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Abstract
We investigate the problem of generating in-
structions to guide humans to navigate in simu-
lated residential environments. A major issue
with current models is hallucination: they gen-
erate references to actions or objects that are
inconsistent with what a human follower would
perform or encounter along the described path.
We develop a model that detects these hallu-
cinated references by adopting a model pre-
trained on a large corpus of image-text pairs,
and fine-tuning it with a contrastive loss that
separates correct instructions from instructions
containing synthesized hallucinations. Our fi-
nal model outperforms several baselines, in-
cluding using word probability estimated by the
instruction-generation model, and supervised
models based on LSTM and Transformer.

1 Introduction

Performance of neural-network-based models on
generating navigation instructions is substantially
inferior to that of humans (Zhao et al., 2023). These
models often hallucinate, generating references to
objects or actions that do not exist or are impossi-
ble to execute in the environment. Similar behavior
has been observed in language models in other
domains of text generation (Raunak et al., 2021;
Ji et al., 2023; Xiao and Wang, 2021; Lee et al.,
2018; Guerreiro et al., 2022; Rawte et al., 2023).

Instructions containing hallucinations can con-
fuse or misdirect humans, leading to frustration
and sometimes even catastrophic mistakes. Detect-
ing hallucinations is therefore essential to improve
instruction generation models and inform risk to
human users. Nevertheless, ground-truth word-
level hallucination labels are typically not readily
available in this domain. Meanwhile, hiring crowd-
workers to annotate instructions can be very costly
(Anderson et al., 2018b; He et al., 2021; Wang
et al., 2022; Gao et al., 2022).

We propose a data-efficient weakly supervised
approach to hallucination detection. Our approach

reduces the necessary supervision in two ways.
First, we leverage a pre-trained vision-language
model (Guhur et al., 2021) that has learned
transferable representations of path-instruction
pairs through self-supervised learning. Second,
we introduce data-augmentation strategies to
create synthetic data with “free” hallucination
labels. We fine-tune the pre-trained model
with the synthesized data using a contrastive
learning objective to learn representations that
separate positive examples (hallucinations) from
negative examples (non-hallucinations). Our
model outperforms various baselines in terms
of F-1 scores on human-annotated evaluation
data, beating an LSTM- and a Transformer-based
models by 6.2 and 10.0 points, respectively.
Ablation studies demonstrate the effectiveness
of the proposed self-supervised pre-training and
contrastive fine-tuning approach. We release the
code, models, and data at https://lingjunzhao.
github.io/hallucination_detection.html.

2 Related Work

Hallucination detection. Neural sequence to se-
quence models are prone to generate hallucinations,
where the outputs are inconsistent with the inputs
or the environments (Müller et al., 2019; Maynez
et al., 2020; Wiseman et al., 2017; Martindale et al.,
2019; Durmus et al., 2020; Ji et al., 2023). Recent
work largely focuses on text-only domains (Wang
and Sennrich, 2020; Zhou et al., 2020; Chen et al.,
2021; Dale et al., 2022; Xu et al., 2023; Nie et al.,
2019; Falke et al., 2019; Kryściński et al., 2019;
Rebuffel et al., 2022; Liu et al., 2021; van der Poel
et al., 2022) and image captioning (Rohrbach et al.,
2018; Dai et al., 2022; Biten et al., 2022; Li et al.,
2023; Gunjal et al., 2023). To the best of our knowl-
edge, our work is the first study of hallucination in
grounded instruction generation.
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Grounded Instruction Generation. Instruction
generation has been commonly studied in naviga-
tion settings (Anderson et al., 1991; Byron et al.,
2010; Koller et al., 2010; Striegnitz et al., 2011;
Goeddel and Olson, 2012; Fried et al., 2017, 2018;
Wang et al., 2022; Kamath et al., 2022). Recent
work by Zhao et al. (2023) reveals a significant gap
between the performance of models and humans.
Our work constructs a model that can be useful for
evaluating and enhancing instruction-generation
models. Huang et al. (2019) and Zhao et al. (2021)
train LSTM-based discriminative models with
contrastive learning to score instructions. We
follow a similar approach but focus on identifying
word-level hallucinations, and effectively leverage
a large pre-trained Transformer model.

