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Abstract
Emotion Cause Triplet Extraction in Conversa-
tions (ECTEC) aims to simultaneously extract
emotion utterances, emotion categories, and
cause utterances from conversations. However,
existing studies mainly decompose the ECTEC
task into multiple subtasks and solve them in
a pipeline manner. Moreover, since conversa-
tions tend to contain many informal and im-
plicit expressions, it often requires external
knowledge and reasoning-based inference to
accurately identify emotional and causal clues
implicitly mentioned in the context, which
are ignored by previous work. To address
these limitations, in this paper, we propose a
commonSense knowledge-enHanced generA-
tive fRameworK named SHARK, which for-
mulates the ECTEC task as an index genera-
tion problem and generates the emotion-cause-
category triplets in an end-to-end manner with
a sequence-to-sequence model. Furthermore,
we propose to incorporate both retrieved and
generated commonsense knowledge into the
generative model via a dual-view gate mecha-
nism and a graph attention layer. Experimental
results show that our SHARK model consis-
tently outperforms several competitive systems
on two benchmark datasets. Our source codes
are publicly released at https://github.com/
NUSTM/SHARK.

1 Introduction

Emotion understanding is a key component of
human-like artificial intelligence, as emotions are
intrinsic to humans and significantly influence our
cognition, decision-making, and social interactions.
Conversations, as a fundamental form of human
communication, are replete with diverse emotions.
Beyond mere emotion recognition, delving into the
triggers behind these emotions in conversations is
a more intricate and less explored task. A compre-
hensive understanding of both the speaker’s emo-
tions and their causes facilitates many applications
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As a result, others feel confused.

Charlie Ross

(U1,U1,sadness), (U2,U1,surprise), (U3,U3,sadness), (U4,U3,anger)

As a result, Charlie feels sad. 

😔Uh, well... Joey and I broke up.U1

Oh my God, wh... what happened? U2😲

Joey is a great guy, but we are just... so
different! I mean, during your speech
he kept laughing at homo erectus!

U3 😔

I knew that was him! U4😠

As a result, Charlie feels sad. 

As a result, others feel annoyed.

ECTEC output (EmoAon, Cause, Category)

Figure 1: An example of extracting the emotion-cause-
category triplets from the conversation with the help of
commonsense knowledge in the dashed box.

such as customer support, mental health care, and
human-computer interaction. Therefore, Emotion
Cause Analysis in Conversations (ECAC) has been
gaining increasing attention from both academia
and industry in recent years.

Most existing studies on ECAC primarily focus
on Causal Emotion Entailment (CEE) and Emotion-
Cause Pair Extraction in Conversations (ECPEC).
The former line of work on CEE assumes that
the emotion utterances are given and formulates
the ECAC task as an utterance classification prob-
lem (Poria et al., 2021; Li et al., 2022a; Zhang
et al., 2022; Zhao et al., 2023; Gu et al., 2023),
which aims to predict whether each utterance in a
conversation is the cause of the given emotion ut-
terance. The latter line of work on ECPEC focuses
on designing different multi-task learning architec-
tures to jointly extract the emotion utterances and
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their corresponding causes in a pipeline manner (Li
et al., 2022b; Jeong and Bak, 2023).

Due to the importance of emotion categories in
ECAC, Wang et al. (2022) recently explored a task
named Emotion Cause Triplet Extraction in Con-
versations (ECTEC), which aims to simultaneously
extract emotion utterances, emotion categories, and
cause utterances from conversations. For example,
given the conversation in Figure 1, it is expected to
identify four emotion-cause-category triplets. To
tackle the task, they further proposed a two-step
approach, which first extracts emotion utterances
with emotion category and cause utterances sep-
arately, followed by pairing them to obtain valid
emotion-cause-category triplets.

However, all the aforementioned studies on
ECAC still suffer from two limitations. First, exist-
ing works on CEE and ECPEC primarily decom-
pose ECTEC into several subtasks and only focus
on tackling one or two subtasks. Although Wang
et al. (2022) attempted to address the ECTEC task,
their pipeline approach still suffers from the error
propagation issue. To the best of our knowledge,
there is still a lack of an end-to-end approach to
generate all the emotion-cause-category triplets in
one shot. Second, since interlocutors usually rely
on the dialogue history and commonsense knowl-
edge (CSK) to make sense of others’ utterances and
respond succinctly rather than explicitly (Grice,
1975), it often requires external knowledge and
reasoning-based inference to accurately identify
emotional and causal clues in the conversation. For
example, in Figure 1, we can find that the CSK
reasoned from U3 not only indicates Charlie’s sad-
ness in U3 and Ross’s anger in U4, but also implies
that U3 contains the causes behind their emotions.
With the clues inferred from CSK, the two triplets
“(U3,U3,surprise)” and “(U4,U3,anger)” can be eas-
ily inferred. Despite the importance of CSK, it is
still under-explored how to utilize CSK to facilitate
the ECTEC task.

