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Abstract

With the recent undeniable advancement in
reasoning abilities in large language models
(LLMs) like ChatGPT and GPT-4, there is a
growing trend for using LLMs on various tasks.
One area where LLMs can be employed is as
an alternative evaluation metric for complex
generative tasks, which generally demands ex-
pensive human judges to complement the tradi-
tional automatic metrics for various evaluation
dimensions such as fluency and consistency. In
this work, we conduct extensive analysis to in-
vestigate the stability and reliability of LLMs as
automatic evaluators for abstractive summariza-
tion. We found that while ChatGPT and GPT-4
outperform the commonly used automatic met-
rics, they are not ready as human replacements
due to significant limitations. That is, LLM
evaluators rate each candidate system incon-
sistently and are dimension-dependent. They
also struggle to compare candidates with close
performance and become more unreliable with
higher-quality summaries by obtaining a lower
correlation with humans. In other words, with
better abstractive summarization systems being
introduced at a fast pace, LLMs may result in
misleading and unreliable evaluations.1

1 Introduction

The desire for inexpensive and fast automatic met-
rics has never stopped growing. In certain tasks
like extractive summarization, where full source
sentences are selected to appear in the summaries,
simple n-gram overlap metrics against the “gold”
summaries like ROUGE (Lin, 2004) or BLEU (Pa-
pineni et al., 2002) may work well because the
correct answer space is narrow. However, for
more open tasks like abstractive summarization,
there are countless equally good summaries and the
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“gold” summaries become less important. Although
many neural-based metrics such as BERTScore
and BARTScore (Zhang et al., 2020b; Yuan et al.,
2021), are advocated as more human-aligned, the
evaluation criteria are also becoming increasingly
complex. As a result, abstractive summarization
may not be sufficiently evaluated with automatic
metrics (Owczarzak et al., 2012; Nenkova, 2006),
and often require extensive human evaluations as
complements(Yang et al., 2023; Welbl et al., 2021).
However, human evaluations often come with hefty
costs and slow iteration cycles, while also being
difficult to reproduce and standardize due to small
sample sizes and potential human biases (Shen
et al., 2022b; Liu et al., 2022).

Recent large language models (LLMs) like Chat-
GPT and GPT-4 (OpenAI, 2023) have demon-
strated outstanding capabilities in language com-
prehension and reasoning. This leads to a growing
trend of employing LLMs as evaluators for com-
plex language generation tasks by prompting them
with carefully and elaborately crafted instructions
(Chiang and Lee, 2023; Gao et al., 2023; Wang
et al., 2023a; Wu et al., 2023; Luo et al., 2023; Liu
et al., 2023). Despite the preliminary success sug-
gested by such works, it is still inconclusive as to
what degree of confidence we can trust the evalu-
ation results produced by LLMs across different
dimensions, despite their supposedly high average
correlation with humans. It is also unclear if certain
LLM-based metrics are more reliable than others,
or if their reliability and fairness vary for different
candidate systems.

In this work, we conduct extensive analysis to
assess whether LLM evaluators can reliably re-
place human judges. Specifically, we incorporate
two common human evaluation approaches with
LLM evaluators, namely Likert-scale scoring (He
et al., 2022; Shen et al., 2022b; Zhang et al., 2020a)
and head-to-head (H2H) comparisons (Shen et al.,
2022a; Li et al., 2020; Liu and Lapata, 2019). For

4215

https://github.com/DAMO-NLP-SG/LLM_summeval
https://github.com/DAMO-NLP-SG/LLM_summeval


Likert-scale scoring, we explore direct reason-then-
score (RTS) generation and a multiple-choice ques-
tion (MCQ) method. The former instructs the LLM
to provide reasoning before giving a score, while
the latter simply prompts it to choose a specific
score with a pre-determined description as the rea-
son. For the Head-to-Head (H2H) comparison, we
prompt LLM for a preference over the summaries
from two compared candidate systems.

Our experiments show that LLM evaluators,
with RTS and MCQ, outperform existing auto-
matic metrics (Lin, 2004; Yuan et al., 2021). How-
ever, they are not ready to be reliable alternatives
for human evaluation yet. Specifically, (i) LLM
evaluators struggle to distinguish candidates with
close performances (§ 4.2.1). (ii) LLM evalua-
tors are candidate-dependent, meaning they do
not exhibit highly consistent degrees of human
alignment for different candidates (§ 4.2.3). Thus,
they may unfairly favor or disfavor an evaluated
candidate. (iii) LLM evaluators are dimension-
dependent, meaning they have varying degrees of
evaluation capabilities for different dimensions like
coherence and fluency (§ 4.2.3). (iv) Lastly, as the
quality of summaries improves with better candi-
dates, LLM evaluators become unreliably less cor-
related with human judgments, according to our
newly proposed meta-correlation metric (§ 4.2.4).

While we still call for a better automatic metric,
in the meantime, we suggest a temporary solution
in § 5 for abstractive summarization practitioners to
use LLMs more reliably. Specifically, we advocate
calculating the correlation between RTS and MCQ
as a preliminary indicator of the reliability of the
LLM for certain dimensions. If RTS and MCQ do
not generally agree with each other, then further
human evaluations are required.

2 Related Work

Summarization The summarization task in-
volves generating a summary that contains concise
and important (i.e., salient) contents of the origi-
nal input article (Nenkova and McKeown, 2012).
This task has been handled with 2 different ap-
proaches: extractive and abstractive. Unlike extrac-
tive summarization systems that directly extract
salient phrases or sentences from the input article
(Ernst et al., 2022; Chen et al., 2021; Zhou et al.,
2018; Dong et al., 2018), abstractive summariza-
tion systems are expected to generate summaries
using their own words and apply sentence fusion

or paraphrasing techniques (Shen et al., 2023; Liu
et al., 2022; Xiao et al., 2022; Lewis et al., 2020;
Zhang et al., 2020a; Ziegler et al., 2019; Bing
et al., 2015; Xu and Durrett, 2021). As such, ab-
stractive summarization poses significantly more
challenges for automatic and human evaluation
pipelines (Saha et al., 2022; Pagnoni et al., 2021),
because it is increasingly insufficient to use the
provided “gold” summary as ground truth.

Human Evaluation Human evaluation can be
conducted with different approaches. Some work
(He et al., 2022; Shen et al., 2022b; Zhang et al.,
2020a; Cheng et al., 2020; Gao et al., 2019; Liu
et al., 2018; Li et al., 2017; Kryściński et al., 2018)
employ a Likert scale to evaluate the summaries on
discrete ranges, such as from 1 to 5. Meanwhile,
many others suggest comparison approaches by
asking human annotators to select the best sum-
mary out of 2 or more generated summaries from
different systems (Shen et al., 2022a; Li et al., 2020;
Liu and Lapata, 2019; Fan et al., 2018; Fabbri et al.,
2019). Following this, we test LLM-based evalu-
ators using both approaches with human-friendly
instruction prompts.

Automatic Evaluation ROUGE (Lin, 2004) has
been a common lexical overlap metric to evalu-
ate summarization systems. Apparently, ROUGE

is not sufficient for abstractive summarization, be-
cause the “gold” labels it relies on cannot com-
prehensively account for the complexity and vari-
ability of this task. In addition, the common us-
age of sentence fusion techniques and novel words
for abstractive summarization may make ROUGE

even less reliable. Zhang et al. (2020b) propose
the neural-based BERTScore, which leverages the
BERT word embeddings to compute the semantic
similarity among tokens. Yuan et al. (2021) later
introduce BARTScore, which uses BART (Lewis
et al., 2020) to compute the probability of a sum-
mary given its input article. Nonetheless, these
metrics may not reflect all of the complicated eval-
uation dimensions required for abstractive summa-
rization mentioned earlier, nor do they have suffi-
ciently high correlations with humans.