3 Problem Setting

Grounded instruction generation. Our task
takes place in an environment, where a speaker
model S(u | r) composes an instruction u to com-
municate an imaginary trajectory r to a follower
so that the latter can generate the same trajectory
in the environment. An instruction is a sequence
of words ui, whereas a trajectory is a sequence
of observations ot and actions at. We employ the
Matterport3D simulator for experiments (Ander-
son et al., 2018b) which embeds a follower in a 3D
model of a real-world residential building. The ob-
servation ot of the follower comprises of an RGB
image representing the panoramic view at a loca-
tion in a building, and orientation features encoding
the follower’s gaze direction. Each action at moves
the follower to a new location close to where it is
standing and changes its observation.

Speaker model. We follow Zhao et al. (2023) to
train a T5-based (Raffel et al., 2020) speaker model.
This model encodes a trajectory into a sequence of
hidden vectors and applies multi-headed attention
on those vectors to generate an instruction auto-
regressively. It is trained on the Room-to-Room
(R2R) dataset provided by the Matterport3D simu-
lator. Detail about the model is provided in §A.1.

Hallucination in grounded instruction. Instruc-
tions generated by our speaker model often contain
words that are inconsistent with the input trajectory.
We refer to those words as hallucinations. Similar
to prior work (Zhou et al., 2020), we observe two
types of hallucinations:

• Intrinsic hallucination is a word that needs to

be replaced because it inaccurately describes
an observation or action. For example, an in-
struction says “Walk past the reception desk
and out the door on the right,” but in the de-
scribed trajectory, the door is on the left;

• Extrinsic hallucination is a word that needs to
be removed because it has no correspondence
in the input trajectory. Our model typically ex-
hibits this type of hallucination by repeatedly
generating the same sentence, e.g., “Walk out
of the office. Walk into the hallway and turn
left. Walk into the hallway and turn left.”

We formulate hallucination detection as binary
classification: given an input x = (r,u, i) consist-
ing of a trajectory r, an instruction u, and an index
i ∈ {1, · · · , |u|}, decide whether the word ui is a
hallucination, i.e. whether it should be replaced or
removed to make u consistent with r.

Candidate selection. For each instruction, we
identify a set of candidate words for classification,
which are (a) directional words like left, right, etc.
(see §A.2 for a full list) as well as (b) nouns identi-
fied by the SpaCy part-of-speech tagger (Honnibal
and Montani, 2017).

4 Hallucination Detection Model

4.1 Architecture

We learn a classifier C(y = 1 | x = (r,u, i))
to decide whether a word ui is hallucinated. Our
model is based on the Airbert model (Guhur et al.,
2021), which inherits the ViLBERT architecture
(Lu et al., 2019). An overview of the model is
given in Figure 1. It implements two Transformers:
one encodes the instruction u and the other
encodes the trajectory r. We wrap the word to
be classified ui between a pair of special tokens
([BH] and [EH]). Let hlang be the output of the
language-encoding Transformer, and hvision be that
of the vision-encoding Transformer. The model
computes a score function s(x) = s(r,u, i) =
w⊤(hlang ⊙ hvision), where w is a learnable vector,
and ⊙ denotes element-wise multiplication. More
details about the model are given in §A.1.

4.2 Learning approach

Self-supervised pre-training. Instead of learn-
ing from scratch, we fine-tune a pre-trained check-
point of the Airbert model. The checkpoint was
first trained on a large collection of 1.4M images
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Figure 1: Our hallucination detection model, which takes as input an instruction with a target word and determines
whether it should be replaced or removed to be consistent with a visual trajectory. To build this model, we fine-tune
pre-trained Airbert (Guhur et al., 2021) with a contrastive learning objective.

and 0.7M captions collected from AirBnB. It was
subsequently adapted for a trajectory-instruction
compatibility estimation task using the Room-to-
Room dataset. The objective in each phase com-
bines BERT-style pre-training (mask and pair pre-
diction) with contrastive learning. We refer the
readers to the original paper for an elaborate de-
scription of the pre-training phase.