To address these limitations, in this paper, we
propose a commonSense knowledge-enHanced
generAtive fRameworK named SHARK, which
incorporates CSK into a pre-trained sequence-to-
sequence model BART (Lewis et al., 2020) to gen-
erate all the emotion-cause-category triplets in an
end-to-end manner. Specifically, SHARK formu-
lates the ECTEC task as an index generation prob-
lem, which linearizes each emotion-cause-category
triplet into a position index triplet. It then em-

ploys BART to encode the input conversation, fol-
lowed by decoding a set of triplets containing the
indexes of emotion utterances, cause utterances,
and emotion categories. Moreover, to incorporate
CSK into the BART-based framework, SHARK
feeds each utterance to a pre-trained neural knowl-
edge model COMET-ATOMIC20

20 (Hwang et al.,
2021) for commonsense knowledge generation and
a widely-used knowledge base ATOMIC (Sap et al.,
2019) for commonsense knowledge retrieval. Next,
SHARK integrates both generated and retrieved
knowledge via a dual-view gate mechanism to ob-
tain the knowledge representation, and then intro-
duces a knowledge-aware graph attention layer to
capture the intra-speaker and inter-speaker interac-
tions in the conversation. Finally, the knowledge-
enhanced utterance representation is used to gener-
ate the position index sequence.

Our contributions are summarized as follows:

• We formulate the ECTEC task as an index gener-
ation problem by linearizing all emotion-cause-
category triplets into a position index sequence,
and employ a BART-based encoder-decoder
framework to generate the index sequence from
the input conversation.

• We further introduce a dual-view gate mecha-
nism to integrate both retrieved and generated
knowledge to obtain the knowledge represen-
tation, and then incorporate it into the BART-
based framework via a knowledge-aware graph
attention layer.

• Experimental results demonstrate that our gen-
erative framework consistently performs better
than a number of competitive systems on two
benchmark datasets. Further in-depth analy-
sis shows the importance of the commonsense
knowledge for the ECTEC task.

2 Methodology

2.1 Task Formulation and Model Overview

Given a conversation containing n utterances D =
[U1, . . . , Ui, . . . , UN ], in which each utterance Ui

corresponds to a speaker Si, the goal of ECTEC is
to extract all the emotion cause triplets:

P =
{
. . . , (U e

j , U
c
k , y

e), . . .
}
, (1)

where U e
j is an emotion utterance with certain emo-

tion ye, U c
k is the corresponding cause utterance.

The emotion category ye is one of the six basic
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Figure 2: The overview of our proposed commonSense knowledge-enHanced generAtive fRameworK (SHARK).

emotions defined by Ekman et al. (1999), including
Anger, Disgust, Fear, Joy, Sadness and Surprise.

As illustrated in Figure 2, our proposed common-
Sense knowledge-enHanced generAtive fRame-
worK (SHARK) formulates the ECTEC task as
an index generation problem, which linearizes all
the emotion-cause-category triplets into their corre-
sponding position indexes to obtain a position index
sequence, and employs a pre-trained sequence-to-
sequence model BART as the backbone to generate
the position index sequence in an end-to-end man-
ner. To incorporate CSK into the generative model,
SHARK utilizes an external knowledge base and
a pre-trained model to both retrieve and generate
emotion-oriented CSK for each utterance, as shown
in the left of Figure 2. Next, SHARK further intro-
duces a dual-view gate mechanism to fuse the CSK
representation, and then leverages it to enhance the
utterance representation via a graph attention layer
in the middle of Figure 2.

In the next subsections, we will first present the
BART-based index generation framework, and then
describe the details of the dual-view gate mech-
anism and the knowledge-aware graph attention
layer.

2.2 Index Generation Framework

Given a conversation, we use the pre-trained BART
model as the backbone to generate the output index
sequence of the emotion-cause-category triplets.

Encoder. The encoder is a multi-layer bidi-
rectional Transformer, which encodes the input
sequence into the hidden representation. Specif-
ically, we concatenate all the utterances in a con-
versation, and add several special tokens before

each utterance to obtain the input sequence: X
= <s><U1>S1 : U1 . . .<Un>Sn : Un</s>, where
<s> and </s> refer to the start and end tokens,
<Ui> is a special token to indicate the start of the
i-th utterance, and Si and Ui denote the speaker’s
name and the token sequence of the i-th utterance.
The input sequence X is then fed to the BART
encoder to obtain the hidden representation:

X = Encoder(X), (2)

where X ∈ RL×d, L is the length of X , and d is the
hidden dimension. The representation of the spe-
cial token <Ui> in X is regarded as the utterance
representation of Ui, i.e., ui. Based on this, we
further incorporate CSK to obtain the knowledge-
enhanced representation X

′
via a dual-view gate

mechanism (Section 2.3) and a knowledge-aware
graph attention layer (Section 2.4).