LLM-based Evaluation There are many concur-
rent works that demonstrate the potential of LLMs
to conduct complex human tasks (Chiang and Lee,
2023; Gao et al., 2023; Wang et al., 2023a; Wu
et al., 2023; Luo et al., 2023; Liu et al., 2023; Cheng
et al., 2023). The key advantage of instruction-
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tuned LLMs, like ChatGPT or GPT-4 (Ouyang
et al., 2022; OpenAI, 2023), is that we can ex-
plicitly describe in natural language what our eval-
uation criteria and dimensions are and how to score
the summaries, similar to how we would explain
such tasks to a human expert. Chiang and Lee
(2023) use LLMs for open-ended story evaluations,
while Luo et al. (2023) apply ChatGPT specifi-
cally for evaluating the consistency of summaries.
Wu et al. (2023) formulate LLMs as diverse role-
players to evaluate summaries from the perspec-
tives of different personas. Wang et al. (2023a) and
Liu et al. (2023) also explore the LLM’s evalua-
tion potential in various dimensions for the natural
language generation task. Our work differs from
the above works in that besides investigating the
LLMs’ capability using different approaches across
various dimensions for abstractive summarization,
we further focus on the reliability of LLM across
evaluated systems and dimensions.

3 LLM as a Zero-Shot Evaluator

We investigate an LLM’s evaluation capabilities in
the dimensions of coherence, consistency, fluency,
and relevance respectively, as defined by Fabbri
et al. (2021) (see Appendix A). Following com-
mon human evaluation approaches, we propose
two methods for Likert-scale scoring, namely the
reason-then-score method and the multiple-choice
question method, as well as one method for head-
to-head comparisons. We describe each method in
§ 3.1 using the relevance dimension as an example
(see more prompts and details in Appendix B). We
further experiment with alternative phrasings for
different methods in Appendix C.

Besides exploring different evaluation methods,
the stability of LLM-based evaluations across dif-
ferent summarization systems is equally important.
Ideally, a stable LLM evaluator should perform
equally well regardless of the evaluated systems,
with a close (if not identical) degree of alignment
with human judgments. In § 3.2, we propose a
meta-correlation metric and explain how it can
gauge the extent to which LLM evaluators’ per-
formances depend on the evaluated systems, which
indicates how stable and reliable they may be with
evaluating any future candidate systems.

3.1 Summary Evaluation Methods

Reason-then-Score (RTS) Given the success of
chain-of-thought prompting (Kojima et al., 2022;

Score the following Summary given the corresponding Arti-
cle with respect to relevance from one to five, where one in-
dicates “irrelevance”, and five indicates “perfect relevance”.
Note that relevance measures the Summary’s selection of
important content from the Article, whether the Summary
grasps the main message of the Article without being over-
whelmed by unnecessary or less significant details.

Article: {article}

Summary: {summary}

Provide your reason in one sentence, then give a final score:

Table 1: Example prompt for the RTS method on the
relevance dimension. Texts in {blue} represent the arti-
cle and the corresponding summary to be evaluated.

Choose an option from A to E in order to score the follow-
ing Summary given the corresponding Article with respect
to relevance from one to five, where one indicates “irrel-
evance”, and five indicates “perfect relevance”. Note that
relevance measures the Summary’s selection of important
content from the Article, whether the Summary grasps the
main message of the Article without being overwhelmed by
unnecessary or less significant details.

Article: {article}

Summary: {summary}

A: The Summary is totally irrelevant to the Article. Score:
One.
B: The majority of the Summary is irrelevant to the Article.
Score: Two.
C: Some information in the Summary is relevant to the
Article whereas some are not. Score: Three.
D: The majority of the Summary is relevant to the Article.
Score: Four.
E: All information included in the Summary is relevant to
the Article. Score: Five.

Your Answer (enter 1 letter from A to E):

Table 2: Example prompt for the MCQ method on the
relevance dimension. Texts in {blue} represent the arti-
cle and the corresponding summary to be evaluated.

Wei et al., 2022), an intuitive method is to ask
the LLM to evaluate a specific dimension by first
generating the reasoning and then a corresponding
score. Since the SummEval dataset (Fabbri et al.,
2021) contains human scores on a Likert scale of 1
to 5, we also ask the LLM to score the summaries
in the same range, as shown in Table 1.

MCQ Scoring (MCQ) Nevertheless, previous
works find that the reasoning generated by the
LLM does not always make sense (Lyu et al., 2023;
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Choose a more relevant summary from Summary #1 and
Summary #2 with respect to the corresponding Article by
choosing an option from A, B, or C. Note that relevance
measures the summary’s selection of important content from
the Article, whether the summary grasps the main message
of the Article without being overwhelmed by unnecessary
or less significant details.

Article: {article}

Summary #1: {summary from model A}

Summary #2: {summary from model B}

A: Summary #1 is more relevant.
B: Summary #2 is more relevant.
C: Both Summary #1 and Summary #2 are equally relevant.

Your choice (enter 1 letter from A to C):

Table 3: Example prompt for the H2H method on the
relevance dimension. Text in {blue}: the specific article,
and the corresponding summaries generated by a pair
of compared models.

Wang et al., 2023b; Gao et al., 2022). To avoid the
misguidance of wrongly generated reasoning, we
explore a more constrained MCQ method for the
Likert-scale scoring. As shown in Table 2, instead
of allowing the LLM to freely generate its thoughts,
we dictate specific reasoning for each score.

Head-to-Head Comparison (H2H) Lastly,
some concurrent works also observe that ChatGPT
can act as an effective ranking model (Ma et al.,
2023a,b). We thus explore the head-to-head
comparison approach for LLM-based evaluations.
As shown in Table 3, we present 2 summaries
(Summary #1 and #2) generated by different
summarization systems on the same input article,
then prompt the LLM to select the better summary,
or to indicate a tie. Moreover, to avoid potential
biases that arise from the summary IDs, we
conduct each evaluation twice, presenting the same
summary as either #1 or #2 respectively.

3.2 Stability of LLM Evaluators

To ensure fairness across all evaluated systems,
we argue that it is crucial for LLMs to produce
stable evaluations. That is, regardless of evaluated
systems, the LLMs should maintain a consistent
degree of alignment with human judgments. We
investigate such stability in two ways.

First, We categorize the summaries based on
their originating summarization systems, and then

examine the correlation between the LLM and
human evaluations for each system. Ideally, if
an LLM is stable across systems, it should pro-
duce evaluations that are similarly correlated to
human evaluations. Otherwise, if the correlations
differ significantly across different candidates, then
we may conclude that the LLM’s evaluations are
system-dependent.

Second, we define a meta-correlation metric
to quantify the extent to which the LLM’s perfor-
mance is affected by the quality of the evaluated
systems. Specifically, we use the average human
score for each candidate as an indicator of its sum-
marization quality (Qi), as shown in Equation (1):

Qi =
1

N

N∑

j=1

fhuman(gi,j) (1)

where fhuman(·) indicates the human evaluation,
gi,j represents the jth summary generated by the
ith candidate system. Each candidate’s quality is
calculated as an average of N generated summaries
(N = 100 for all systems). Next, we use the corre-
lation Pi between LLM scores and human scores as
an indicator of the LLM’s evaluation performance
for the ith candidate, as follows:

Pi = ρ([fLLM(gi,1), ..., fLLM(gi,N )],

[fhuman(gi,1), ..., fhuman(gi,N )])
(2)

where ρ denotes the correlation metric (i.e., Spear-
man correlation, Pearson correlation, or Kendall’s
Tau2), and fLLM(·) indicates the LLM’s evaluation
for each summary gi,j . Finally, we calculate the
meta-correlation3 M on a total of k candidates as:

M = ρ([Q1, ..., Qk], [P1, ..., Pk]) (3)

Ideally, an LLM should work well regardless of
the quality of the evaluated systems, which means
that M should be close to zero. On the other hand,
a significant M would indicate an undesirable rela-
tionship between the LLM’s evaluation capability
and the quality of the evaluated systems, suggest-
ing that the LLM evaluation is not stable, such that
it may not evaluate each candidate system fairly
using the same standards.

