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Abstract

We introduce ECHO (Event Causality In-
ference via Human-Centric Reasoning), a di-
agnostic dataset of event causality inference
grounded in visio-linguistic social scenarios.
ECHO employs real-world human-centric de-
ductive information built on a television crime
drama. ECHO requires the Theory-of-Mind
(ToM) ability to understand and reason about
social interactions based on multimodal infor-
mation. Using ECHO, we propose a unified
Chain-of-Thought (CoT) framework to assess
the reasoning capability of current AI systems.
Our ToM-enhanced CoT pipeline accommo-
dates various large foundation models in both
zero-shot and few-shot visio-linguistic reason-
ing. We use this framework to scrutinize recent
large foundation models such as InstructGPT
and MiniGPT-4 on three diagnostic human-
centric tasks. Further analysis demonstrates
ECHO as a challenging dataset to expose im-
perfections and inconsistencies in reasoning.
Our data and code are publicly available at
https://github.com/YuxiXie/ECHo.

1 Introduction

Social intelligence refers to the ability to under-
stand, navigate, and respond effectively in social
scenarios. As a widely investigated concept in psy-
chology and social sciences, it has become a promi-
nent facet of artificial intelligence (Walker and Fo-
ley, 1973; Kihlstrom and Cantor, 2000; Albrecht,
2006; Zadeh et al., 2019). In the development of
social intelligence, humans gain the crucial cogni-
tive capacity of understanding and reasoning about
the mental states (i.e., beliefs, desires, intentions,
emotions, and thoughts) of individuals. This piv-
otal form of competence is commonly denoted as
Theory-of-Mind (ToM) (Premack and Woodruff,
1978; Apperly and Butterfill, 2009; Apperly, 2010).
As a fundamental ability of social commonsense
reasoning (Davis, 2023), ToM is important for ma-
chine reasoning to achieve artificial general intelli-

Theory-of-Mind

Grissom stands in front of Paige and Gina.


Grissom 

We’re ruling out suicide. The evidence leads 
us to believe that it was in fact a homicide.

Paige closes her eyes for a moment. Gina stands behind her, 
holding back her tears.


Paige

Then he was murdered?


Grissom I believe so.


Paige

You know … this may sound funny 
but I feel better knowing that he 
didn’t take his own life …

calmness
sympathy sadness

Chain-of-Thought
Grissom sympathises with Paige as he sees how 

upset she is over the death of her loved one


Grissom 

We'll find him, Ms. I promise you. 
There is always a clue. I'll find it.

Figure 1: Scheme of our Theory-of-Mind enhanced
Chain-of-Thought reasoning on human factors. We use
scenes of key characters as visual representations.

gence (Goertzel, 2014; Zhong et al., 2023), espe-
cially towards better social intelligence.

Recently, large language (Chowdhery et al.,
2022; Chung et al., 2022; Touvron et al., 2023;
OpenAI, 2023) and multimodal (Radford et al.,
2021; Alayrac et al., 2022; Li et al., 2022; Huang
et al., 2023) models have exhibited remarkable rea-
soning capabilities. However, current large foun-
dation models still fall short of adapting to per-
sonalized scenarios for specific users (Sap et al.,
2022; Bubeck et al., 2023). Hence, there has been
an increasing focus on human-centric reasoning
as a means of enhancing artificial social intelli-
gence for its integration in human daily life (Bard
et al., 2020; Yuan et al., 2020; Moghaddam and
Honey, 2023). To this end, ToM is one of the
central challenges to accelerating communication
and ensuring safety in human–computer interac-
tion, requiring complex reasoning on how human
beliefs and intents may vary across different sce-
narios (Yuan et al., 2020; Sap et al., 2022; Jin et al.,
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2022; Sileo and Lernould, 2023). Specifically, cur-
rent AI systems struggle with handling interleaved
multi-modalities and faithful surmising for better
consistency and interpretability of reasoning (Lyu
et al., 2023; Bubeck et al., 2023).

To enhance reasoning consistency and faith-
fulness, recent works on large language models
(LLMs) propose to break down a problem into
intermediate inferences (Wei et al., 2022; Zhou
et al., 2022; Xie et al., 2023). The impressive
empirical success of this Chain-of-Thought (CoT)
scheme on both textual and multimodal tasks (Wei
et al., 2022; Zhang et al., 2023; Driess et al., 2023)
demonstrates a promising paradigm to integrate
ToM inference as an intermediate step in human-
centric reasoning. In this work, we introduce

ECHO (Event Causality Inference via Human-
Centric Reasoning), a visio-linguistic dataset with
ToM inferences for reasoning in social scenarios.
With a focus on human factors, ECHO seeks to
diagnose the social intelligence of current large lan-
guage and multimodal models. We focus on event
causality reasoning that remains challenging for
recent LLMs (Kiciman et al., 2023).

We envision ECHO as a challenging diagnos-
tic benchmark on human-centric reasoning. Each
ECHO instance is grounded in a plot from the
crime drama CSI: Crime Scene Investigation, en-
abling approximation of the real-world social in-
teractions pertaining to the discordance in human
beliefs. As shown in Figure 2, our core annotation
process begins with ascertaining the identity of a
specified character. Next, we discern their mental
states via emotion interpretation. Leveraging this
human-centric understanding, annotators then in-
fer the cause or effect of a plot event for causality
reasoning. To foster visio-linguistic social intel-
ligence, we enhance ToM by guiding annotators
to make causal inferences that take into account
the mental states (e.g., intentions, emotions, and
thoughts) of characters and pinpoint related frames
as visual evidence. As such, ECHO is integrated
with a unified framework to assess human-centric
reasoning in the social context. As detailed in Sec-
tion 4, we propose a series of diagnostic tasks to
evaluate capabilities to identify roles, reason about
emotions, and infer event causality.

To conclude, we introduce ECHO, a challenging
visio-linguistic corpus of human-centric reasoning
in social scenarios. We propose a unified frame-
work to evaluate existing large foundation models

in zero-shot and few-shot ToM-enhanced CoT rea-
soning. Our further analysis demonstrates how
to use our diagnostic tasks to assess multimodal
understanding of human factors, revealing the defi-
ciency of current AI systems in maintaining logical
correctness and consistency throughout reasoning.

2 Related Work

ECHO takes a further step towards social in-
telligence on human-centric inference in visio-
linguistic scenarios, probing the ToM capacity of
large foundation models via CoT reasoning.