Decoder. To map all the emotion-cause-category
triplets to a position index sequence, we use six
indexes (i.e., 1 to 6) to denote six emotion cat-
egories, and then use L indexes starting from 7
to denote each word in the input sequence X , in
which the index of the special token <Ui> refers
to the emotion or cause utterance. Formally, let
us use Y = [eu1, cu1, ec1, . . . , eum, cum, ecm] to
denote the output index sequence, where eu and cu
represent the position indexes of the emotion and
cause utterances, respectively, ec denotes the index
of the emotion category, and m is the number of
triplets. At the t-th time step, the decoder takes
the knowledge-enhanced representation X

′
and the

previous decoder outputs Y<t as inputs to predict
the output probability distribution. Since Y<t is an
index sequence, we first need to convert the indexes
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into tokens as follows:

ŷt =

{
Cyt , yt ≤ |C|,
Xyt−|C|, yt > |C|, (3)

where C is the token list of the emotion categories,
|C| = 6.

Next, we can obtain the last hidden state of the
BART decoder and predict the probability distribu-
tion as follows:

hd
t = Decoder(X

′
; Ŷ<t), (4)

X̄ = MLP(X
′
), (5)

H̄e
utt = (Ee

utt + X̄utt)/2, (6)

P (yt|X,Y<t) = Softmax([Ce; H̄e
utt] · hd

t ), (7)

where MLP refers to a multi-layer perceptron, Ee
utt

= TokenEmbed(Xutt) and X̄utt respectively denote
the embeddings of <Ui> and the hidden represen-
tations of <Ui>, Ce = TokenEmbed(C) refers to
the embeddings of six emotion categories; [·; ·] is
the concatenation operation, and “·” denotes the
dot product; P (yt|X,Y<t) ∈ R(|C|+L) is the final
distribution on all indexes.

2.3 Dual-view Gate Mechanism
For each utterance, we separately obtain its re-
trieved and generated knowledge, and then inte-
grate both of them through a gate mechanism.

Knowledge Retrieval. We utilize ATOMIC-
20201 (Hwang et al., 2021), a widely-used com-
monsense knowledge graph covering social, phys-
ical, and eventive aspects of everyday inferen-
tial knowledge, as the external knowledge source.
ATOMIC-2020 contains a large number of com-
monsense knowledge tuples composed of a head
phrase, a relation type, and a tail phrase, e.g., (“Per-
sonX affords a car”, xReact, “proud”). In this paper,
we focus on two social-interaction relations that are
highly correlated with emotion and cause: xReact
and oReact, which denote how the subject and the
object feel after the input event occurs. Specifically,
we use SBERT (Reimers and Gurevych, 2019) to
calculate the similarity between each utterance in
the dataset and all head phrases in ATOMIC-2020,
and obtain the tail phrases under the two relations
of the top-3 similar head phrases. We then concate-
nate these tail phrases as our retrieved knowledge
for each utterance.

Knowledge Generation. A pre-trained neural
knowledge model COMET-ATOMIC20

20
2 is used to

1https://allenai.org/data/atomic-2020
2https://github.com/allenai/comet-atomic-2020

generate novel commonsense knowledge tuples.
Taking each utterance and the selected relation type
as inputs, the model would automatically generate
several tail phrases (we set the beam size to 3) as
the CSK for the utterance. For example, given the
utterance “Uh, well... Joey and I broke up.” and the
relation type xReact, the following phrases {sad,
regretful, upset} could be generated.

Knowledge Encoding. We first convert the
knowledge phrases for each utterance into a com-
plete sentence, which incorporates speaker’s name,
e.g., “[Charlie] feels [sad, different, upset].” for
xReact and “Others feel [annoyed, sad, confused].”
for oReact. Next, we concatenate the knowledge
sentences of all utterances in the conversation and
feed them to the BART encoder. The retrieved
knowledge and generated knowledge under the two
relation types are encoded separately in the same
way as utterance encoding described in Section
2.2. Finally, for each utterance Ui, we obtain four
knowledge representations: rxRi , roRi , gxR

i , goR
i .

Knowledge Fusion. Since the CSK under xRe-
act and oReact types would independently influ-
ence the representation of utterances from the same
speaker and other speakers, we employ a dual-
view gate mechanism to perform knowledge fusion
from two different views, thereby obtaining view-
specific knowledge representations. Specifically,
for each relation type, we calculate the knowledge
weight through a linear layer, and then use the
weight to integrate retrieved knowledge and gener-
ated knowledge. The formula is shown as follows:

αxR
i = σ(W[ui, r

xR
i , gxR

i ]),

αoR
i = σ(W[ui, r

oR
i , goR

i ]),
(8)

hxR
i = αxR

i rxRi + (1− αxR
i )gxR

i ,

hoR
i = αoR

i roRi + (1− αoR
i )goR

i ,
(9)

where W ∈ R3d is a trainable weight, σ denotes
the sigmoid function.