2We use the scipy.stats.kendalltau package, which imple-
ments the tau-b variant that accounts for ties.

3We use the same correlation metric for both Equation2 and
3. For instance, if Pi is obtained using Spearman correlation,
then M is also calculated using Spearman correlation.
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4 Experiments

4.1 Setups

We use the ChatGPT “gpt-3.5-turbo-0301”
snapshot (§ 4.2) for all three methods. By using a
fixed snapshot, we ensure all evaluations are con-
ducted with the same LLM model. In addition,
we evaluate with the GPT-4 “gpt-4-0314” snap-
shot (§ 4.3) using the best evaluation method de-
termined by ChatGPT to check for any potential
improvement. Given that ChatGPT and GPT-4 are
amongst the top performing LLMs, we use their
performance to estimate the potential of LLMs as
reliable evaluators. Additional results using three
different-sized Llama 2 models (Touvron et al.,
2023) are reported in Appendix D, which all per-
forms worse. Similar to Luo et al. (2023) and Wu
et al. (2023), we set the temperature to 0 and reset
the dialogue history for each evaluation instance.

Dataset We use the SummEval benchmark
dataset (Fabbri et al., 2021). This dataset contains
expert human annotations for coherence, consis-
tency, fluency, and relevance on the generation re-
sults from 12 abstractive systems (see details in
Appendix table 21) on the CNN/DM dataset (Her-
mann et al., 2015). Each evaluated system gen-
erates summaries for the same 100 news articles,
and each summary is scored by 3 expert annotators
from 1 to 5. The annotations achieve with a high
kappa coefficient of 0.713 (Fabbri et al., 2021). We
further calculate the annotations’ standard devia-
tions across each evaluated system in Appendix
Table 20. Given a step size of 1, the standard devi-
ations are considered very small, thus suggesting
that this dataset has a high level of human agree-
ment. Following Chiang and Lee (2023), Chhun
et al. (2022), and Guan and Huang (2020), we use
the average human scores as the reference scores.

Baselines We use ROUGE (Lin, 2004) F1
scores for ROUGE-1, ROUGE-2, and ROUGE-L,
BERTScore (Zhang et al., 2020b), BARTScore,
BARTScore-CNN, and BARTScore-CNN-PARA
(Yuan et al., 2021) as baseline metrics. The
last two metrics use BART models fine-tuned on
CNN/DM’s training data, and are especially strong.

Prompts We conduct evaluation following our
prompt formats given in Table 1, 2, and 3. Follow-
ing Fabbri et al. (2021), we re-use the definitions
of the evaluation dimensions: (i) Coherence - the
collective quality of all sentences, (ii) Consistency

- the factual alignment between the summary and
the summarized source, (iii) Fluency - the quality
of individual sentences, and (iv) Relevance - the
selection of important content from the source.

Measurements To compare all evaluation meth-
ods on equal ground with human evaluation, we
use four different measurements. First, we count
the number of correct preferences (#CP), which is
the number of times each automatic metric has the
same preference as the average human scores do
over a set of compared system pairs (§ 4.2.1). This
can help measure the alignment of evaluation meth-
ods with humans at a granular level. To determine
the preferred system by a particular metric, we as-
sign a system 1 point if its generated summary is
evaluated as better than that of the other system
according to the metric, or assign both systems 0.5
for a tie. Then, we aggregate the different scores
for the compared systems for all 100 test inputs,
and the system with a higher score is considered
the preferred system by that metric (see Appendix
Table 22 for details).

Next, we also use the Pearson correlation (Co-
hen et al., 2009), Spearman correlation (Spearman,
1987), and Kendall’s Tau (Kendall, 1938) to mea-
sure the relationship between the scores of auto-
matic evaluators and humans (§ 4.2.2, 4.2.3, 4.2.4).
While the Pearson score measures linear relation-
ships, the other two measure the ordinal relation-
ship that may be non-linear. Moreover, Kendall’s
Tau is less sensitive than Spearman correlation to
outliers due to its paired counting of concordant
and discordant pairs.

4.2 ChatGPT Evaluator

In this section, we examine the ChatGPT evaluator
across many aspects, ranging from human correla-
tion and stability across different systems.

4.2.1 Correct Preferences
The ultimate goal of evaluation is to determine if
one candidate system is better than the other in a
compared pair. The number of correct preferences
(#CP) metric normalizes all evaluation methods
into determining whether an evaluator can, as a
human expert would, pick the same better system
or determine a tie. We conduct such analysis with
different pairs of summarization systems on the
same input articles. Due to the limited budget for
API calls, we only evaluate H2H on a challenge set,
consisting of 11 candidate pairs with the closest
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Coherence Consistency Fluency Relevance

Metrics Spear. Pear. Kend. Spear. Pear. Kend. Spear. Pear. Kend. Spear. Pear. Kend.

ROUGE-1* 0.193 0.202 0.136 0.155 0.186 0.121 0.075 0.153 0.058 0.323 0.361 0.231
ROUGE-2* 0.145 0.146 0.101 0.137 0.156 0.107 0.053 0.095 0.041 0.255 0.262 0.181
ROUGE-L* 0.148 0.158 0.105 0.133 0.167 0.103 0.078 0.146 0.060 0.306 0.340 0.219
BERTScore* 0.375 0.383 0.265 0.163 0.182 0.127 0.167 0.229 0.130 0.396 0.414 0.285
BARTScore* 0.381 0.391 0.275 0.271 0.265 0.212 0.168 0.187 0.131 0.381 0.391 0.276
BARTScore-CNN* 0.461 0.480 0.332 0.389 0.413 0.305 0.310 0.378 0.241 0.425 0.450 0.309
BARTScore-CNN-PARA* 0.455 0.455 0.328 0.413 0.459 0.324 0.368 0.417 0.286 0.414 0.440 0.299

ChatGPT-RTS 0.388 0.399 0.312 0.423 0.532 0.378 0.285 0.302 0.240 0.448 0.463 0.357
ChatGPT-MCQ 0.424 0.416 0.350 0.343 0.487 0.320 0.343 0.431 0.305 0.384 0.395 0.329
GPT-4-RTS 0.427 0.461 0.361 0.556 0.618 0.522 0.498 0.600 0.452 0.448 0.428 0.373

Table 4: Spearman (Spear.) correlations, Pearson (Pear.) correlations, and Kendall’s Tau (Kend.) between various
metrics and human scores for a total of 1,200 summaries. *: results derived from Wang et al. (2023a). Bolded: best
results. Underlined: second best results. Values in light gray color are insignificant (p-value ≥ 0.05).

Metrics Coh Con Flu Rel Avg

Random 3.67/22 3.67/22 3.67/22 3.67/22 3.67/22

ROUGE-1 3/40 5/46 3/46 4/47 3.75/44.75
ROUGE-2 2/38 7/48 3/45 4/46 4.00/44.25
ROUGE-L 2/31 5/37 4/39 6/41 4.25/37.00
BERTScore 4/48 5/44 4/44 6/46 4.75/45.50
BARTScore 8/46 7/48 5/45 6/46 6.50/46.25
BARTScore-CNN 9/53 5/53 5/54 4/53 5.75/53.25
BARTScore-CNN-PARA 9/49 8/54 6/52 5/51 7.00/51.50

ChatGPT-RTS 6/54 6/56 9/62 7/62 7.00/58.50
ChatGPT-MCQ 5/54 7/56 8/60 7/58 6.75/57.00
ChatGPT-H2H 8/- 7/- 7/- 4/- 6.50/-
GPT-4-RTS 5/55 7/53 8/60 7/56 6.75/56.00

Table 5: Number of correct preferences (#CP) on the
11-pair challenge set (in black) and the 66-pair full set
(in brown). Random: for each pair, there are three pos-
sibilities (two possibilities for one model being better,
one possibility for a tie) so the random #CP is one-third
of the total compared pairs.

average performances according to human scores.
However, for RTS, MCQ, and other baselines, we
can easily calculate the #CP for all 66 possible
pairs (see Appendix E).