Visio-Linguistic Reasoning. Datasets and tasks
in visio-linguistic reasoning span widely from de-
scriptive information extraction (Antol et al., 2015;
You et al., 2016; Gao et al., 2017), physical re-
lation inference (Johnson et al., 2017; Hudson
and Manning, 2019), to complex and deep rea-
soning on the event and human factors (Krishna
et al., 2017; Zellers et al., 2019; Park et al., 2020).
ECHO follows this trend to enhance the reason-
ing depth towards human-specific facets. Unlike
recent works (Shen et al., 2020; ?; Zhu et al.,
2023c) of human-centric reasoning, ECHO is inte-
grated with rigorous ToM annotations, supporting
the final inferences via CoT reasoning for better
consistency. Specifically, there are long-standing
arguments on the development and assessment
of ToM in both human psychology and machine
intelligence (Premack and Woodruff, 1978; Ap-
perly, 2010; Kosinski, 2023; Ullman, 2023). Mea-
surement of ToM is usually based on false belief
tasks (Dennett, 1978), assessing the ability to dis-
tinguish one’s own (true) belief and others’ (false)
belief, given the information and experience asym-
metry among different individuals. Constructed
on crime drama, ECHO contains an abundance of
such cases of false belief to probe ToM ability.

Large Multimodal and Language Models. Pre-
vious research in this area mainly complies with
the paradigm of pre-training and fine-tuning to
construct and train large-scale multimodal mod-
els to handle interleaved visual-and-linguistic in-
formation (Radford et al., 2021; Jia et al., 2021;
Zellers et al., 2021; Alayrac et al., 2022; Li et al.,
2022; Huang et al., 2023). Recently, there is the
emergence of offline methods which leverage the
capacities of large foundation models to conduct
direct few-shot or zero-shot inference (Wu et al.,
2023; Yang et al., 2023; Lu et al., 2023; Zhu et al.,
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Official Videos

Crawled Screenplays

Automatic Plot Segmentation

Holly Gribbs: Pretty good.
Gil Grissom: Good. Okay, look, this was a routine robbery. Dust for prints, 
check the videotape take lots of fun photos. I'll be back in about an hour to 
pick you up.
Holly Gribbs: Okay.

(HOLLY gets out of the car.)
Gil Grissom: If you get done early use channel seven on your walkie.

(GRISSOM pulls out of the parking lot.)
(HOLLY heads inside the liquor store.)

Plot Instance to Annotate

Stage 1. Characteristics Identification

HOLLY is a junior investigator, affiliated to Grissom, 
    in her youth (25~55) occupation

age

Stage 2. Keyframe-Grounded Emotion Interpretation

<  check  corresponding frames in the video clip >

Stage 3. Event Causality Inference

❓ What has probably caused/enabled the event that
      HOLLY gets out of the car?

HOLLY, as a junior, listened to Grissom's advice and took a 
deep breath to prepare herself ready for the job at the store.

Post Inference Validation

🤖 + 👩👨

👩👨

��

Figure 2: Annotation Pipeline of the dataset construction. We detail the second round annotation, where annotators
provide ToM inferences in the first two stages following with the event causality inference.

2023a). Similar with Zhu et al. (2023a), we pro-
pose a framework to enhance visual understanding
via LLM prompting (Ouyang et al., 2022; Ope-
nAI, 2023) and facilitate LLM reasoning with aug-
mented multimodal information (Li et al., 2023).

3 The ECHo Corpus

ECHO contains 2k inference instances collected
via our ToM-enhanced CoT scheme. To facilitate
the approximation of authentic social interactions,
we ground ECHO in CSI: Crime Scene Investi-
gation, an American procedural forensics crime
series in English (Wikipedia contributors, 2023).
With visual evidence and scenes in frames and ut-
terances and narrations in screenplays, CSI repre-
sents a rich multimodal source, spanning widely
factual, relational, and inferential data. As shown
in Table 2, drama plots bring abundant instances
of belief discrepancy and unexpected content for
ToM reasoning. This enables our focus on human-
centric information distillation and interpretation in
ECHO’s construction for ToM-enhanced inference.

3.1 Construction Pipeline

We pair official CSI clips with their screenplays,
crawled from a publicly available website hosting
TV show transcripts1 (Frermann et al., 2018). We
then launch annotation in 3 rounds with 30 annota-

1https://transcripts.foreverdreaming.org/

tors working over 5 weeks after training sessions2.

Data Source Crawling and Preprocessing. We
acquire the official CSI videos with associated
screenplays of 177 episodes from the first 8 sea-
sons. We construct ECHO via further annotation
and task formulation on a subset of CSI containing
15 episodes, each of which usually features one or
two cases that are independent from the preceding
plots. We develop heuristic rules3 to automatically
denoise, split, and categorize the scripts into plot
events for subsequent task formulation.

Round One: Plot Segmentation. The crawled
screenplays are distributed in discrete plots. We re-
fine this segmentation with data cleaning to collect
segments of feasible length and substantive con-
tents. Different from previous works of automatic
vision–language alignment (Myers and Rabiner,
1981; Frermann et al., 2018), we manually synchro-
nize the screenplays with the time-stamped video
clips to pinpoint the main characters for human-
centric reasoning. We obtain 1, 542 plots grounded
in different scenes in this round, with an average of
3 identified characters in each segment.

Round Two: Inference Annotation. Each an-
notation instance features one specified event for
causality inference. We sequentially operationalize

2Appendix A details annotator training.
3Details at https://github.com/YuxiXie/ECHo.
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# Clip # Frame # Character # Inference
total featured total labeled cause effect

1, 292 13, 306 12, 201 4, 319 2, 017 1, 369 1, 013

Task # Instance # Annotation Avg-Length
Role 2, 017 4, 226 3.43
Emotion 2, 017 4, 271 2.44
Event 2, 382 4, 280 17.97

Table 1: Summative statistics of ECHO.

# Clip 100
FB (44%) 25 19 17 UC (36%)
C/E cause (56%) effect (44%)
FB objective (52%) subjective (48%)
UC physical (69%) social (31%)

Table 2: ToM attribute distribution on a 100-
clip subset. FB and UC represent false-belief
and unexpected-content, respectively.
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victim (31.9%)

interrogator (31.2%)
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(f) role–emotion co-occurrence frequencies

Figure 3: ECHO statistics and varieties of keywords. (a) and (b) show the distributions of the 12 most frequent roles
and 13 emotions, respectively. (c) and (d) plot the top 10 most common root verbs (inner circle) and their top 3
direct noun objects (outer circle) in screenplays and event causality inferences, respectively. (f) demonstrates the
coverage of role types associated with various emotions of equivalent proportions for a fair comparison.

annotation in 3 stages as follows:
1. Characteristics Identification. Given one key

character, annotators identify the character’s role
in the plot. We encourage them to consider social
attributes such as age range, occupation, and rela-
tions (with others) to describe the role. Character
roles are not static and can vary in different plots,
depending on the nuances of their appearances, be-
haviors, and interactions in the specific context.