Contrastive fine-tuning. We assume a dataset of
contrastive pairs (x+,x−). The positive and neg-
ative examples of a pair have the same trajectory
r and word index i, but differ in the instruction
u. The classified word in x− is a hallucination,
whereas that in x+ is not. For each pair, we com-
pute the model scores s(x+) and s(x−), and con-
struct the softmax distribution p̂ = Softmax(s)
where s = (s(x+), s(x−)). We then train the
model to recognize the positive example by min-
imizing the cross entropy between p̂ and p⋆ =
(1, 0). This objective effectively forces the repre-
sentation of the trajectory to be similar to that of
the positive instruction and dissimilar to that of the
negative instruction. At inference time, we define
the hallucination detection classifier as C(x) =
1− σ(s(x)), where σ is the sigmoid function.

4.3 Synthesizing data creation

Even for fine-tuning, acquiring human-labeled data
can be prohibitively expensive. For evaluation, we
manually annotated a small sample of labels (§5).
The annotation process was laborious, with an av-
erage time of 30 minutes required to annotate just
10 instructions. Based on our calculations, with a
compensation of 15 USD per hour, it would cost
approximately 9,000 USD to hire crowd workers to
annotate all instances (∼12,000) in the R2R train-

ing set. Thus, we propose a more cost-effective
methodology for generating training data.

Synthetic negative examples. We start with a
training example (u+, r) in the Room-to-Room
training set and modify the human-written instruc-
tion u+ to create instructions with hallucinations.
We first extract the candidate words in the instruc-
tion (§3). To create an intrinsic hallucination, we
choose a candidate word and apply the following
procedure:

• If the word is a direction, we replace it with
an alternative direction. E.g., “Walk downup
one flight of stairs and stop on the landing.”;

• If it is a room, we substitute it with another
room randomly selected from a pre-composed
list. E.g., “Exit the bedroom balcony via the
farthest left. Walk toward the couch. Stop
there.”;

• Otherwise, we swap it for another word in
the instruction that is neither a direction nor a
room. E.g., “Exit the bedroom using the door
step on the left then go straight until you get to
the stairs and wait on the second step door.”

Using this procedure, we first generate an intrin-
sic hallucination in u+ to synthesize u−. Then,
with a probability of 0.5, we synthesize another
intrinsic hallucination in each of u+ and u−. This
step makes the training instructions more similar
to the test-time inputs, which may contain multiple
intrinsic hallucinations as they are generated by
imperfect speaker models.

To create an instruction with extrinsic hallu-
cinations, we append a sentence, taken from u+

or another instruction, to the end of a random
sentence in u+. For example: “Walk out of the
office. Walk into the hallway and turn left. Walk
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Model F-1 Precision Recall

Random 16.6 13.4 21.7
Speaker model probability 29.5 20.9 50.0
LSTM-based encoder-decoder 38.7 37.4 40.2
T5-small (Transformer-based encoder-decoder) 33.9 26.5 46.7
T5-base (Transformer-based encoder-decoder) 34.9 25.2 56.5
Fine-tuned Airbert (ours) 44.9 42.3 47.8

Table 1: Performance on the test set of our proposed hallucination detection model and various baselines. The
decision threshold of each model is selected to maximize F-1 score of hallucination labels on the development set.
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Figure 2: The effectiveness of self-supervised pre-
training and contrastive fine-tuning. Results are F-1
scores of hallucination labels on the test set.

into the hallway and turn left.”. Every word in
the added sentence is considered an extrinsic
hallucination. We do not create additional intrinsic
hallucinations in the instruction.