Table 5 reports the #CP for both the standard 66-
pair full set (in brown) and the 11-pair challenge
set (in black). As shown for the larger standard set,
RTS unanimously obtains the largest #CP across
all dimensions, with an average of 58.5 out of 66
candidate pairs (i.e. 88.6% accuracy).

Despite the high overall accuracy, weaknesses
of such evaluators are revealed as we dive into their
performances in the 11-pair challenge set (black
scores of Table 5), where the evaluated candidates
are close matches. Specifically, BARTScore-CNN-
Para performs better than RTS in coherence and
consistency, possibly because it is fine-tuned with
same-domain summarization data. For fluency and
relevance, ChatGPT-RTS still performs best among
all evaluators. Nonetheless, its average accuracy

drops significantly to 63.6% (7 out of 11), which
indicates LLM evaluators struggle to differentiate
the closely matched candidate systems. In other
words, LLM evaluators may only reliably compare
candidates with a relatively large performance gap.

4.2.2 Correlations with Human
Table 4 reports that Spearman, Pearson correla-
tions, and Kendall’s Tau between scores of multiple
automatic evaluators and humans with a total of
1200 summaries from all systems, across the four
evaluation dimensions. As shown, ChatGPT RTS
and MCQ demonstrate stronger correlations with
humans than many automatic evaluators, such as
ROUGE and BARTScore, with up to 0.2 gains in
fluency. While RTS achieves higher correlations in
the dimensions of consistency and relevance, MCQ
has relatively strong correlations in the dimensions
of coherence and fluency. Meanwhile, the special-
ized BARTScore-CNN family also shows competi-
tive performance in coherence, most likely due to
the fine-tuning process with CNN/DM.

4.2.3 Per-candidate Correlations
Next, we break down the human correlation of
ChatGPT-RTS for each candidate system and mea-
sure the statistical spread for the correlations across
all systems (see raw results in Appendix table 23).
Ideally, a stable evaluator should exhibit the same
human correlation across candidates and dimen-
sions, and display flattened boxes in a line.

However, as illustrated in Figure 1, the spread
of correlations for different candidates is particu-
larly wide, with up to 0.5 correlation difference in
consistency. This means that the RTS evaluator
exhibits a significantly varying degree of alignment
with human judgment for different candidates. In
other words, ChatGPT-RTS is candidate-dependent
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Coherence Consistency Fluency Relevance

Spear. Pear. Kend. Spear. Pear. Kend. Spear. Pear. Kend. Spear. Pear. Kend.

ROUGE-1 0.0 -0.032 -0.091 -0.490 -0.527 -0.303 -0.420 -0.518 -0.273 -0.420 -0.387 -0.273
ROUGE-2 0.559 0.508 0.485 -0.259 -0.480 -0.152 -0.217 -0.438 -0.152 -0.084 -0.120 -0.121
ROUGE-L 0.231 0.251 0.121 -0.510 -0.522 -0.303 -0.168 -0.412 -0.152 -0.224 -0.266 -0.121
BERTScore -0.413 -0.403 -0.212 -0.580 -0.869 -0.424 -0.455 -0.663 -0.303 -0.685 -0.756 -0.515
BARTScore -0.916 -0.747 -0.788 -0.266 -0.504 -0.121 0.154 0.123 0.182 -0.769 -0.837 -0.606
BARTScore-CNN -0.748 -0.800 -0.636 -0.671 -0.913 -0.515 -0.510 -0.604 -0.485 -0.825 -0.852 -0.667
BARTScore-CNN-PARA -0.720 -0.858 -0.606 -0.685 -0.888 -0.576 -0.294 -0.522 -0.212 -0.853 -0.880 -0.727

ChatGPT-RTS -0.042 -0.072 -0.121 -0.811 -0.751 -0.636 -0.748 -0.728 -0.606 -0.559 -0.473 -0.394
ChatGPT-MCQ -0.175 -0.11 -0.182 -0.818 -0.411 -0.636 -0.622 -0.484 -0.394 -0.350 -0.622 -0.212
GPT-4-RTS -0.531 -0.678 -0.424 -0.600 -0.103 -0.236 -0.839 -0.520 -0.515 -0.958 -0.880 -0.848

Table 6: Meta-correlation for various evaluation methods. Bolded: most negative meta-correlation. Underlined:
second most negative meta-correlation. Values in light gray color are insignificant (p-value ≥ 0.05).
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Figure 1: Spread of per-candidate correlations with
human scores for ChatGPT-RTS evaluations.
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Figure 2: Meta-correlation (Kendall’s Tau) for RTS and
MCQ. Shaded: statistically significant with p < 0.05.

and one should not expect such LLM evaluators to
have the same level of human alignment on a new
summarization system. Similar trends can also be
observed for MCQ (see Appendix table 24).

In addition, the medians across the four dimen-
sions are also different. This indicates that the
ChatGPT is also dimension-dependent and unsta-
ble. Given such varying performances across dif-
ferent dimensions, ChatGPT may not behave well
with a newly introduced evaluation criterion.

4.2.4 Summary Quality vs Human Alignment
Using our proposed meta-correlation measurement
in § 3.2, we analyze the relationship between sum-
mary quality and human correlation of LLM evalu-
ators. We illustrate the meta-correlation in terms of
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Average Human Scores (Qi)

C
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(P
i
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Figure 3: Relationship between per-model correlations
(Kendall’s Tau) and human scores on consistency.

Kendall’s Tau for both RTS and MCQ in Figure 2.
As shown, both RTS and MCQ exhibit strong neg-
ative meta-correlation for consistency and fluency.
This suggests that ChatGPT becomes less human-
aligned with improving qualities of the evaluated
systems.

To illustrate this phenomenon further, we scatter
the paired coordinates of the summarization system
quality (Qi, Equation (1)) and ChatGPT’s evalua-
tion performance (Pi, Equation (2)) in Figure 3. As
shown, while the LLM evaluator is better human-
correlated with lower-quality candidates (< 3.5), it
is less reliable when dealing with high-quality can-
didates (> 4.7) with much lower and inconsistent
correlations.

We compare the meta-correlation for all evalu-
ation metrics in Table 6. We can see that while
the ROUGE metrics exhibit no significantly nega-
tive meta-correlation, the neural metrics all display
significant meta-correlation in certain dimensions.
One highly likely reason for this behavior is due
to the varying biases inherent to the neural mod-
els, which would explain why ROUGE as a simple
n-gram overlap metric doesn’t exhibit significant
negative meta-correlations. Interestingly, ROUGE-
2 even shows a strong positive meta-correlation
on coherence (which is plausible, because bi-gram
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Figure 4: The average ChatGPT RTS and MCQ scores
and human scores across dimensions.

overlap performance may be more accurate as can-
didates produce more coherent texts).

Both the BARTScore variants and LLMs
demonstrate the most negative meta-correlations.
ChatGPT-RTS has the most negative meta-
correlation in the dimensions of consistency and
fluency, indicating that it may be the least reliable
to evaluate high-quality systems on these dimen-
sions. On the other hand, the BARTScore family
may be unreliable in comparing systems with high
qualities of coherence, consistency, and relevance.

So far, the observations discussed in § 4.2.3 and
§ 4.2.4 collectively suggest that LLM evaluators
may not be a reliable standalone metric for chal-
lenging scenarios, and further human evaluation is
required for conclusive decisions.

4.2.5 RTS and MCQ Scores

Lastly, we delve into the detailed scores generated
by ChatGPT with either the RTS or MCQ method.
Since both methods score the summaries in the
same range of human scores of 1 to 5 (Fabbri et al.,
2021), we can show a direct comparison of the aver-
age RTS and MCQ scores with human scores in Fig-
ure 4 (see more details in Appendix F). As shown,
the RTS scores are much lower than the human
scores across all dimensions, while MCQ scores
are consistently higher and better match the hu-
man scores (except for relevance). In other words,
while RTS is best aligned with humans according
to § 4.2.1 and § 4.2.2, we cannot replace the human
scores with RTS scores in absolute terms.