2. Keyframe-Grounded Emotion Interpretation.
We take a further step in human-centric reasoning
to interpret mental states. Annotators choose from
13 primary emotions4 categorized by adapting the
27 emotions from Cowen and Keltner (2017) to
the crime drama. We also accept free-form input
for emotions when no existing options apply. An-
notators then extract associated frames that fea-
ture related emotions. We take the frames as vi-
sual representations of human factors. Specifically,
when multiple emotions are identified, annotators
are also instructed to select more frames. We do

4Including anger; boredom; calmness; disgust; doubt; en-
trancement; fear; interest; joy; sadness; shame; surprise; sym-
pathy. We provide detailed definitions in Appendix C.

not strictly enforce one-to-one matching between
frames and emotions, since one frame can feature
several emotions, and some emotions may be more
accurately captured by considering the reactions of
other characters. To ensure the completeness and
informativeness of selected keyframes, we imple-
ment follow-up validation next in Round Three.

3. Event Causality Inference. Following the
visio-linguistic human-centric inferences from the
previous stages, we ask annotators to further infer
the cause or effect of a specified event. We en-
courage them to consider the annotated roles and
emotions to enhance reasoning consistency. Here
we determine the events to annotate through two
steps: 1) randomly select utterances or narrations
that mention the main character(s) and occur in
the middle of the plot to facilitate effective causal-
ity reasoning, and 2) filter out the automatically
selected events that are insufficiently meaningful
according to annotators’ assessment.

We assign 2 to 4 annotators for each instance5 for
quality control. In this round, we collect a total of

5For some instances, we additionally assign more annota-
tors when the inter-agreement is low.
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5, 746 annotated instances. We use the ToM infer-
ences to formulate diagnostic tasks in Section 4.

Round Three: Inference Validation. To qualify
the annotated instances, we evaluate each data point
via both automatic and manual checking. The real-
time automatic checking alerts annotators if their
inputs fail to meet certain informativeness criteria,
such as text length and word-level overlap with the
existing context. Our authoring team then carry out
the manual validation. We particularly focus on
instances with lower inter-rater agreement in emo-
tion identification or anomalies in the timestamp
distribution of selected frames. We specifically as-
sess the plausibility, relevance, and completeness
of annotations. For example, we reject instances
where the event causality inference is weakly as-
sociated with either the plot or the annotated roles
and emotions. Out of the 5, 746 annotations col-
lected from Round Two, we finally retained 4, 280
annotations, as shown in Table 1.

3.2 Dataset Exploration
Table 1 and Figure 3e detail the summative statis-
tics of collected data for the three tasks. The com-
paratively small scale of ECHO enables efficient
assessment in the few-shot paradigm. With 4k
ToM annotations on 2k inference instances, ECHO

approximates authentic human-centric reasoning
across visio-linguistic social scenarios. While our
ECHO represents a subset of social interactions, we
view it as an initial and specific step to explore ToM
understanding of social intelligence. As outlined in
Table 2, crime drama is rich in ToM-related cases,
including false-belief and unexpected-content.

We further demonstrate the topic and scenario
coverage of ECHO in Figure 3, by visualizing the
keyword and verb–noun frequencies in both in-
put screenplays and human annotations. Alone
other lines, Figure 3f shows how the correlation be-
tween roles and emotions vary in ECHO, reflecting
a closer alignment with the real-world social char-
acteristics compared against other datasets. We an-
alyze the potential bias in our data in Section 6.5.

4 Diagnose Human-Centric Reasoning in
Visio-Linguistic Inference using ECHO

ECHO centers on rigorous human-centric infor-
mation that supports ToM-enhanced CoT reasoning
in visio-linguistic scenarios. We detail the formu-
lation of our three sequential tasks to diagnose the
human-centric reasoning ability next.

Notation. Each ECHO instance consists of a
sequence of visual frames V = [f1, f2, · · · , fN ] =
f1:N , a textual screenplay T . The frames are manu-
ally selected following the role and emotion identi-
fication in annotation. We gather frames featuring
different characters together to represent the visual
content of each clip. We designate each utterance or
narration in the text to be an event Ei for the causal-
ity inference, as T = [E1, E2, · · · , EM ]. There is
a key character C to focus on in each instance.

Task One: Role Identification (cf. Annotation
Round Two, Stage 1). The psychoanalysis of a
person’s role in social interactions indicates their
identity, helping to infer their intentions, actions,
and relations with others (Miller, 1962; Freese and
Burke, 1994). Therefore, we test the ability of
role identification to probe the fundamental human-
centric understanding in ToM reasoning. Given
frame(s) fi of the key character C and the corre-
sponding screenplay T , we prompt the model to
generate the role r of C. The role can be defined by
age, occupation, or relations with others, as these
attributes can exhibit a strong correlation with the
human mental states for ToM reasoning.

Task Two: Emotion Interpretation (cf. Annota-
tion Round Two, Stage 2). Emotions convey clues
of mental states beyond verbal messages (Hari and
Kujala, 2009). They bridge fundamental under-
standing (e.g., role identification) and further in-
ference (e.g., intent prediction) in human-centric
reasoning. We thus propose emotion interpretation
as our second diagnostic task. We formulate this
task as multi-choice question answering and test
the alignment of model and human predictions on
13 candidate emotions, adapted from the taxonomy
of Cowen and Keltner (2017) to the crime data.

Task Three: Event Causality Inference (cf. An-
notation Round Two, Stage 3). Despite the practi-
cal success of large foundation models on a wide
range of reasoning tasks, there is a debate as to
whether they genuinely execute causal reasoning or
just reproduce memorized patterns (Bender et al.,
2021; Marcus, 2022). Furthermore, these models
still produce imperfections such as erroneous logic
and human-factor understanding (Ghazal et al.,
2017; Bubeck et al., 2023; Zhong et al., 2023; Kici-
man et al., 2023). Hence, we formulate a subse-
quent task as event causality inference to assess
the causality reasoning capacity among socially-
grounded events. We also utilize the ToM infer-
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Holly Gribbs: Pretty good.
Gil Grissom: Good. Okay, look, this was a 
routine robbery. Dust for prints, check the 
videotape take lots of fun photos. I'll be back in 
about an hour to pick you up.
Holly Gribbs: Okay.

(HOLLY gets out of the car.)
Gil Grissom: If you get done early use channel 
seven on your walkie.

(GRISSOM pulls out of the parking lot.)
(HOLLY heads inside the liquor store.)

[Causality Question] What has caused/enabled the event that Gil Grissom says: If you get done early use channel seven on your walkie?

🤖.M.
A man and woman sitting in a car at night.
A man in a black shirt and a woman in a white shirt.
The man's eyes are wide and he is staring off into space.