2.4 Knowledge-aware Graph Attention Layer

To better model the conversation context and incor-
porate CSK effectively, we employ a graph atten-
tion layer to capture the dynamics and dependen-
cies among speakers in the conversation.

As shown in Figure 2, we construct a graph G =
(V, E) for each conversation, where V is the set of
nodes and E is the set of edges between two nodes.
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• Nodes: Each utterance in the conversation is
regarded as a node in the graph, and we initialize
each node with the utterance representation ui

obtained from the encoder.
• Edges: The utterance nodes are linked in the

temporal order of the conversation, and each
edge is assigned an attention weight eij (i >
j ≥ 1) representing the relationship between
two utterances. We introduce CSK under two re-
lation types to enrich the semantic dependencies
among utterances. Specifically, given an utter-
ance node, for each of its neighbor nodes, if their
speakers are the same, the knowledge represen-
tation hxR

i is used to calculate the edge weight
between them; otherwise, hoR

i is utilized.

For a target node ui, the edge weight from neigh-
bor nodes uj can be computed as follows:

u
′
j = Whhj , (10)

h̄
xR
j = u

′
j +WkhxR

j , (11)

h̄
oR
j = u

′
j +WkhoR

j , (12)

exRij = LeakyReLU(aT
1 [W

hui; h̄
xR
j ]), (13)

eoRij = LeakyReLU(aT
2 [W

hui; h̄
oR
j ]), (14)

eij =

{
exRij , Si = Sj ,

eoRij , Si ̸= Sj ,
(15)

where a1,a2 ∈ R2d and Wh,Wk ∈ Rd×d are
learnable parameters.

Next, we normalize the edge weights across all
choices of j using the Softmax function. Finally,
the knowledge-enhanced utterance representation
hi is obtained by aggregating neighbor nodes ac-
cording to the normalized edge weights:

αij = Softmaxj(eij), (16)

hi =
∑

j∈Ni

αiju
′
j , (17)

where Ni is the set of neighbor nodes of utterance
node ui in the graph.

To facilitate our model to capture emotional dy-
namics, we add an auxiliary task of emotion recog-
nition in conversations (ERC). As shown in Figure
2, an emotion classifier is applied to predict the
emotion category of each utterance based on the
knowledge-enhanced utterance representation.

P (yemo
i ) = Softmax(MLP(hi)), (18)

where P (yemo
i ) ∈ R7 is the probability distribution

over all emotion categories including Neutral.

Number of items ECF RECCON

Conversations 1,374 1,106
Utterances 13,619 11,104
Emotion (utterances) 7,690 5,861
Emotion-cause (utterance) pairs 9,794 9,915

Table 1: Statistics of two benchmark datasets.

2.5 Model Training

During the training phase, we use the teacher forc-
ing strategy to train our model and the negative
log-likelihood loss to optimize the model. The loss
function is defined as follows:

L = Lgen + Laux, (19)

Lgen = − 1

M

M∑

t=1

logP (y∗t |X,Y<t), (20)

Laux = − 1

N

N∑

i=1

logP (yemo∗
i ), (21)

where M and N refer to the length of the output
index sequence and the number of utterances in a
conversation, respectively; y∗t and yemo∗

i denote the
ground truth label of index and emotion, respec-
tively. Moreover, during the inference, we use the
beam search to obtain the target index sequence in
an autoregressive manner.

3 Experiments

3.1 Experimental Settings

Datasets. We conduct experiments on two bench-
mark datasets. ECF (Wang et al., 2022) is a mul-
timodal conversational emotion cause dataset con-
taining multi-party conversations from the sitcom
Friends, which is closer to real-world scenarios.
In this paper, we only consider the textual input.
RECCON (Poria et al., 2021) includes dyadic con-
versations and is built for the task of emotion cause
recognition in conversations. We use the subset
RECCON-DD derived from DailyDialog (Li et al.,
2017). Both datasets are divided into training, vali-
dation and test sets. The basic statistics of the two
datasets are shown in Table 1.

Implementation Details. We utilize the pre-
trained BART-base3 model to initial the parameters
in the index generation framework. During training,
we use the Adam optimizer with linear warm up
and a weight decay of 1e-2 for parameter tuning.
The batch size and initial learning rate are set to
16 and 2e-5, respectively. We use beam search to

3https://huggingface.co/facebook/bart-base
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Dataset Method Anger Disgust Fear Joy Sadness Surprise 6 Avg. 4 Avg.