The discrepancy may be attributed to the un-
faithful reasoning generated by LLMs (Lyu et al.,
2023; Wang et al., 2023b; Gao et al., 2022). Our
further investigation suggests that ChatGPT-RTS
generates false or unrelated-to-dimension reason-
ing. Thus, it is possible that the much lower scores
could be caused by ChatGPT penalizing the sum-
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Figure 5: GPT-4’s (RTS) spread of per-candidate corre-
lations.

maries according to false premises (more examples
in Appendix G). For instance, RTS may penalize
the summary’s repetitiveness in the consistency di-
mension or suppress fluency ratings for missing
important details.4 On the other hand, the MCQ
counterpart gives higher overall scores, most likely
because the confined set of pre-defined reasons
prevents such unrelated penalization, though not
leading to better human alignment.

4.3 GPT-4 Evaluator

A natural question to ask is whether such afore-
mentioned limitations are resolved with an stronger
LLM. In this section, we conduct similar analyses
on GPT-4 (OpenAI, 2023) with the RTS method.
We present the GPT-4 results in the last rows of
Table 4 and 5. The results suggest that a stronger
LLM does not necessarily translate to a stronger
LLM evaluator, although Table 4 does show that
GPT-4 outperforms ChatGPT in terms of human
correlation consistently across most dimensions.

Unfortunately, GPT-4 still suffers from the same
limitations as ChatGPT. It appears to be both
candidate-dependent and dimension-dependent, as
demonstrated by the large spreads with varying
median values across dimensions in Figure 5 and
the significantly negative meta-correlations out of
3 dimensions (Table 6). However, GPT-4 is less
dimension-dependant as compared to ChatGPT, as
the medians in the box plots in Figure 5 are more
aligned than those in Figure 1.

In addition, there is a notable enhancement in
the meta-correlation for consistency, which we at-
tribute to a significant reduction in reported halluci-
nations with GPT-4 (OpenAI, 2023). It is possible
that with much more instruction training to avoid
hallucinations, GPT-4 is much better aligned with
humans to detect inconsistencies (i.e. hallucina-

4Fabbri et al. (2021) observe similar issues with crowd-
sourced non-expert annotators.
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Coherence Consistency Fluency Relevance

Spear. Pear. Kend. Spear. Pear. Kend. Spear. Pear. Kend. Spear. Pear. Kend.

ρ(Ri, P
RTS
i ) 0.343 0.198 0.091 0.685 0.506 0.576 0.727 0.797 0.545 0.168 0.128 0.000

ρ(Ri, P
MCQ
i ) 0.657 0.625 0.394 0.685 0.616 0.515 0.322 0.573 0.212 0.091 -0.106 0.000

Table 7: Correlations between RTS-MCQ Ri and RTS-Human (PRTS
i ) and MCQ-Human (PMCQ

i ). High values
suggest Ri can be a reliability indicator for RTS and MCQ. Light gray values are insignificant (p ≥ 0.05).

tions) in summaries.
Nevertheless, GPT-4 exhibits a much worse neg-

ative meta-correlation in the relevance dimension,
which, interestingly, seems to reflect the challenges
of maintaining both “truthfulness” and “informa-
tiveness” (Ouyang et al., 2022). This is because
a model could be easily made more truthful if al-
lowed to provide less relevant information (for in-
stance, by refusing to answer the users’ questions).
It is possible that with reduced capability in the
informativeness dimension, the model is less capa-
ble of differentiating the nuances of less relevant
summaries when the summary quality is generally
high. Nevertheless, we leave it to future work to
determine whether GPT-4’s more negative meta-
correlation in the relevance dimension could be
related to its stronger performance in consistency.
We provide more details on the GPT-4 evaluator in
Appendix H.

5 A Temporary Efficient Framework

Despite the aforementioned limitations, it may be
hard to resist the temptation of using LLM evalu-
ators given their superiority over other automatic
metrics. In such a case, one should be able to tell
when LLM evaluators are more likely to be unre-
liable and employ further human evaluation when
necessary. To this end, we suggest combining the
RTS and MCQ scores as a cost-efficient framework.
Specifically, we calculate the correlation between
RTS and MCQ scores for the ith candidate system
as a reliability indicator:

Ri = ρ([fRTS(gi,1), ..., fRTS(gi,N )],

[fMCQ(gi,1), ..., fMCQ(gi,N )])
(4)

Then, we can loosely infer that up to a reliability
tolerance r ∈ (0, 1), the LLM evaluators (either
RTS or MCQ) are reliable if Ri > r. In other
words, given a candidate i, if RTS and MCQ agree
with each other up to a certain degree of tolerance
r, we may assume the evaluator is reliable enough
to avoid invoking further human evaluation.

To validate this theory, we measure the cor-
relations ρ(Ri, P

RTS
i ) or ρ(Ri, P

MCQ
i ), where

P
RTS/MCQ
i is the performance of either method

as defined in Equation (2). Given significantly
large positive values of either ρ(Ri, P

RTS
i ) or

ρ(Ri, P
MCQ
i ), we can then conclude that Ri can

be used as a reliable indicator for the performance
of the corresponding method.

As shown in Table 7, Ri demonstrates a signif-
icant correlation with PRTS

i on both the consis-
tency and fluency dimensions, and with PMCQ

i on
the coherence and consistency dimensions. This
means that if RTS and MCQ generally agree with
each other on the candidate’s performance on a
particular dimension with high ρ(Ri, P

RTS
i ) (or

ρ(Ri, P
MCQ
i )), RTS (or MCQ) is more likely to

be human-aligned. Meanwhile, if RTS disagrees
with MCQ (Ri < r), further human evaluators are
required to provide a conclusive evaluation. We
provide Ri values for ChatGPT on each evaluated
system in Appendix Table 29.

6 Conclusion

We explore the potential of using LLMs with dif-
ferent prompting techniques as metrics for abstrac-
tive summarization systems. Our extensive anal-
ysis suggests that while LLMs like ChatGPT per-
form better than commonly used automatic met-
rics across different summarization systems and
dimensions, they are still not ready to replace hu-
man evaluators because they are candidate- and
dimension-dependent, and they do not align well
with human when comparing high-quality candi-
dates. Nonetheless, if an LLM evaluator is to be
used, we suggest combining multiple evaluation
methods as a preliminary indicator to determine
whether the metric is likely to be unreliable and
whether further human evaluation is required.

Limitations

Potential Human Bias. We benchmark the LLM
evaluation results against the average of three hu-
man expert scores. Naturally, it is possible that
these scores may exhibit potential biases of the
human experts. Nevertheless, we wish to explore
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whether LLM evaluators are aligned with human
experts, and may naturally exhibit the same bias
as a human would. In other words, we examine
whether we can reliably replace human annotators
with LLMs, instead of seeking a “perfect” solution
that has absolutely zero bias.

Dataset Size. Given the constraints of the small
size of the human-annotated SummEval dataset,
we could only evaluate 100 summaries generated
for each summarization system, with a total of 12
abstractive summarization systems. Since we have
observed a significant correlation of LLM evalua-
tions with humans for the consolidated 1200 sum-
maries across all systems, it is possible that with
a larger evaluation number, the per-system corre-
lation could also be improved. In addition, given
only 12 evaluated systems, our meta-correlation
may still be subject to sample biases. We leave
more investigations for the future once there are
larger annotated datasets.

Prompt tuning. Designing better prompt for
LLMs are also ongoing research. Although it is
possible that LLMs may act as better evaluators
with better prompts, prompt tuning is not our fo-
cus. We seek to highlight the limitations of the
investigated LLMs and have demonstrated that lim-
itations such as negative meta-correlation are also
found with a few other alternative prompts (see
Appendix C).