🤖 .L.
- What is the role or occupation of the man in the black shirt who 
stops the car in front of the liquor store in the given video clip?
- What is the expression on Gil Grissom's face when he stares off?

- Grissom is a police officer or law enforcement officer.
- He is staring into the distance with a sad expression on his face.🤖.M.

🤖 .L.

[Role Identification] The probable identity of the person is 
Gil Grissom, an adult male who is a crime-solving detective.

[Emotion Recognition] The probable emotional traits of the 
person are sadness, loneliness, and resignation.

🤖 .L.
[Causality Inference] To ensure Holly's safety by providing her with 

instructions on how to contact him if she finishes her task early.

captioning

vqa

question
generation

reasoning

Figure 4: Examples of model inputs and outputs through the ToM-enhanced reasoning process. The language and
multimodal models enhance understanding and reasoning of each other in a dialogue-like form.

ences from the preliminary tasks as the CoT in-
termediate step to test the reasoning consistency
among intermediate ToM inferences and the final
predictions. Specifically, with the frames V and
associated screenplay T , we ask models to infer the
cause or effect of a given event Ei in the context.

5 ToM-Enhanced CoT Reasoning

Given the inputs of visual frames V and textual
screenplay T , our objective is to make human-
centric inference I . We follow Wei et al. (2022) to
break down the process into intermediate steps R
and thus accommodate the three tasks in a unified
framework to assess large foundation models.

As illustrated in Figure 4, our framework fol-
lows the Vision + LLM paradigm (Huang et al.,
2023; Zhang et al., 2023; Yang et al., 2023) to facil-
itate multimodal understanding using the reasoning
ability inherently grown in language models.

LLM-Enhanced Multimodal Understanding.
Enlightened by the advanced capability of LLMs
in complex reasoning (Brown et al., 2020; Kojima
et al., 2022; Chowdhery et al., 2022), there is an
emergent line of research to leverage LLMs to
prompt and guide information extraction in visual
understanding (Surís et al., 2023; Wu et al., 2023;
Yang et al., 2023; Zhu et al., 2023a). To diagnose
the ability of human-centric reasoning of current
large foundation models, we follow this paradigm
to enhance multimodal information extraction with
LLM reasoning. Specifically, we incorporate the
LLM guidance as information-seeking questions
to prompt multimodal understanding via visual

question answering. We simplify the framework
of Zhu et al. (2023a) by directly generating one
task-specific question instead of augmenting itera-
tive questions with accumulated contextual infor-
mation. Figure 4 demonstrates an example of us-
ing the LLM-generated question to enhance multi-
modal understanding for human-factor extraction.

Vision-Augmented LLM Reasoning. Recipro-
cally, the multimodal model can facilitate LLM
reasoning by augmenting information grounded
in the vision. To this end, the visual information
should be projected into representations that LLMs
can understand, such as discrete text words (Hu
et al., 2022; Wang et al., 2022; Zeng et al., 2022;
Yang et al., 2022) and continuous features adapted
into the textual space (Tsimpoukelli et al., 2021;
Alayrac et al., 2022; Driess et al., 2023; Huang
et al., 2023; Li et al., 2023). In our framework, we
follow the former line of work to supplement the
multimodal model generated textual descriptions
into the LLM for vision augmentation. Specifically,
the visual information covers knowledge of various
granularities, extracted by general captioning and
task-specific question-prompted answering. The
task-specific questions here are generated by the
LLM to guide reasoning via ToM inference.

6 Experiments

We assess the social intelligence of existing large
foundation models using the unified framework in
Section 5 on our diagnostic tasks in Section 4. We
ablate components in our framework on different
backboned models and evaluate their effect on both
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Models VL FS CoT Role Identification Emotion Interpretation
BleU-2 Rouge-L BERT-F1 Macro-P Macro-R Macro-F1

BLIP-2 ✗ ✗ ✗ 1.80 7.86 45.46 23.42 27.67 23.52
✓ ✗ ✗ 2.35↑0.55 7.36↓0.50 43.96↓1.50 24.71 30.94 24.87↑1.35

MiniGPT-4

✗ ✗ ✗ 0.95 7.13 44.39 24.75 6.66 6.56
✓ ✗ ✗ 0.47↓0.48 3.58↓3.55 41.21↓3.18 23.30 7.31 9.42↑2.86
✗ ✓ ✗ 2.52 10.43 49.33 26.99 8.44 6.05
✓ ✓ ✗ 0.69↓1.83 5.66↓4.77 40.13↓9.20 21.36 8.31 9.28↑3.23

InstructGPT

✗ ✗ ✗ 0.95 5.08 44.10 23.38 43.64 29.76
✗ ✗ ✓ 1.57↑0.62 6.87↑1.79 46.21↑2.11 26.09 46.33 32.37↑2.61
✓ ✗ ✗ 2.57↑1.62 10.07↑4.99 49.21↑5.11 33.62 43.94 36.55↑6.79
✓ ✗ ✓ 2.07↑1.12 8.11↑3.03 46.89↑2.79 34.52 44.26 37.03↑7.27
✗ ✓ ✗ 3.16 10.48 49.79 24.29 37.61 28.93
✗ ✓ ✓ 3.04↓0.12 10.13↓0.35 50.07↑0.28 25.16 43.58 31.02↑2.09
✓ ✓ ✗ 6.48↑3.32 17.80↑7.32 53.43↑3.64 34.87 47.59 38.67↑9.74
✓ ✓ ✓ 5.79↑2.63 16.53↑6.05 53.37↑3.57 34.34 48.64 38.95↑10.02

Human (Inter-Annotator Agreement) 9.34 18.93 57.12 85.00 67.71 75.36

Table 3: Result Comparison on Role Identification and Emotion Interpretation. VL indicates whether to input full
screenplay or utilize frame-only information. FS and CoT represent few-shot and chain-of-thought, respectively.
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Figure 5: Class-wise perfor-
mance comparison of three mod-
els on emotion interpretation.

Models VL FS CoT ToM BLeU-2 Rouge-L BERT-F1

MiniGPT-4

✗ ✗ ✗ ✗ 2.99 11.89 51.24
✓ ✗ ✗ ✗ 3.30↑0.31 11.99↑0.10 51.62↑0.38
✓ ✗ ✓ ✗ 3.31↑0.32 11.64↓0.25 51.21↓0.03
✓ ✗ ✓ ✓ 3.55↑0.56 12.05↑0.16 51.98↑0.74

InstructGPT

✓ ✗ ✗ ✗ 7.44 18.41 59.33
✓ ✓ ✗ ✗ 9.78↑2.34 21.30↑2.89 62.29↑2.96
✓ ✓ ✓ ✗ 10.35↑2.91 22.02↑3.61 62.80↑3.47
✓ ✓ ✓ ✓✗ 10.63↑3.19 22.20↑3.79 63.18↑3.85
✓ ✓ ✓ ✓ 11.28↑3.84 22.97↑4.56 63.65↑4.32

Human (Inter-Annotator Agreement) 15.70 23.82 64.87

Table 4: Result Comparison on Event Causality Inference. ToM is the human-
centric information. ✓✗and ✓represent model and human predictions, respectively.

automatic and human evaluation metrics.