ECF

Pipeline ECPE-2steps (Wang et al., 2022) 24.39 0.00 0.71 38.84 21.60 40.24 29.32 31.92
ECPE-2steps + CSK 23.86 0.00 3.71 38.41 23.13 40.71 29.50 32.03

E2E

ECPE-2D (Ding et al., 2020a) 25.13 0.00 0.00 41.25 21.62 43.24 30.80 33.55
ECPE-2D + CSK 25.36 0.00 0.00 38.89 22.62 43.26 30.37 33.09
UECA-Prompt (Zheng et al., 2022) 27.37 12.85 7.91 37.96 22.51 39.53 30.75 32.49
UECA-Prompt + CSK 23.57 7.70 9.36 34.95 22.44 38.69 28.49 30.30

BART 27.15 4.37 2.20 38.66 25.51 37.53 30.35 32.74
SHARK (Ours) 28.65 10.42 5.33 40.41 25.35 40.45 32.24 34.33

RECCON

Pipeline ECPE-2steps (Wang et al., 2022) 17.19 1.33 0.00 45.81 17.54 25.01 34.25 36.08
ECPE-2steps + CSK 19.62 0.61 0.95 45.34 20.34 25.80 34.71 36.57

E2E

ECPE-2D (Ding et al., 2020a) 22.58 0.00 0.00 47.72 12.82 36.10 36.58 38.59
ECPE-2D + CSK 21.51 0.35 0.00 47.82 13.78 32.95 36.32 38.30
UECA-Prompt (Zheng et al., 2022) 24.11 11.38 31.20 47.53 21.40 35.09 38.63 39.63
UECA-Prompt + CSK 22.28 6.98 27.43 45.14 23.42 35.74 36.92 38.06

BART 27.68 11.99 37.99 44.04 26.63 33.42 37.73 38.46
SHARK (Ours) 27.00 12.88 42.65 46.88 31.09 32.18 39.82 40.53

Table 2: Performance comparison of different methods on the ECTEC task. The best results are in bold.

generate the index sequence and set the beam size
to 4. The results on the test set come from the
best checkpoint in the validation set. We repeat
all the experiments five times with different seeds
and report the average results. All experiments are
conducted on an Nvidia RTX-3090 GPU.

Evaluation Metrics. Similar to (Wang et al.,
2022), we separately evaluate the emotion-cause
pairs of each emotion category in the triplets with
F1 score and further calculate a weighted average
of F1 scores across different emotion categories.
Considering the imbalance of emotion categories
in the two datasets, we also report the weighted av-
erage F1 score of the four main emotion categories
except Disgust and Fear.

3.2 Compared Methods

Since less work has been done on the ECPEC or
ECTEC tasks, we compare our framework with
several representative methods for ECPE in news
articles: (1) ECPE-2steps (Xia and Ding, 2019) is
the first pipeline framework proposed for ECPE,
which individually extracts the emotion set and
cause set, followed by emotion-cause pairing and
filtering. Wang et al. (2022) has adapted it to the
ECTEC task. (2) ECPE-2D (Ding et al., 2020a) is a
joint end-to-end (E2E) framework using the cross-
road 2D transformers to model the interactions of
different emotion-cause pairs. (3) UECA-Prompt
(Zheng et al., 2022) is a universal prompt method
that decomposes ECPE into multiple objectives
and converts them into sub-prompts. (4) BART,
which only utilizes the index generation framework
to generate the triplets, without two knowledge-
enhanced modules and the auxiliary task in our
SHARK model.

Method ECF RECCON

Emo. F1 Cau. F1 Emo. F1 Cau. F1

ECPE-2steps 55.46 62.83 64.34 58.92
ECPE-2steps + CSK 55.61 65.05 64.96 58.83
ECPE-2D 56.98 67.53 66.53 62.11
ECPE-2D + CSK 56.28 66.51 66.24 62.22
UECA-Prompt 55.83 67.23 68.46 63.62
UECA-Prompt + CSK 53.92 62.08 65.97 62.38
BART 58.63 70.02 67.96 69.01
SHARK (Ours) 60.74 69.13 71.94 67.72

Table 3: Results of the emotion extraction and cause
extraction subtasks based on the predicted triplets.

It should be noted that ECPE-2D and UECA-
Prompt are designed for ECPE and require modifi-
cations to extend them to the ECTEC task. Specifi-
cally, we adapt their emotion recognition module
from binary classification to multi-class classifica-
tion. Moreover, we have explored simply incorpo-
rating CSK into these methods, which is denoted
as “· + CSK” in the tables of experimental results.
For ECPE-2steps and ECPE-2D, we feed the gen-
erated knowledge to their encoder to obtain the
knowledge representation for each utterance, fol-
lowed by concatenating the knowledge representa-
tion and the original utterance feature as the final
utterance representation. For UECA-Prompt, we
place the commonsense knowledge after each utter-
ance, and the whole conversation is then fed into
the model together. All the models are initialized
with parameters from the pre-trained BERT-base4

or BART-base for a fair comparison.