Availability of Commercialized LLM We note
that the “gpt-3.5-turbo-0301” snapshot is cur-
rently taken down5 by OpenAI and replaced with a
newer snapshot, “gpt-3.5-turbo-0613”. This is also
one disadvantage of using out-of-the-box commer-
cialized LLM for summarization evaluations, as
the exact checkpoints may not be stably available.
As a result, future models may not be fairly com-
pared against previously evaluated models using a
different LLM checkpoint. Nevertheless, our paper
only seeks to investigate the potential of LLM as an
out-of-the-box evaluator, and the OpenAI models
are currently one of the strongest. Eventually, we
wish to raise awareness of some of the significant
limitations found with these LLMs, which need to
be resolved before LLMs can be used as direct re-
placements for human evaluations. In addition, we
also note that the cost of evaluating only 100 sum-

5We release all LLM generations involved in our experi-
ments in https://github.com/DAMO-NLP-SG/LLM_summev
al as JSON files.

maries for each system is relatively low (around
2 USD per system using ChatGPT). Since LLMs
also conduct evaluations much faster than humans
(around 2 minutes for LLMs versus 10 hours for
human for 100 summaries), it may not pose signifi-
cant barriers if one was to re-evaluate all compared
systems on a single LLM.

Limited Use of the Temporary Solution Unfor-
tunately, our temporary efficient framework doesn’t
apply to the relevance dimension, where the Ri has
no significant correlation with the performances of
either RTS or MCQ. Moreover, the r value may be
dataset-dependent, and it is hard to decide where
to draw this line. We leave for future work of de-
veloping better methods to gauge the reliability of
LLM evaluations.
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Score the following Summary given the corresponding Ar-
ticle with respect to consistency from one to five, where
one indicates “inconsistency” and five indicates “perfect
consistency”. Note that consistency measures the factual
alignment between the Summary and the Article, whether
the Summary is faithful to the Article without introducing
contradictions or misleading representations.

Article: {article}

Summary: {summary}

Provide your reason in one sentence, then give a final score:

Table 8: Example prompt for the RTS method on the
consistency dimension. Text in {blue}: the specific
article and the corresponding summary to be evaluated.

Score the following Summary given the corresponding Arti-
cle with respect to fluency from one to five, where one indi-
cates “disfluency” and five indicates “perfect fluency”. Note
that fluency measures the quality of individual sentences in
the Summary, whether the Summary is well-written, gram-
matically correct, and readable on the sentence level.

Article: {article}

Summary: {summary}

Provide your reason in one sentence, then give a final score:

Table 9: Example prompt for the RTS method on the
fluency dimension. Text in {cyan}: the specific article
and the corresponding summary to be evaluated.

Score the following Summary given the corresponding Ar-
ticle with respect to coherence from one to five, where one
indicates “incoherence” and five indicates “perfect coher-
ence”. Note that coherence measures the collective quality
of the Summary, whether the Summary presents informa-
tion that flows smoothly and avoids abrupt transitions or
disjoint statements.

Article: {article}

Summary: {summary}

Provide your reason in one sentence, then give a final score:

Table 10: Example prompt for the RTS method on
the coherence dimension. Text in {cyan}: the specific
article and the corresponding summary to be evaluated.

A Evaluation Dimensions

Fabbri et al. (2021) has defined 4 evaluation dimen-
sions as follows:

1. Coherence: The collective quality of all
sentences. The summary should be well-

Choose an option from A to E in order to score the follow-
ing Summary given the corresponding Article with respect
to consistency from one to five, where one indicates “in-
consistency” and five indicates “perfect consistency”. Note
that consistency measures the factual alignment between the
Summary and the Article, whether the Summary is faithful
to the Article without introducing contradictions or mislead-
ing representations.

Article: {article}

Summary: {summary}

A: The Summary is totally inconsistent with the Article.
Score: One.
B: The majority of the Summary is inconsistent with the
Article. Score: Two.
C: Some information in the Summary is consistent with the
Article whereas some are not. Score: Three.
D: The majority of the Summary is consistent with the
Article. Score: Four.
E: All information included in the Summary is consistent
with the Article. Score: Five.

Your Answer (enter 1 letter from A to E):

Table 11: Example prompt for the MCQ method on
the consistency dimension. Text in {cyan}: the specific
article and the corresponding summary to be evaluated.

structured and well-organized. The summary
should not just be a heap of related informa-
tion but should build from sentence to sen-
tence to a coherent body of information about
a topic.

2. Consistency: The factual alignment between
the summary and the summarized source. A
factually consistent summary contains only
statements that are entailed by the source doc-
ument.

3. Fluency: The quality of individual sentences.
Sentences in the summary should have no for-
matting problems, capitalization errors or ob-
viously ungrammatical sentences (e.g., frag-
ments, missing components) that make the
text difficult to read.

4. Relevance: Selection of important content
from the source. The summary should include
only important information from the source
document.

We follow the above definitions for designing
ChatGPT’s evaluation prompts.
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Choose an option from A to E in order to score the follow-
ing Summary given the corresponding Article with respect
to fluency from one to five, where one indicates "disflu-
ency" and five indicates "perfect fluency". Note that fluency
measures the quality of individual sentences in the Sum-
mary, whether the Summary is well-written, grammatically
correct, and readable on the sentence level.

Article: {article}

Summary: {summary}

A: The Summary is totally disfluent. Score: One.
B: The majority of the Summary is disfluent. Score: Two.
C: Some sentences in the Summary are fluent whereas some
are not. Score: Three.
D: The majority of the Summary is fluent. Score: Four
E: All sentences in the Summary are fluent. Score: Five.

Your Answer (enter 1 letter from A to E):

Table 12: Example prompt for the MCQ method on the
fluency dimension. Text in {cyan}: the specific article
and the corresponding summary to be evaluated.

Choose an option from A to E in order to score the following
Summary given the corresponding Article with respect to co-
herence from one to five, where one indicates "incoherence"
and five indicates "perfect coherence". Note that coherence
measures the collective quality of the Summary, whether
the Summary presents information that flows smoothly and
avoids abrupt transitions or disjoint statements.

Article: {article}

Summary: {summary}

A: The Summary is completely incoherent. Score: One.
B: The Summary is mostly incoherent. Score: Two.
C: The Summary is somewhat coherent. Score: Three.
D: The Summary is mostly coherent. Score: Four.
E: The Summary is completely coherent. Score: Five.

Your Answer (enter 1 letter from A to E):

Table 13: Example prompt for the MCQ method on
the coherence dimension. Text in {cyan}: the specific
article and the corresponding summary to be evaluated.

B Prompt Details and Design

We show the RTS prompts for relevance, consis-
tency, fluency, and coherence in Table 1, Table 8,
Table 9, and Table 10 respectively.

We show the MCQ prompts for relevance, con-
sistency, fluency, and coherence in Table 2, Table
11, Table 12, and Table 13 respectively.

We show the H2H prompts for relevance, consis-
tency, fluency, and coherence in Table 3, Table 14,
Table 15, and Table 16 respectively.

Choose a more consistent summary from Summary #1 and
Summary #2 with respect to the corresponding Article by
choosing an option from A, B, or C. Note that consistency
measures the factual alignment between the summary and
the Article, whether the summary is faithful to the Article
without introducing contradictions or misleading represen-
tations.

Article: {article}

Summary #1: {summary from model A}

Summary #2: {summary from model B}

A: Summary #1 is more consistent.
B: Summary #2 is more consistent.
C: Both Summary #1 and Summary #2 are equally consis-
tent.

Your choice (enter 1 letter from A to C):

Table 14: Example prompt for the H2H method on the
consistency dimension. Text in {cyan}: the specific
article, and the corresponding summaries generated by
a pair of compared models.

Choose a more fluent summary from Summary #1 and Sum-
mary #2 with respect to the corresponding Article by choos-
ing an option from A, B, or C. Note that fluency measures
the quality of individual sentences in the summary, whether
the summary is well-written, grammatically correct, and
readable on the sentence level.