Alleviating input-distribution shift. Model
trained only on human-written instruction may
perform poorly on model-generated instructions.
Therefore, we also include “high-quality” model-
generated instructions on the R2R training set as
positive examples and apply the same strategies
to generate negative examples. The quality of an
instruction is measured by the success rate of an
ensemble of VLN⟳ BERT instruction-following
agents (Hong et al., 2021) in recreating the de-
scribed trajectory. We consider a model-generated
instruction to be of high quality if at least 80%
of the ensemble agents can successfully reach the
final location in the described trajectory.

5 Experiments

Data. Following the procedure described in §4.3,
we generate a training set of 325,346 contrastive
pairs. For evaluation, we use the same 75 eval-
uation trajectories in (Zhao et al., 2023) to form
the test set. We randomly select another set of 20
trajectories in the R2R validation seen set for devel-
opment. The environments in which the evaluation
trajectories are generated are a subset of the train-

ing environments. We use the speaker model to
generate instructions from these trajectories. The
first two authors then manually annotate word-level
hallucinations, creating 209 development examples
and 632 test examples. The final labels are de-
cided by mutual agreement. We choose the deci-
sion threshold of a model to maximize its F-1 score
on the development set.

Baselines. (i) random classifier assigns a label
chosen uniformly at random, (ii) speaker model
probability defines the hallucination probability
C(x) = 1 − S(ui | r;u<i) where x = (r,u, i),
S is the speaker model (§ 3), and u<i is the
instruction generated up to step i− 1 for the input
r; (iii) LSTM and (iv) T5 are binary classifiers
learned under a standard maximum-likelihood
objective. They implement an encoder-decoder
architecture based on LSTM and Transformer,
respectively, and are trained using the same
synthetic dataset as our proposed model. These
models are initialized with random parameters.
The detailed implementations and hyperparameters
of all models are given in §A.1.

Main results (Table 1). The speaker-model-
probability is a remarkably strong baseline,
despite not trained for hallucination detection.
Its performance is on par with that of T5, which
is the same model but trained specifically for
hallucination detection. The LSTM-based model
outperforms the T5-based models. Scaling up the
size of the T5 model improves the recall score by
10 points. Our proposed model (fine-tuned Airbert)
beats all baselines by wide margins in terms of
F-1 score for hallucination labels, (+10.0 versus
T5-base, +6.2 versus LSTM). It excels in precision
compared to the baselines. We also include results
on the development set in §A.3.
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Model highlight: Walk 
up the steps and turn 
right . Walk up the steps 
and turn right … 
Gold highlight: Walk up 
the steps and turn right 
. Walk up the steps and 
turn right … 

(a) Success on detecting extrinsic hallucination: the second
sentence should be removed entirely; the model marks all the
candidate words in the sentence.

Model highlight: … 
Walk past the bed and 
exit the bedroom … 
Gold highlight: … Walk 
past the bed and exit 
the bedroom … 

(b) Success on detecting intrinsic hallucination: the correct
direction is to go to the left side of the bedroom, not exiting it.

Model highlight: Walk 
past the couch and stop 
in front of the TV 
Gold highlight: Walk 
past the couch and stop 
in front of the TV

(c) Model misidentifies the stopping location due to lacking
depth information: the TV in the far left corner looks to be
close to the true stopping location.

Model highlight: Walk 
down the hallway and 
stop in the first doorway 
on your left 
Gold highlight: Walk 
down the hallway and 
stop in the first doorway 
on your left

(d) Ambiguous direction: a slight left turn that appears like a
straight walk in this viewpoint.

Figure 3: Some successful and failure cases of the fine-tuned Airbert model. The blue arrow indicates the described
path, and the green represents the next location.