3.3 Main Results

In Table 2, we report the results of different meth-
ods on the ECTEC task. To better compare these
methods, we also report the F1 scores of two sub-

4https://github.com/google-research/bert or
https://huggingface.co/bert-base-cased
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Method ECF RECCON

Ang. Dis. Fear Joy Sad. Sur. 6 Avg. 4 Avg. Ang. Dis. Fear Joy Sad. Sur. 6 Avg. 4 Avg.

SHARK 28.65 10.42 5.33 40.41 25.35 40.45 32.24 34.33 27.00 12.88 42.65 46.88 31.09 32.18 39.82 40.53
- w/o GAL 27.77 7.65 5.37 38.97 25.50 39.35 31.25 33.42 25.51 16.23 40.76 46.52 30.17 35.12 39.54 40.19
- w/o DGM 29.24 10.01 8.41 38.37 26.73 40.00 32.02 34.03 25.11 15.66 35.66 47.01 30.72 34.64 39.68 40.45
- w/o retrieved CSK 28.85 6.26 4.65 40.66 24.08 38.16 31.40 33.70 26.50 15.59 37.84 46.83 30.53 32.67 39.67 40.39
- w/o generated CSK 27.45 7.31 8.88 39.34 26.09 37.48 31.05 33.13 24.89 15.94 40.54 46.63 31.33 31.42 39.33 39.97
- w/o CSK 26.76 10.90 5.52 37.70 26.71 39.84 31.12 33.09 22.32 13.58 43.75 47.08 29.20 35.82 39.30 39.94
- w/o auxiliary task 28.74 7.66 4.00 38.77 26.65 35.33 30.75 32.92 28.03 12.51 33.97 45.34 27.22 32.68 38.52 39.35

Table 4: Ablation study on two datasets. “GAL” and “DGM” denotes the knowledge-aware graph attention layer
and the dual-view gate mechanism, respectively.

tasks including emotion extraction and cause ex-
traction in Table 3. Note that the weighted F1 for
emotion extraction is evaluated based on the emo-
tion categories in the predicted triplets, rather than
the predictions from the auxiliary task.

Results on ECTEC. First, it is clear that the E2E
methods significantly outperform ECPE-2steps,
which shows the superiority of the joint E2E frame-
work in addressing the ECTEC task compared to
the two-step pipeline framework. Second, BART
achieves comparable performance to other base-
line methods, indicating the feasibility of the in-
dex generation framework to solve ECTEC. Third,
the introduction of CSK on the baseline methods
does not lead to significant improvements, and
ECPE-2D + CSK, UECA-Prompt + CSK even per-
form worse on the two datasets. This suggests that
simply concatenating knowledge may bring much
noise, and it is necessary to explore more effec-
tive approaches for knowledge fusion. Finally, we
can clearly observe that our proposed SHARK ob-
tains the best results and performs much better than
BART, which demonstrates the effectiveness of our
framework and reveals the benefits of incorporating
CSK into the ECTEC task.

Results on two subtasks. Similar to the conclu-
sions drawn on ECTEC, incorporating knowledge
into the baseline methods through simple concate-
nation may lead to a performance decline. How-
ever, SHARK greatly outperforms other methods on
both subtasks, further validating the effectiveness
of our framework and the necessity of knowledge
fusion. Furthermore, given that the relation types of
CSK we selected (xReact and oReact) are directly
related to emotions, SHARK shows significant im-
provement over BART primarily on the emotion
extraction subtask.

3.4 Ablation Study

To investigate the impact of individual modules
on the overall performance, we conduct an abla-
tion study of SHARK for the ECTEC task, and the

Method ECF → RECCON RECCON → ECF

6 Avg. 4 Avg. 6 Avg. 4 Avg.

ECPE-2steps 25.95 27.35 16.03 17.46
ECPE-2steps + CSK 27.12 28.54 17.19 18.68
ECPE-2D 28.82 30.38 16.36 17.82
ECPE-2D + CSK 28.71 30.28 15.52 16.85
UECA-Prompt 28.87 29.77 17.60 18.74
UECA-Prompt + CSK 27.92 28.83 15.69 16.28
BART 35.91 37.12 18.04 19.26
SHARK (Ours) 36.56 37.68 18.70 19.87

Table 5: Cross-dataset evaluation for ECTEC. “A → B”
refers to training on dataset A and testing on dataset B.

experimental results are shown in Table 4.
We can see that removing different modules

from SHARK leads to varying degrees of perfor-
mance degradation. Specifically, discarding the
auxiliary task has the largest impact on perfor-
mance, indicating that ERC is helpful for triplet
extraction. Moreover, removing the generated CSK
has a greater negative effect compared to removing
the retrieved CSK. This suggests the ability of the
pre-trained knowledge model to generate relevant
and informative commonsense knowledge, which
is beneficial to emotion-cause understanding. Fur-
thermore, the significant performance drop when
both sources of external knowledge are disregarded
highlights the importance of incorporating knowl-
edge into the ECTEC task.