Article: {article}

Summary #1: {summary from model A}

Summary #2: {summary from model B}

A: Summary #1 is more fluent.
B: Summary #2 is more fluent.
C: Both Summary #1 and Summary #2 are equally fluent.

Your choice (enter 1 letter from A to C):

Table 15: Example prompt for the H2H method on the
fluency dimension. Text in {cyan}: the specific article,
and the corresponding summaries generated by a pair
of compared models.

To determine the exact definitions used in our
prompts for each dimension, we re-use the first
sentence from Fabbri et al. (2021)’s definition. We
then prompt the LLM to provide a definition for
the evaluated dimension, such as “define the word
relevance in the context of summarization”, then
extract the key phrases generated that we believe to
fit the definitions of Fabbri et al. (2021) to make up
the full definition. We believe this approach may
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Choose a more coherent summary from Summary #1 and
Summary #2 with respect to the corresponding Article by
choosing an option from A, B, or C. Note that coherence
measures the collective quality of the summary, whether
the summary presents information that flows smoothly and
avoids abrupt transitions or disjoint statements.

Article: {article}

Summary #1: {summary from model A}

Summary #2: {summary from model B}

A: Summary #1 is more coherent.
B: Summary #2 is more coherent.
C: Both Summary #1 and Summary #2 are equally coherent.

Your choice (enter 1 letter from A to C):

Table 16: Example prompt for the H2H method on
the coherence dimension. Text in {cyan}: the specific
article, and the corresponding summaries generated by
a pair of compared models.

Coh Con Flu Rel Avg

ChatGPT-RTS2 5 6 7 6 6.00
ChatGPT-MCQ2 4 7 6 4 5.25
ChatGPT-StarEval 7 7 7 6 6.75

Table 17: Total correct pairs for alternative prompts.
Coh: coherence; Con: consistency; Flu: fluency; Rel:
relevance.

help the LLM to better evaluate the summaries
according to definitions partially generated in its
own language. Nevertheless, we didn’t invest ex-
tensive efforts in prompt designs as this is not our
key focus. We also demonstrate that our prompts
have better evaluation results than two alternative
prompts in Appendix C.

C Alternative prompts

We also use ChatGPT to evaluate with the exact
prompts from Wang et al. (2023a). We name these
prompts “StarEval” since they prompt the LLM
to give one to five stars for the summary. In ad-
dition, we use ChatGPT to evaluate with alterna-
tive prompts for RTS and MCQ by using the full
definition as shown in Appendix A instead of sup-
plementing the definition with ChatGPT-generated
phrases. We name these two prompts RTS2 and
MCQ2 respectively.

We show the results of these alternative prompts
in Table 17 and Table 18.

D Llama 2 Results

We report the results of using three different sizes
of Llama 2 models as LLM evaluators in Table 19.
As shown, while the smallest model (7B) exhibits
very low correlations with human scores (and only
significant on the consistency and relevance dimen-
sions), the larger models (13B and 70B) demon-
strate significant correlations with human scores
on the full dataset level. However, even the best-
performing 70B model fails to outperform the hu-
man correlation of BARTScore, and is completely
overwhelmed by the results of ChatGPT and GPT-
4. This suggests that the open-sourced Llama 2
models are not suitable to be used as zero-shot
evaluators. Moreover, all Llama 2 models exhibit
significant meta-correlations for at least one dimen-
sion.
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Coherence Consistency Fluency Relevance

Spear. Pear. Kend. Spear. Pear. Kend. Spear. Pear. Kend. Spear. Pear. Kend.

RTS2
Human-Corr 0.339 0.338 0.285 0.393 0.497 0.350 0.290 0.280 0.252 0.440 0.441 0.351
Meta-Corr -0.559 -0.476 -0.424 -0.748 -0.843 -0.576 -0.825 -0.823 -0.636 -0.385 -0.506 -0.212

MCQ2
Human-Corr 0.430 0.423 0.355 0.327 0.483 0.306 0.258 0.396 0.229 0.240 0.258 0.206
Meta-Corr -0.308 -0.275 -0.212 -0.545 -0.446 -0.364 -0.811 -0.615 -0.636 -0.217 -0.707 -0.182

StarEval
Human-Corr 0.418 0.417 0.341 0.297 0.421 0.264 0.246 0.323 0.217 0.393 0.405 0.323
Meta-Corr -0.084 -0.101 0.000 -0.664 -0.684 -0.545 -0.441 -0.460 -0.212 -0.497 -0.579 -0.303

Table 18: Results of using alternative prompt with ChatGPT. Light gray values are insignificant (p-value ≥ 0.05).
Human-Corr reports the overall correlation of ChatGPT scores with human scores. Meta-corr shows the meta-
correlation.

Coherence Consistency Fluency Relevance

Spear. Pear. Kend. Spear. Pear. Kend. Spear. Pear. Kend. Spear. Pear. Kend.

7B
Human-Corr -0.001 -0.000 -0.001 0.114 0.130 0.104 0.043 0.038 0.039 0.067 0.064 0.057
Meta-Corr 0.245 -0.258 0.182 -0.524 -0.720 -0.424 -0.042 0.463 -0.03 0.238 0.169 0.212

13B
Human-Corr 0.153 0.165 0.123 0.180 0.209 0.162 0.187 0.179 0.167 0.234 0.266 0.192
Meta-Corr -0.287 -0.425 -0.182 -0.580 -0.495 -0.424 -0.455 -0.233 -0.303 -0.049 -0.406 0.000

70B
Human-Corr 0.234 0.254 0.186 0.357 0.395 0.319 0.155 0.161 0.134 0.248 0.285 0.200
Meta-Corr -0.420 -0.407 -0.273 -0.811 -0.690 -0.667 -0.322 -0.319 -0.182 -0.238 -0.123 -0.182

Table 19: Results of Llama 2 models of 7B, 13B, and 70B RTS correlations. Light gray values are insignificant
(p-value ≥ 0.05). Human-Corr reports the overall correlation of LLM scores with human scores. Meta-corr shows
the meta-correlation.

ID Coh Con Flu Rel

M8 0.58 0.09 0.13 0.51
M9 0.65 0.15 0.34 0.54
M10 0.58 0.22 0.20 0.54
M11 0.59 0.34 0.40 0.49
M12 0.65 0.03 0.14 0.54
M13 0.62 0.07 0.14 0.51
M14 0.65 0.09 0.18 0.54
M15 0.60 0.04 0.13 0.53
M17 0.58 0.05 0.08 0.52
M20 0.48 0.29 0.24 0.49
M22 0.58 0.02 0.14 0.54
M23 0.58 0.05 0.12 0.54

Table 20: The standard deviation of human annotations
across different summarization systems and evaluation
dimensions.

E Challenging Pairs

To count the total correct pairs, we only evaluate
the challenging pairs, which consist of summariza-
tion systems of consecutive performances accord-
ing to average human scores across all dimensions.
Thus, each pair contains 2 summarization systems
with the smallest difference in terms of average
performance.

For instance, as shown in Table 21, M22 has
the best average human score of 4.57, followed by
M23 of 4.55, then M17 of 4.52. We thus compare
model pairs of “M22-M23” and “M23-M17”. The
full challenge set is shown in Table 22.