6.1 Setup
Backbones and Prompt Construction. We use
BLIP-2 (Li et al., 2023) and MiniGPT-4 (Zhu et al.,
2023b), the recent public and reproducible multi-
modal models for visio-linguistic understanding.
We evaluate InstructGPT (Ouyang et al., 2022) as
the LLM backend considering the reproducibility
of model performance, as stronger closed-source
LLMs such as ChatGPT and GPT-4 (OpenAI,
2023) will be updated periodically. Details of
prompt design can be found in Appendix E.

Evaluation Metrics. For generation tasks, we
employ conventional metrics BLeU-2 (Papineni
et al., 2002), Rouge-L (Lin, 2004), and BERTScore
(deberta-xlarge-mnli) (Zhang et al., 2020).
Considering the limitation of the automatic metrics
capped at the reference quality (Zhu et al., 2023a),
we conduct qualitative analysis to compare model
and human predictions. For emotion interpretation
as a multilabel classification, we adopt the macro
precision, recall, and F1 scores as metrics. To fur-

ther validate whether the automatic metrics based
on our annotated reference answers align with the
actual quality of model predictions, we conduct
additional human (on a subset – 238 instances –
10% of the whole set) and GPT-4 evaluation (on
the whole set) on event causality inference results.

6.2 Results
We compare different models in zero-shot and

few-shot settings. In event causality inference, we
compare the impacts of CoT in different formats
(indicated by “ToM”), including model-generated
general intermediate steps (✗), model-generated
ToM (✓✗), and human-annotated ToM (✓).

Role Identification. We see a huge gap between
model and human generations in zero-shot prompt-
ing, while few-shot brings significant performance
gain, especially on InstructGPT. This demonstrates
the stronger ability of LLMs for in-context learning
compared with MiniGPT-4. However, we observe
a trend of performance drop when enhancing rea-
soning via CoT. This drop may be caused by the
uncertainty due to task difficulty, leading to error
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Models CoT ToM GPT-4 Score Human Evaluation (Win / Lose)
Plausibility Relevance Completeness Overall

✗ ✗ 5.83 − − − −
InstructGPT ✓ ✗ 5.90↑0.07 7.1% / 5.7% 43% / 31% 38% / 26% 46% / 28%
(Few-Shot) ✓ ✓✗ 6.29↑0.46 7.1% / 5.2% 35% / 33% 78% / 12% 56% / 25%

✓ ✓ 6.36↑0.53 8.0% / 4.7% 50% / 25% 61% / 19% 59% / 20%

Table 5: GPT-4 and human evaluation results on event causality inference.

accumulation in reasoning.

Emotion Interpretation. Likewise, InstructGPT
shows a stronger in-context learning ability. In-
terestingly, MiniGPT-4 exhibits substantially poor
performance on this task compared with the other
models. We further diagnose this via the label-
wise scores in Figure 5. The poor recall scores
of MiniGPT-4 might be one of the reasons for the
failure, as it tends to conduct single-label classi-
fication, neglecting the instruction in most cases.
On the other hand, when sufficient information is
provided, i.e., with multimodal inputs and CoT rea-
soning, there is a stable increase in the F1 score.
This disparity in how CoT works for role and emo-
tion predictions may be attributed to the different
degrees of uncertainty in reasoning for the two
tasks. For example, models can resort to an expedi-
ent strategy to interpret emotions directly based on
human facial expressions.

Event Causality Inference. We evaluate the ef-
fect of ToM-enhanced CoT reasoning on both mul-
timodal and language models. For MiniGPT-4,
basic CoT reasoning without a specified format or
content of ToM cannot guarantee an improvement
in performance. This is in accordance with our
observation on role recognition that higher uncer-
tainty may cause a performance drop. However, as
demonstrated by the ToM-enhanced CoT reasoning,
our proposed human-centric tasks can benefit the
final inference by incorporating ToM information
about roles and emotions. Furthermore, despite the
incompleteness of labeled human predictions (as
shown in Table 1), human ToM still exhibits a more
significant effect in the reasoning process.

6.3 Ablation Study

We conduct further analysis to probe the impact of
different modalities and ToM-CoT reasoning.

Vision vs. Language Models. In the diagnostic
tasks, we observe large differences in the genera-
tions between multimodal and language models.
As the performance drops remarkably when in-

corporating textual information into multimodal
models such as MiniGPT-4, we see that these mul-
timodal models still struggle to handle long in-
put contexts. This demonstrates the importance
of LLM incorporation for multimodal understand-
ing to enhance and guide information extraction
and deduction for further reasoning.

ToM-enhanced CoT Reasoning. The perfor-
mance gain from CoT reasoning in Table 4 varies
when incorporating intermediate inferences from
different sources, where human-annotated ToM
(partially labeled) still outperforms the others. This
demonstrates the deficiency of current large foun-
dation models in eliciting and utilizing the ToM
inferences for better reasoning.

6.4 Qualitative Evaluation

We compare the InstructGPT-based model with the
CoT and/or ToM mechanisms in reasoning against
the vanilla version that only uses few-shot prompt-
ing in human evaluation. We choose the criteria
including plausibility, relevance, completeness, and
overall quality and let the evaluators judge which
one is better. Table 5 shows the human evaluated
win/lose rate on 10% (238 instances) of the whole
dataset on event causality inference. To obtain a
more complete understanding, we conduct GPT-4
evaluation on the whole set. Specifically, we adapt
the scoring framework from Zheng et al. (2023),
with our annotated inferences as the reference an-
swers, where scores range from 1 to 10.

We observe the same trend of model perfor-
mance on human judgment and GPT-4 scoring in
terms of the overall quality of predictions. For ex-
ample, the CoT framework with human-annotated
ToM achieves the highest GPT-4 score and win rate
at 6.36 and 59%, respectively. However, we see
different trends in the relevance and completeness
ratings, where the model-generated ToM-enhanced
CoT achieves the best completeness but worst rele-
vance scores. This may come from the LLM abil-
ities of information extraction and understanding
which, however, also brings hallucination.
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[Event Causality Inference] What probably has caused/enabled the event that Behind her, GRISSOM walks up to her? 
[Human] Grissom is working at the office at Forensics, likely on his shift, when Holly, a new employee, enters. 

  He knows she is going to report today, and is ready to greet her.

