, attention, and CharLSTM morphological rep-
resentations were 0.2, 0.2, 0.2, and 0.1, respec-
tively.

In the CTB5.1 dataset experiments, the most
successful model uses a learning rate of 3e-5, a
batch size of 50, and an n-gram value of 3 for the
NSA layer. The dropout ratios for the residual con-
nections, feed-forward layer, attention, and CharL-
STM morphological representations were 0.1, 0.1,
0.1, and 0.2, respectively.

Both experiments employed identical model
sizes, with a model dimensionality of 512
and a feed-forward layer size of 1024. The
query/key/value sizes were set to 64, except in the
BiMSA layer, where the value size was halved to
32 for split forward and backward computations.

When the parser utilizes a pre-trained model, the
number of layers is set to 2. In contrast, when a sin-
gle model is employed without a pre-trained model,
the architecture employs 8 layers. Additionally, to
enhance the training speed and performance of the
single model, a batch size of 250 and a learning
rate of 0.0008 are employed.

All parsers, including those utilizing pre-trained
models, were trained within a 12 hour. Training
was conducted using a single NVIDIA RTX A5000
GPU for each parser. The parser without a pre-
trained model has 15.9 million parameters, while

PLM BiMSA NSA POS LR LP F1

w/o ✗ ✗ ✗ 83.65 85.00 84.32
✓ ✗ ✗ 82.44 84.67 83.54
✗ ✓ ✗ 81.02 83.08 82.04
✓ ✓ ✗ 83.76 85.53 84.63
✓ ✓ ✓ 87.98 89.16 88.57

w/ ✗ ✗ ✗ 90.97 91.48 91.23
✓ ✗ ✗ 91.96 92.1 92.03
✗ ✓ ✗ 91.3 91.57 91.43
✓ ✓ ✗ 91.65 91.63 91.64
✓ ✓ ✓ 94.09 93.83 93.96

Table A1: Ablation study of the effectiveness of each
approach on the CTB test split. The models that do not
utilize BiMSA and NSA both employ a Self-Attention
layer. PLM denotes the pre-trained BERT model.

PLM NSA POS BiMSA Self-Attn ∆

w/o ✗ ✗ 83.54 84.32 -0.78
✗ ✓ 89.16 88.43 0.73
✓ ✗ 84.63 83.96 0.67
✓ ✓ 88.57 88.62 -0.05

w/ ✗ ✗ 92.37 91.82 0.55
✗ ✓ 93.75 93.65 0.10
✓ ✗ 92.57 92.20 0.37
✓ ✓ 94.15 94.00 0.15

Table A2: Comparison between the BiMSA and self-
attention approaches on the CTB test split. ∆ indicates
the difference between the model performances. PLM
denotes the pre-trained BERT model.

the parser with a pre-trained model, which has 2
layers, has 4.7 million parameters.

A.2 Further experimental results
Table A1 presents the ablation study results con-
ducted on the CTB dataset, while Table A2 shows
the performance comparison between the BiMSA
and self-attention model on the same dataset. The
full results from our albation experiments are given
in Table A3 and Table A4.

A.3 Procedure of constructing arbitrary span
matrix

The separated bidirectional word representations,
namely HF and HB , construct span matrices rang-
ing from 1-gram to n-gram. These completed span
matrices, SpanF

N and SpanB
N , are concatenated

to form a single SpanN . The specific computa-
tion procedure for constructing an arbitrary n-gram
span matrix with bidirectional word features is pre-
sented in Figure 5.
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Figure 5: Detailed procedure of constructing arbitrary n-gram span matrix in NSA module.
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PLM BiMSA NSA POS LR LP F1
w/o ✗ ✗ ✗ 91.37 92.25 91.81

✗ ✗ ✓ 91.43 92.41 91.92
✗ ✓ ✗ 91.03 92.21 91.61
✗ ✓ ✓ 91.00 92.01 91.50
✓ ✗ ✗ 91.33 92.28 91.80
✓ ✗ ✓ 91.56 92.71 92.13
✓ ✓ ✗ 91.36 92.48 91.92
✓ ✓ ✓ 91.52 92.76 92.13

w/ ✗ ✗ ✗ 96.27 96.53 96.40
✗ ✗ ✓ 96.08 96.45 96.27
✗ ✓ ✗ 95.95 96.54 96.25
✗ ✓ ✓ 95.97 96.63 96.30
✓ ✗ ✗ 96.13 96.57 96.35
✓ ✗ ✓ 96.07 96.63 96.35
✓ ✓ ✗ 96.25 96.69 96.47
✓ ✓ ✓ 96.16 96.52 96.34

Table A3: Full results of ablation study on the PTB test
split. PLM denotes the pre-trained XLNet model.

PLM BiMSA NSA POS LR LP F1
w/o ✗ ✗ ✗ 83.65 85.00 84.32

✗ ✗ ✓ 87.71 89.16 88.43
✗ ✓ ✗ 81.02 83.08 82.04
✗ ✓ ✓ 86.27 88.74 87.49
✓ ✗ ✗ 82.44 84.67 83.54
✓ ✗ ✓ 87.69 89.79 88.73
✓ ✓ ✗ 83.76 85.53 84.63
✓ ✓ ✓ 87.98 89.16 88.57

w/ ✗ ✗ ✗ 90.97 91.48 91.23
✗ ✗ ✓ 93.69 93.60 93.64
✗ ✓ ✗ 91.30 91.57 91.43
✗ ✓ ✓ 94.01 93.86 93.94
✓ ✗ ✗ 91.96 92.10 92.03
✓ ✗ ✓ 93.52 93.66 93.59
✓ ✓ ✗ 91.65 91.63 91.64
✓ ✓ ✓ 94.09 93.83 93.96

Table A4: Full results of ablation study on the CTB test
split. PLM denotes the pre-trained BERT model.
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