Ablation studies (Figure 2). Our results confirm
that self-supervised pre-training and contrastive
fine-tuning are requisite to the performance of our
model. Without pre-training, our model is just as
bad as the LSTM-based model. We also compare
fine-tuning via contrastive learning with fine-tuning
via a maximum-likelihood learning. In the latter ap-
proach, the model simply takes as input an example
(r,u, i) and learns to directly predict the true label.
The approach underperforms contrastive learning
by 4.9 F-1 points. Our finding aligns with previous
work (Gunel et al., 2021; Zhang et al., 2021; Goyal
et al., 2023), suggesting that contrastive learning
is effective not only as a representation learning
objective, but also as a classification objective.

Error and Qualitative Analysis. In Table 2, we
break down the performance of our model by word
type. Our model struggles with detecting room
and object hallucinations, indicating that its un-
derstanding of visually grounded words is lacking.
Especially, it has relatively low recall on object hal-
lucinations, potentially due to lack of diversity of
this word type in the training data. Figure 3 shows
a few successful and failure examples of our model.

6 Conclusion

This work is an early attempt to address the hallu-
cination issue in grounded instruction generation.
We have shown that techniques like self-supervised

Type F1 Precision Recall

Direction 48.1 41.9 56.4
Room 38.9 38.9 38.9
Object 38.7 50.0 31.6

Table 2: Fine-tuned Airbert performance broken down
by word type. Results are on test set.

pre-training on multimodal data and contrastive
fine-tuning on synthetic data are promising scal-
able approaches. We hope that these directions can
be further developed in future work.

Limitations

Despite the effectiveness of the data generation
method, this approach requires substantial domain-
specific knowledge. Our method, particularly to
generate directional hallucinations, is based on
heuristics and does not take into account the ac-
tual environment. Another limitation is the small
size of the evaluation datasets due to the expensive
cost of annotation.
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A Appendices

A.1 Models

Speaker. The speaker model takes as input a tra-
jectory and computes a distribution over instruc-
tions. To encode a trajectory r, following prior
work (Shen et al., 2021; Zhao et al., 2023), we
convert each panoramic observation ot into a col-
lection of 36 images that represent the first-person
views obtained from 36 gaze directions. We feed
these into a pre-trained vision model (Radford et al.,
2021) to obtain a set of view vectors {oi

t}36i=1. For
each action at, which corresponds to an adjacent
location, let k ∈ {1, · · · , 36} be the direction to-
wards that location and let θ = (θhor, θver) be the
horizontal and vertical angles of that direction. We
represent at by concatenating the visual features
ok
t with the directional features [cosθ, sinθ]. The

sequence of observation and action representations
is fed into a Transformer encoder to produce a se-
quence of hidden vectors. A transformer decoder
then applies multi-headed attention to those vectors
and generates an instruction u auto-regressively.

Airbert model. The input of the classifier is a
trajectory r and an instruction u. The instruction
has the following format:

[
[CLS], u1, . . . , [BH], ui, [EH], . . . , u|u|, [SEP]

]

where the word to be classified ui is enclosed
by special tokens [BH] and [EH], and the [CLS]
and [SEP] tokens mark the beginning and the end.
Each token are replaced by a sum of a token em-
bedding and a positional embedding. We pass this
sequence of embeddings into a Transformer.

For the trajectory, the model extracts from
a panoramic view ot a set of image regions
{o(j)

t }Kj=1 and represents the sequence of obser-
vations as:

[ [IMG],o
(1)
1 , . . . ,o

(K)
1 , [IMG],o

(1)
2 , . . . ,o

(K)
2 ,

· · · , [IMG],o(1)
T , . . . ,o

(K)
T ]

where [IMG] is the embedding of an observation-
separating token. Each image region o

(j)
t is con-

verted into a visual embedding, which is an addi-
tion of three embeddings: visual embedding (com-
puted by a Faster R-CNN model (Anderson et al.,
2018a)), directional embedding, and region-index
embedding. We feed the sequence of visual embed-
dings into a second Transformer.