[Role & Emotions] Grissom is supervisor in middle age, who may have the feelings of surprise, calmness, slightly sorry, and appreciation.
                           Holly is new employee at Graveyard in youth, who may the feelings of disgust, doubt, fear, and surprise.
[(Hum-ToM) MiniGPT-4] Grissom has been waiting for Holly to walk into the office.
[(Hum-ToM) InstructGPT] Holly has entered the room and Grissom noticed her presence. Grissom has curiosity and interest in meeting her.
[CoT (MiniGPT-4)] Grissom is a man in black leather jacket, he was wearing a dark blue shirt. 
                           Holly’s body language changes when Grissom walks up to her.
[MiniGPT-4] Holly Gribbs is in front of Grissom wearing black from behind.
[Role & Emotions (InstructGPT)] Holly Gribbs is a new employee in the office, who may have the feelings of surprise, curiosity, and 
nervousness in the clip. Grissom is her supervisor, who may have the feelings of professionalism, and confusion in the clip.
[InstructGPT] Grissom is introducing himself to Holly Gribbs, as a form of greeting and to establish a professional relationship.

(The door opens. HOLLY GRIBBS walks into the office.)
Holly Gribbs: Hello?

(She looks around and grimaces at the various items on the shelves.)
(Behind her, GRISSOM walks up to her.)

Gil Grissom: Hi.
(HOLLY is startled. She gasps and turns around.)

Gil Grissom: Sorry. Welcome to Forensics. Gil Grissom. I'm your supervisor on graveyard.
Holly Gribbs: Holly Gribbs.

Figure 6: We compare the ToM-enhanced inferences between human annotators and different models. We consider
three sources of the incorporated ToM information, including human, MiniGPT-4, and InstructGPT generations, as
shown in green , pink , and blue , respectively. Imperfections are highlighted in yellow .

6.5 Discussion
We discuss our main findings in qualitative analy-
sis by answering the following questions:

Q1. Can models maintain reasoning robustness
when input information varies in format?
As shown in Figure 6, LLMs present significantly
higher adaptiveness to elicit different input infor-
mation for reasoning. For example, InstructGPT
directly synthesizes the character emotional traits
such as “curiosity” in the human-annotated ToM-
enhanced inference, while MiniGPT-4 is still at
copy-and-paste level in text generation and tends
to focus more on descriptive information in vision.

Q2. Can models maintain consistency and faith-
fulness throughout ToM-CoT reasoning?
MiniGPT-4 shows fact-level consistency in infer-
ence via reiterating or rephrasing selected spans.
However, it struggles in reasoning about implicit
or intermediate information. On the other hand, de-
spite the advancement of LLMs, they may produce
problematic hallucination, i.e., imperfect predicted
ToM such as “confusion” can lead to wrong final
inference that may totally contradict the fact.

Q3. What potential bias exists in ECHO that
can lead to erroneous model predictions?
One crucial problem we find in the MiniGPT-4
outputs is that it tends to randomly check one emo-
tion option when it is not confident in the selection.
This indicates a high uncertainty in the multimodal
model in the mental state interpretation of humans.
Possible reasons can come from both the model

and data sides. Specifically, information from still
frames can cause ambiguity without clip details, as
shown by the erroneous “confusion” in Figure 6.
On the other hand, we acknowledge that our dataset
ECHO represents a subset of social interactions,
but we view it as an initial and specific step to
explore ToM understanding of social intelligence.

7 Conclusion

We introduce a visio-linguistic dataset ECHO to
probe human-centric social intelligence. With our
ToM-enhanced CoT framework, we diagnose the
reasoning ability of large foundation models. Ex-
periment results and further analysis demonstrate
the deficiency of current AI systems and potential
bias in ECHO for efficient, correct, and consistent
reasoning. We foresee follow-up work on both
model and data facets to develop faithful reasoning
across a broader range of social scenarios.

Limitations

Dataset Scale and Generalizability. As shown
in Table 1 and Section 6.5, there can be potential
bias in ECHO since we only label half of the fea-
tured characters to reason about their ToM. This
imbalance of human belief considerations can lead
to bias in final inferences as models may only focus
on the thoughts and intentions of some of the char-
acters. Furthermore, the reliance on crime scene
content may restrict its applicability to a specific
genre related to crime instead of daily life scenar-
ios. While our ToM annotations (e.g., emotions)

4072



can represent human’s mental states in daily life,
future work may further explore whether and how
ToM inferences in different distributions can assist
human-centric reasoning in more general scenarios.

Dataset Construction. We may lack a detailed
analysis of the visual representations to demon-
strate how this information complements the tex-
tual inputs. In event causality inference, we
adopted automatic event determination to ease the
efforts of human annotation, which cannot priori-
tize salience within the plot. This means that cer-
tain events, potentially more interesting or pertinent
for causal reasoning, may go unselected.

In future work, we will further refine ECHO to
validate and extend visio-linguistic ToM inferences
to improve the coverage and balance of event topics,
reasoning types, and source of inference evidence.

Ethics Statement

We have received approval from the Institutional
Review Board (IRB)6 for our data annotation. We
design the training tutorial and experimental ses-
sions as guided and reviewed by the IRB to main-
tain minimal risks to participants. The review pro-
cess took two months to complete.

Since ECHO contains criminal data with violent
content, it may enable malevolent imitation actors
or harm to specific groups of people. To avoid
this misuse potential of ECHO, we will impose
strict rules for access requirements and frequently
track the follow-up works to constrain its usage
within research-only goals. In the future, we will
also make regular updates on ECHO to further
extend and balance the ToM attributes to alleviate
potential bias and ambiguity in datapoints for better
generalizability of our diagnostic tasks.
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A Annotator Recruitment and Training

We recruited prospective annotators considering both quality and diversity. First, all selected annotators
possess a minimum of undergraduate education and demonstrate familiarity or expertise with the TV
series CSI to ensure the annotation quality. Second, to mitigate potential biases, our recruitment aimed for
a balanced distribution across various factors, including gender, academic disciplines, and nationalities.

We piloted our preliminary annotation pipeline for refinement. After subsequent refinement, prospective
annotators are first asked to watch a prepared instruction video8 and complete a pre-annotation quiz to
demonstrate their understanding of tasks. Our team manually checked applicants’ responses for quality,
admitting qualified subjects as participants. We show one example quiz question as follows.