3.5 In-Depth Analysis
Cross-dataset Analysis. To compare the general-
ization of each method, we conduct cross-dataset
testing between ECF and RECCON, and report the
results in Table 5.

An obvious observation is that the performance
of all the methods significantly deteriorates when
tested on a different dataset. This indicates that
training a model on one dataset does not ensure
good adaptation to other datasets. However, in
comparison with other methods, BART and SHARK
show great advantages across different datasets, es-
pecially SHARK outperforms others by at least 7%
on 4 avg. F1 under the ECF→RECCON setting,
which demonstrates the strong generalization abil-
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Method num_utt ≤ 10 num_utt > 10

6 Avg. 4 Avg. 6 Avg. 4 Avg.

ECPE-2D 33.56 37.41 29.41 31.71
ECPE-2D + CSK 32.84 36.61 29.10 31.37
BART 31.45 34.50 29.91 32.03
SHARK (Ours) 33.68 36.16 31.49 33.46

Table 6: Performance comparison of different methods
for conversations with varying numbers of utterances
from the test set of ECF.

Method Ang. Dis. Fear Joy Sad. Sur. 6 Avg. 4 Avg.

ChatGPT (0-shot) 13.19 21.62 28.57 24.14 14.29 16.95 18.32 17.89
ChatGPT (5-shot) 14.81 20.00 0.00 33.33 26.92 15.69 22.18 22.76
SHARK (Ours) 18.72 5.06 0.00 39.03 12.89 37.36 27.19 29.23

Table 7: Performance comparison of ChatGPT and our
framework on 50 conversations from the test set of ECF.

ity and high robustness of our framework. More-
over, we find that models trained on ECF can adapt
to RECCON well, while models trained on REC-
CON perform poorly on ECF. We conjecture the
reason is that the conversations in ECF come from
TV series that are close to the real world, which
involve informal text and complex scenes; while
RECCON consists of human-generated conversa-
tions that are simpler and more formal, thus weak-
ening the generalization of the model.

The Impact of Conversation Length. We con-
duct further analysis to explore the impact of differ-
ent conversation lengths, i.e., separately evaluating
the predictions for conversations with varying num-
bers of utterances from the test set of ECF. As
shown in Table 6, we can observe that our gener-
ative models perform much better than encoder-
based methods on conversations with more than 10
utterances, which account for about 42.65% in the
ECF dataset. In these long conversations, encoder-
based methods often fail to fully consider the con-
textual information and ignore a number of triplets,
while our generative models tend to comprehen-
sively capture the context, effectively capturing a
broader range of triplets.

Comparison with ChatGPT. Considering the
remarkable performance of large language models
in various NLP tasks, we further apply ChatGPT to
the ECTEC task under zero-shot and few-shot set-
tings. Specifically, we randomly selected 50 conver-
sations from the test set of ECF, and then fed each
test conversation and a task-instruction prompt into
ChatGPT to obtain the predicted emotion-cause
triplets. Table 7 presents the 0-shot and 5-shot
results of ChatGPT. It is obvious that SHARK per-
forms significantly better than ChatGPT in both
zero-shot and few-shot settings. We conjecture that
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Figure 3: The F1 change curve with different beam size.

due to the complexity of extracting three elements
(i.e., emotion, cause, and category) in the ECTEC
task, the performance of ChatGPT is not satisfac-
tory.

Sensitivity Analysis of Beam Size. In order
to investigate the impact of beam size on our
SHARK model, we conduct experiments with dif-
ferent beam sizes, and the results are shown in
Figure 3. The F1 curves exhibit slightly different
trends on the two datasets, but a beam size of 4 is
the optimal choice for both datasets.

3.6 Case Study
To show the advantage of our SHARK model, we
compare its predictions with the output of three
baseline systems on a test sample. As shown in
Figure 4, ECPE-2D and ECPE-2D + CSK only cor-
rectly identify two emotion-cause-category triplets,
i.e., “(U2,U1,surprise)” and “(U2,U2,surprise)”.
Moreover, our base model BART can further iden-
tify another triplet “(U1,U1,surprise)”, but still ig-
nores “(U4,U1,surprise)” due to the long-term de-
pendency between U4 and U1. In contrast, with
the help of the CSK, SHARK correctly extracts all
the four triplets. These observations show the ef-
fectiveness of the proposed generative model and
CSK for the ECTEC task.