Let hlang be the output at the position of the
[CLS] token of the language-encoding Trans-
former, and hvision be the output at the position of
the first [IMG] token of the vision-encoding Trans-
former. The score function s(x) is defined as:

s(x) = s(r,u, i) = w⊤(hlang ⊙ hvision)

where w is a learnable vector, and ⊙ denotes
element-wise multiplication.

T5. This model is the same as the speaker model.
However, instead of generating an instruction, it
computes a score s(x) like the Airbert model. The
input x is also a tuple (r,u, i). The instruction u
has the same format as in the case of the Airbert
model, with the word to be classified surrounded by
two special tokens. Let {hj}|u|j=1 be the sequence
of hidden vectors obtain after decoding the input
instruction. We compute the mean vector h =
1
|u|

∑|u|
j=1 hj . The score is computed as s(x) =

w⊤h, where w is a learnable vector.

LSTM. This model is similar to the T5 model
except that the encoder and decoder are LSTMs.

Hyperparamters and Computation. The hyper-
parameters and computation cost of all models are
listed in Table 3.

A.2 Word replacement

We compiled a list of direction words and divided
them into groups (Table 4). When constructing a
negative example, if a word is selected, a replace-
ment is randomly selected among the remaining
words in the same group.

Our compiled list of rooms to generate synthetic
examples are: { “laundry room”, “mudroom”,
“family room”, “balcony”, “utility
room”, “tool room”, “entryway”, “foyer”,
“lobby”, “library”, “bathroom”, “bar”,
“spa”, “sauna”, “living room”, “other
room”, “staircase”, “garage”, “hallway”,
“office”, “classroom”, “outdoor areas”,
“meeting room”, “conference room”,
“dining room”, “lounge”, “bedroom”,
“porch”, “terrace”, “deck”, “driveway”,
“kitchen”, “toilet”, “workout room”,
“exercise room”, “gym”, “tv room”,
“recreation room ”, “game room”,
“closet”, “junk”, “study”, “guest room”,
“music room”, “home theater”, “sunroom”,
“conservatory”, “playroom”, “pantry”,
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Hyperparameters Fine-tuned Airbert T5 LSTM Speaker Model

Learning rate 10−5 10−4 10−4 10−4

Batch size 128 64 64 32
Optimizer AdamW AdamW AdamW AdamW
Num. of training iterations 5× 105 6× 105 3× 105 16× 104

Max. instruction length 60 80 80 80
Image feature size 2048 512 512 512
Embedding dropout 0.1 0.3 0.3 0.3
Hidden size 768 512 512 512
Num. of Transformer/LSTM layers 12 4 2 4
Transformer/LSTM dropout rate 0.1 0.2 0.5 0.3
Num. of parameters (million) 250M 57M (small), 120M (base) 8M 57M
Computation and training time RTX A4000: 72h RTX A6000: 72h RTX A6000: 48h RTX A6000: 48h

Hallucination Threshold 0.92 0.98 0.98 0.42

Table 3: The hyperparameters of all models. For the T5 models, we use decoders with two layers, which improve
the performance compared to the original decoders.

Direction Type Candidate Words

Horizontal left right
front back
forward backward
towards away from
through past
leftmost rightmost

Vertical bottom middle top
up down
above under

Location enter exit
into out of
inside outside
first second third

Table 4: Directional word list. Each row shows a group
of words.

“storage room”, “attic”, “basement”,
“gallery”, “greenhouse”, “yoga studio”,
“meditation room”, “stairs”, “staircase”,
“floor” }. These are based on room labels in
the Matterport3D dataset (Chang et al., 2017) and
suggestions of GPT-4 (OpenAI, 2023).

A.3 Results on development set (Table 5)

Model F-1 Precision Recall

Random 20.4 20.0 20.8
Speaker probability 45.5 37.3 58.3
LSTM 34.0 32.7 35.4
T5-small 44.9 34.4 64.6
T5-base 40.0 28.6 66.7
Fine-tuned Airbert 57.1 50.0 66.7

Table 5: Performance on the development set of all
models.
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