General Qn. Select the important elements to focus on for each sample.
□ a short video clip with the provided start and end times
□ the whole video clip of the episode
□ transcripts of the clip
□ align characters in the clip with their names in the transcripts
□ the key character to focus on for all the annotation questions
□ different characters to focus on for different annotation questions
Q2-Related Qn. Select the options which can be the input to Q2.
□ occupation (for a living), e.g. singer, police, officer
□ role (role in the event), e.g., driver, customer, suspect of the crime
□ role (relation with others), e.g., the woman who stares at the others
□ appearance description, e.g., the girl in a white shirt
Q3-Related Qn. What kind of emotions should be selected, and what is “Others” for?
□ some emotions appearing via the key character’s facial expressions/actions
□ all emotions appearing via the key character’s facial expressions/actions
□ possible emotions of the key characters reflected by the others they interact with
□ "Others": to add emotions that aren’t included in the options
Q4-Related Qn1. What kind of & How many frames should be selected?
□ all the frames indicating the change of (emotional, motional) states of the key characters
□ the frames should preferrably be evenly distributed on the clip
□ there is no lower bound of the the selected number
8https://vlcsr.comp.nus.edu.sg/static/video/VL_event_causality_annotation_instruction.mp4
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□ there is no upper bound of the the selected number
Q4-Related Qn2. Requirements for the frames to be checked.
□ contain the facial expressions / recognizable actions of the key character
□ contain only external information (others reflection) which may indicate the state of the key character
Q5-Related Qn. Select the requirements for the input text.
□ Keep a low overlap-rate with the transcripts (< 30%)
□ Start with the text provided in front of the text box
□ Focus on the key character
□ Can consider emotion change of the character as labeled in Q3
□ Try to elaborate on the intrinsic logic among events which aren’t directly described in the

clip/transcripts

B Annotation Interface

We provide a publicly available webpage9 to demonstrate the example annotations on an instance in
Round Two. Below is an example of the detailed annotation questions.

9https://yuxixie.github.io/_pages/CSI_example.html
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C Emotion Categorization

We adapt the original 27 emotions from Cowen and Keltner (2017) to crime plots, merging them into 13
emotions more suited for the domain:
• Anger: wrath, outrage, fury, violence, irritability, hostility, resentment;
• Boredom: blahs, doldrums, ennui, weariness, listlessness, restlessness;
• Calmness: blahs, doldrums, ennui, weariness, listlessness, restlessness;
• Disgust: contempt, scorn, disdain, aversion, distaste, revulsion;
• Doubt: uncertainty, confusion, distrust;
• Entrancement: brooding, reverie, contemplation, daydreaming, cogitation, detachment;
• Fear: anxiety, dread, fright, panic, nervousness;
• Interest: trust, kindness, affection, devotion, acceptance, love, anticipation, friendliness;
• Joy: enjoyment, bliss, happiness, relief, delight, pride, thrill, ecstasy;
• Sadness: grief, sorrow, gloom, despair, melancholy, loneliness, depression;
• Shame: regret, guilt, embarrassment, remorse;
• Surprise: astound, shock, astonishment, wonder;
• Sympathy: commiseration, compassion, feeling.

D Frequently Asked Questions

D.1 The fact that multiple different causes of an event can exist complicates the evaluation of the
CoT approach for event causality. How is evaluation impacted when multiple causes of an
event may exist?

We dealt with the one-to-many problem on two aspects of data collection. First, we provide multiple
reference inferences (annotations) for each event, as shown in Table 1. Second, we narrow the scope of
potential causes by employing Theory-of-Mind (ToM) as the intermediate reasoning step. This serves as a
directional constraint to reduce the search space of potential CoT chains.

Considering that our annotated reference answers may not capture the full spectrum of possible causes,
we conduct both human and GPT-4 evaluations to provide qualitative analysis on the model predictions.
The human evaluation results are consistent with the automatic metrics assessed in Table 4. Furthermore,
the performance gain brought by ToM-constrained CoT shows the importance of ToM in our human-centric
reasoning task.

D.2 How many instances are rejected and revised during inference validation? What are the
major error types and feedback types encountered during annotation and verification?

Out of the 5, 746 annotations collected from Round Two, we finally retained 4, 280 annotations, as
indicated in Table 3. Among these, 107 were revised and accepted following re-annotation. In validation,
we check the annotation quality considering three criteria: plausibility, relevance, and completeness.
Specifically, we mainly reject instances if they exhibit weak connections between the annotated inferences
and the plot contents or the corresponding character roles and emotions.

Feedback from annotators suggests two primary causes for annotation errors: 1) the imperfect event
selection (where we reject the entire instance), and 2) insufficient incorporation of ToM in reasoning
(where we reject outright or send it back for re-annotation).

D.3 Why use instructGPT instead of stronger LLMs like ChatGPT and GPT-4?

We use InstructGPT considering the reproducibility of model performance, as stronger closed-source
LLMs like ChatGPT and GPT-4 will be updated periodically. For reference, we conduct an additional
experiment using ChatGPT (gpt-3.5-turbo-0613) in Table 6 on the task of event causality inference.

E Implementation Details

We detail our experiment setup and prompt construction in this section.
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Models VL FS CoT ToM BERT-F1 GPT-4 Score

InstructGPT
✓ ✓ ✓ ✓✗ 63.18 6.29
✓ ✓ ✓ ✓ 63.65 6.36

ChatGPT ✓ ✓ ✓ ✓ 64.09 6.98

Table 6: Result comparison on InstructGPT and ChatGPT.

E.1 Setup
For multimodal models, we use BLIP-210 (blip2_t5) (Li et al., 2023) and MiniGPT-411

(prerained_minigpt4_7b) (Zhu et al., 2023b), the recent public and reproducible multimodal mod-
els for visio-linguistic understanding. Specifically, we use pretrain_flant5xl for BLIP-2 due to the
computation limit. For LLM backend, we use InstructGPT (text-davinci-003) (Ouyang et al., 2022).

In the automatic evaluation of text generation tasks, we measure the similarity between model outputs
and human annotations, compared with the inter-agreement among annotators using the same metrics. For
the multilabel classification task, the macro precision, recall, and F1 scores measure both the model–human
and inter-annotator agreement. The inter-annotator agreement considers the instance-wide similarity
between one annotator and the others.

E.2 Pipeline Construction
Denote the multimodal model and the language model as M and L respectively. The process for ToM-
enhanced CoT reasoning for event causality inference is as follows (Steps 2 and 3 can be merged for
simplicity, with further post-processing to extract the final answers):

Step 1: Visual Information Extraction using M. M generates visual descriptions based on the input
video clips. The prompt to M determines the type and focus of the visual descriptions generated.
• input: clip frames
• output: visual descriptions

Step 2: Role and Emotion Identification using L. We augment the text prompt for L with the visual
information obtained previously, eliciting roles and emotions associated with given characters.
• input: visual descriptions + textual context (screenplay)
• output: roles and emotions of the specified characters

Step 3: ToM-Enhanced CoT Reasoning using L. Using the predicted roles and emotions as inter-
mediate reasoning products, we construct the CoT prompt for L, allowing it to perform ToM-enhanced
reasoning about event causality.
• input: visual descriptions + textual context (screenplay) + roles and emotions
• output: event causality inference

E.3 Prompt Design
For multimodal prompting, we adopt the form of visual question answering where specific instructions
will be provided for human-centric information extraction and inference. For LLM prompting, we accom-
modate information comprising screenplays, textual descriptions of visual frames in multi-granularities,
and specific instructions to stimulate reasoning.