4 Related Work

4.1 Emotion Cause Analysis
Emotion Cause Analysis (ECA) has attracted in-
creasing attention in recent years. It contains two
representative subtasks: emotion cause extraction
(ECE) and emotion-cause pair extraction (ECPE).
ECE aims to extract the potential causes given the
emotions (Lee et al., 2010a,b; Gui et al., 2016a,b,
2017; Fan et al., 2019); ECPE was proposed to
jointly extract the emotions and the correspond-
ing causes in pairs, thereby solving the problem of
ECE’s emotion annotation dependency (Xia and
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Generated xReact
Retrieved xReact
Generated oReact
Retrieved oReact

Joey: Ohh... I wonder if it is that dude. 😲U1

Joey: Yeah. 😐U3

Monica: There is a dude? U2😲

Phoebe: Who? Who is it? U4😲

Ground Truth (U1,U1,surprise), (U2,U1,surprise), 
(U2,U2,surprise), (U4,U1,surprise)

ECPE-2D (U1,U1,sadness), (U2,U1,surprise),
(U2,U2,surprise)

ECPE-2D + CSK (U2,U1,surprise), (U2,U2,surprise)

BART (U1,U1,surprise), (U2,U1,surprise),
(U2,U2,surprise), (U3,U2,surprise)

SHARK (U1,U1,surprise), (U2,U1,surprise),
(U2,U2,surprise), (U4,U1,surprise)

Joey feels curious, worried, confused. 
Joey feels happy, recognized, looked at. 

Phoebe feels happy, curious, confused. 
Phoebe feels proud, proud, excited. 

Others feel confused, curious, surprised. 
Others feel confused. 

Figure 4: Comparison of predictions on a test sample.

Ding, 2019). Much research has been conducted
on the ECPE task. Xia and Ding (2019) first pro-
posed a two-step framework ECPE-2steps, which
first extracts an individual emotion set and cause
set, and then pairs the corresponding emotions and
causes. Following their work, many end-to-end
approaches have been proposed to address the lim-
itations of the pipeline architecture. One line of
work focuses on multi-task learning using a joint
modeling framework (Ding et al., 2020a,b; Wei
et al., 2020; Fan et al., 2020; Chen et al., 2022). An-
other line of work transforms ECPE into a unified
sequence labeling problem and designs novel tag-
ging schemes (Yuan et al., 2020; Chen et al., 2020;
Cheng et al., 2021; Fan et al., 2021). More recently,
several studies attempted to address the ECPE task
with prompt-based methods (Zheng et al., 2022)
and machine reading comprehension-based meth-
ods (Zhou et al., 2022; Cheng et al., 2023).

4.2 Emotion Analysis in Conversations
Emotion recognition in conversations (ERC) is a
hot-spot task in sentiment analysis, which aims to
assign emotion labels to all the utterances in a con-
versation. Due to the increasing amount of public
conversational data (Busso et al., 2008; Li et al.,
2017; Poria et al., 2019; Firdaus et al., 2020), ERC
has received continuous attention in the field of af-

fective computing (Majumder et al., 2019; Ghosal
et al., 2020; Zhu et al., 2021; Song et al., 2022).

Recent years have witnessed a shift from ERC to
ECAC. Poria et al. (2021) introduced an interesting
task of recognizing emotion cause in conversations,
aiming to find the causes behind the given emo-
tions in the conversation, and constructed a new
dataset RECCON. Several works for the CEE sub-
task have subsequently emerged (Li et al., 2022a;
Zhang et al., 2022; Zhao et al., 2023; Gu et al.,
2023). Furthermore, Li et al. (2022b) and Jeong
and Bak (2023) attempted to extract emotion and
causes in conversations simultaneously, and Wang
et al. (2022) introduced the ECTEC task. How-
ever, the aforementioned encoder-only models for
ECPEC mainly solve the task in a pipeline man-
ner (independently predicting emotions and causes
before matching, or first predicting emotions and
then using the emotion predictions to infer causes),
which suffer from error propagation. In contrast,
our proposed generative framework enables end-
to-end triplet generation, which can extract all the
emotion-cause-category triplets from a conversa-
tion in one shot.

5 Conclusion

In this paper, we proposed a commonSense
knowledge-enHanced generAtive fRameworK
named SHARK for the Emotion Cause Triplet Ex-
traction in Conversations (ECTEC) task. Specifi-
cally, we formulated the ECTEC task as an index
generation problem and employed a BART-based
model to generate all the emotion-cause-category
triplets in one shot. Moreover, we designed a dual-
view gate mechanism and a graph attention layer
to incorporate both the retrieved and generated
commonsense knowledge. Experimental results
on two benchmark datasets show the superiority of
SHARK over a number of comparison systems and
the usefulness of commonsense knowledge.

Limitations

Although the proposed SHARK model has ob-
tained state-of-the-art performance on two bench-
mark datasets for the ECTEC task, our work still
suffers from the following limitations.

First, we only consider the commonsense knowl-
edge under two relation types, i.e., xReact and oRe-
act, and thus design a dual-view gate mechanism
to better capture the intra-speaker and inter-speaker
interactions. However, there are other causal rela-
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tions that may help cause inference, such as xWant
and oWant. We plan to incorporate the other related
causal relations into our generative framework in
the future. Second, it might be interesting to ex-
plore the potential of incorporating commonsense
knowledge for different modalities to boost the per-
formance of the Multimodal ECTEC task.
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