10LAVIS: https://github.com/salesforce/LAVIS
11MiniGPT-4: https://minigpt-4.github.io/
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ROLE
The image is a video frame of a person.
Specifically, the role of a person can be their occupation or their relation with others.
In this case, what probably is the role of this person?
Answer:
EMOTION
The image is a corresponding video frame of a person.
Question: What are the possible emotional traits of this person?
Answer Choices (can select more than one choices):
{#1}
Answer:

Table 7: Prompts for BLIP-2 with vision-only inputs. #1 represents the emotion options to choose from.

ROLE
Read the screenplay of a video clip as follows:
{#1}
For reference, the image is a corresponding video frame of a person.
Specifically, the role of a person can be their occupation or their relation with others.
In this case, what probably is the role of this person?
Answer:
EMOTION
Read the screenplay of a video clip as follows:
{#1}
For reference, the image is a corresponding video frame of a person.
Question: What are the possible emotional traits of this person?
Answer Choices (can select more than one choices):
{#2}
Answer:

Table 8: Prompts for BLIP-2 with vision-and-language inputs. #1 represents the screenplay content.

ROLE
Below are frames of a person happening in chronological order:
{#1}
Specifically, the role of a person can be their occupation or their relation with others in the plots.
In this case, what probably is the role of this person?
Answer:
EMOTION
Below are frames of a person happening in chronological order:
{#1}
Question: What are the possible emotional traits of this person?
Answer Choices (can select more than one choices):
{#2}
Answer:
EVENT CAUSALITY
Below are several frames (with characters they contain) happening in chronological order in the video clip:
{#1}
What is the possible {#3} of the clip event that {#4}?
Answer:

Table 9: Prompts for MiniGPT-4 with vision-only inputs. #1 represents the visual tokens as a placeholder for frame
embeddings. #3 and #4 represent the causality type (cause or effect) and the event to reason about, respectively.
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ROLE
Read the screenplay of a video clip as follows:
{#1}
For reference, below are a series of chronologically ordered frames of the person {#2} from the same video clip:
{#3}
What probably is the role of this person?
Answer:
EMOTION
Read the screenplay of a video clip as follows:
{#1}
For reference, below are a series of chronologically ordered frames of the person {#2} from the same video clip:
{#3}
Question: What are the possible emotional traits of this person?
Answer Choices (can select more than one choices):
{#4}
Answer:
EVENT CAUSALITY
Read the screenplay of a video clip as follows:
{#1}
For reference, below are a series of chronologically ordered frames from the same video clip, with certain frames
annotated to indicate the character(s) they feature:
{#3}
What is the possible {#4} of the clip event that {#5}?
Answer:

Table 10: Prompts for MiniGPT-4 with vision-and-language inputs. #2 represents the name of the specified character.

VQA
Below are a series of chronologically ordered frames from a video clip, with certain frames annotated to indicate the
character(s) they feature:
{#1}
Based on the provided frames, please answer the following question.
Question: {#2}

Table 11: Prompts for MiniGPT-4 for clip-based visual question answering.

ROLE
Below is the description of a video clip where there is a character named {#1}:
{#2}
Specifically, the role of a character can be their occupation or their relation with others in the plots.
In this case, what is the role of {#1}?
Answer:
EMOTION
Below is the description of a video clip where there is a character named {#1}:
{#2}
Question: What are the possible emotional traits of {#1}?
Answer Choices (can select more than one choices):
{#3}
Answer:
EVENT CAUSALITY
Below is the description of a video clip where there is a character named {#1}:
{#2}
What is the possible {#3} of the clip event that {#4}?
Answer:

Table 12: Prompts for InstructGPT with vision-only inputs.
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ROLE
Read the screenplay of a video clip as follows:
{#1}
Specifically, the role of a character can be their occupation or their relation with others in the plots.
In this case, what is the role of {#2}?
Answer:
EMOTION
Read the screenplay of a video clip as follows:
{#1}
Question: What are the possible emotional traits of {#2}?
Answer Choices (can select more than one choices):
{#3}
Answer:
EVENT CAUSALITY
Read the screenplay of a video clip as follows:
{#1}
What is the possible {#2} of the clip event that {#3}?
Answer:

Table 13: Prompts for InstructGPT with language-only inputs.

ROLE
Read the screenplay of a video clip as follows:
{#1}
For reference, below is the description of the same video clip:
{#2}
In this context, a character’s role can be defined by their occupation or their relationships with others within the
plots.
In this case, what is the role of {#3}?
Answer:
EMOTION
Read the screenplay of a video clip as follows:
{#1}
For reference, below is the description of the same video clip:
{#2}
Question: What are the possible emotional traits of {#3}?
Answer Choices (can select more than one choices):
{#4}
Answer:
EVENT CAUSALITY
Read the screenplay of a video clip as follows:
{#1}
For reference, below is the description of the same video clip:
{#2}
What is the possible {#3} of the clip event that {#4}?
Answer:

Table 14: Prompts for InstructGPT with vision-and-language inputs.
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ROLE
Read the screenplay of a video clip as follows:
{#1}
For reference, below is the description of the same video clip:
{#2}
In this context, a character’s role can be defined by their occupation or their relationships with others within the
plots.
As an intermediate step to discern the role of {#3}, we may need to delve deeper into specific and concrete visual
cues from the video clip.
Assuming you can access the video clip, please generate a question that indirectly seeks information about the role
of {#3}.
Question:
EMOTION
Read the screenplay of a video clip as follows:
{#1}
For reference, below is the description of the same video clip:
{#2}
As an intermediate step to interpret the emotional trait(s) of {#3}, we may need to delve deeper into specific and
concrete visual cues from the video clip.
Assuming you can access the video clip, please generate a question that indirectly seeks information about the
emotion(s) of {#3}.
Question:
EVENT CAUSALITY
Read the screenplay of a video clip as follows:
{#1}
For reference, below is the description of the same video clip:
{#2}
In order to understand the possible {#3} of the clip event that {#4}, we may need to delve deeper into specific and
concrete visual cues from the video clip.
Assuming you can access the video clip, please construct a question that indirectly seeks information useful for
inferring the causality of the event.
Question:

Table 15: Prompts for InstructGPT with vision-and-language inputs for information-seeking question generation.
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