For RTS, MCQ, and all other baseline metrics,

ID Model Name Coh Con Flu Rel Avg

M22 BART 4.18 4.94 4.90 4.25 4.57
M23 Pegasus (C4) 4.16 4.91 4.88 4.26 4.55
M17 T5 4.00 4.93 4.93 4.23 4.52
M12 Unified-ext-abs 3.60 4.96 4.85 3.85 4.32
M13 ROUGESal 3.44 4.82 4.86 3.83 4.24
M15 Closed book decoder 3.35 4.95 4.80 3.67 4.19
M14 Multi-task (Ent + QG) 3.20 4.90 4.74 3.63 4.12
M8 Pointer Generator 3.29 4.65 4.79 3.55 4.07
M9 Fast-abs-rl 2.38 4.67 4.50 3.52 3.77
M10 Bottom-Up 2.73 4.25 4.42 3.38 3.70
M20 GPT-2 (zero-shot) 3.63 3.40 3.97 3.30 3.58
M11 Improve-abs 2.28 3.27 3.65 3.15 3.09

Table 21: The average human evaluation scores of vari-
ous abstractive summarization models reported by Fab-
bri et al. (2021). We calculate the average (Avg) score
of the reported coherence (Coh), consistency (Con), flu-
ency (Flu), and relevance (Rel) scores. Rows are sorted
according to the Avg column values in descending or-
der.

we simply need to compare the evaluated values
across all systems, and each metric only needs to
evaluate a total of 1200 summaries. However, for
H2H, we need to evaluate a total of 6,600 summary
pairs for the full standard set, and each pair needs
to be evaluated twice with different summary posi-
tions (see § 3.1), resulting in a total of 13,200 LLM
evaluations. Due to a limited budget, we thus only
compare a challenge set of 11 pairs, reducing the
total required LLM evaluations to 2,200.
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Coherence Consistency Fluency Relevance

Model A Model B LLM Human LLM Human LLM Human LLM Human

M22 M23 65.5 53.5 ✓ 55.75 52.5 ✓ 61 49.5 × 58.75 49.5 ×
M23 M17 48.25 52.5 × 47 49 ✓ 49 45.5 ✓ 45 52 ×
M17 M12 44 66.5 × 43.25 48.5 ✓ 40.5 54.5 × 49.25 72.5 ×
M12 M13 58 51 ✓ 56.5 54.5 ✓ 56.75 50 × 58 45 ×
M13 M15 45.5 49.5 ✓ 52 46 × 48.75 52 × 51.25 60.5 ✓
M15 M14 57 54 ✓ 55 53.5 ✓ 56.5 52 ✓ 54 57 ✓
M14 M8 49.25 44 ✓ 50 54.5 × 47 46.5 ✓ 49.25 53.5 ×
M8 M9 77.5 82 ✓ 78.5 53 ✓ 80.5 63.5 ✓ 76 54 ✓
M9 M10 45 36 ✓ 41.5 58 × 46 44.5 ✓ 41.5 56 ×

M10 M20 58.25 24 × 61.75 64 ✓ 63.75 61.5 ✓ 61.5 54.5 ✓
M20 M11 56.5 82 ✓ 50 53 × 51 58.5 ✓ 50 53 ×

#CP 8 7 7 4

Table 22: #CP calculation for the ChatGPT-H2H metric of Model A over Model B. The numerical values in the
middle section columns are aggregated scores for Model A. We omit the value for Model B, which is simply “100 -
aggregated scores for Model A”. We use “✓” to indicate both LLM and humans prefer the same model, and “×”
otherwise. The model pairs are sorted in descending order according to the average human scores for each model.

Coherence Consistency Fluency Relevance

ID Spear. Pear. Kend. Spear. Pear. Kend. Spear. Pear. Kend. Spear. Pear. Kend.

M8 0.420 0.383 0.323 0.229 0.273 0.209 0.274 0.245 0.236 0.519 0.509 0.438
M9 0.174 0.243 0.142 0.119 0.265 0.103 0.256 0.258 0.219 0.254 0.307 0.200
M10 0.365 0.415 0.292 0.305 0.452 0.251 0.258 0.288 0.223 0.367 0.378 0.284
M11 0.378 0.420 0.320 0.404 0.488 0.335 0.227 0.288 0.182 0.501 0.511 0.394
M12 0.208 0.237 0.160 0.087 0.020 0.082 0.086 0.107 0.071 0.438 0.451 0.354
M13 0.455 0.473 0.359 0.178 0.037 0.167 0.063 0.151 0.055 0.403 0.403 0.329
M14 0.433 0.467 0.355 0.114 0.187 0.105 -0.007 0.055 -0.005 0.421 0.435 0.336
M15 0.372 0.385 0.279 0.189 0.316 0.177 0.100 0.087 0.085 0.252 0.288 0.193
M17 0.291 0.320 0.233 -0.086 -0.061 -0.084 0.017 0.046 0.015 0.204 0.199 0.175
M20 0.382 0.394 0.310 0.528 0.501 0.430 0.367 0.349 0.307 0.292 0.278 0.237
M22 0.215 0.293 0.162 -0.072 -0.052 -0.070 -0.114 -0.131 -0.101 0.201 0.300 0.172
M23 0.392 0.427 0.320 0.003 0.305 0.002 -0.078 -0.022 -0.069 0.223 0.324 0.184

Table 23: Spearman (Spear.) correlations, Pearson (Pear.) correlations, and Kendall’s Tau (Kend.) between
ChatGPT-RTS and human scores on the 100 summaries for each model. Values in light gray color are insignificant
(p-value ≥ 0.05).

Coherence Consistency Fluency Relevance

ID Spear. Pear. Kend. Spear. Pear. Kend. Spear. Pear. Kend. Spear. Pear. Kend.

M8 0.289 0.310 0.236 0.235 0.362 0.226 0.348 0.348 0.321 0.349 0.419 0.302
M9 0.170 0.170 0.148 0.211 0.321 0.200 0.198 0.299 0.174 0.318 0.356 0.276
M10 0.352 0.314 0.293 0.138 0.273 0.125 0.155 0.210 0.138 0.420 0.427 0.362
M11 0.285 0.312 0.250 0.380 0.370 0.317 0.200 0.218 0.163 0.397 0.428 0.334
M12 0.306 0.304 0.258 -0.025 -0.059 -0.024 0.256 0.306 0.239 0.283 0.287 0.246
M13 0.425 0.425 0.351 0.471 0.312 0.457 0.199 0.214 0.186 0.435 0.402 0.375
M14 0.490 0.472 0.422 0.112 0.157 0.110 0.084 0.143 0.078 0.326 0.329 0.284
M15 0.317 0.298 0.250 0.061 0.513 0.060 0.055 0.025 0.050 0.433 0.420 0.378
M17 0.250 0.255 0.215 -0.106 -0.081 -0.105 -0.011 0.024 -0.011 0.293 0.285 0.260
M20 0.463 0.450 0.381 0.455 0.442 0.371 0.494 0.450 0.404 0.326 0.334 0.264
M22 0.211 0.173 0.182 -0.096 -0.080 -0.095 -0.092 -0.056 -0.087 0.352 0.371 0.313
M23 0.218 0.209 0.189 0.107 0.448 0.104 -0.275 -0.269 -0.261 0.147 0.187 0.129

Table 24: Spearman (Spear.) correlations, Pearson (Pear.) correlations, and Kendall’s Tau (Kend.) between
ChatGPT-MCQ and human scores on the 100 summaries for each model. Values in light gray color are insignificant
(p-value ≥ 0.05).

F Average ChatGPT scores

We present the average ChatGPT evaluation scores
for each model across all dimensions in Table 25.
Generally, the same trend holds for the individual
systems, that ChatGPT score systems much more

conservatively with RTS, and becomes more opti-
mistic with MCQ.
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Coherence Consistency Fluency Relevance

ID Chat-RTS Chat-MCQ GPT-4 human Chat-RTS Chat-MCQ GPT-4 human Chat-RTS Chat-MCQ GPT-4 human Chat-RTS Chat-MCQ GPT-4 human

M8 2.43 3.70 4.56 3.29 4.21 4.70 4.77 4.65 2.51 3.76 4.61 4.79 3.56 4.33 4.71 3.55
M9 1.80 3.51 4.41 2.38 3.93 4.69 4.94 4.67 2.16 3.45 4.15 4.50 3.51 4.33 4.82 3.52

M10 2.05 3.49 4.05 2.73 3.77 4.52 4.60 4.25 2.23 3.43 3.92 4.42 3.45 4.25 4.62 3.38
M11 1.70 2.63 2.93 2.28 2.36 4.11 3.72 3.27 1.71 2.66 2.77 3.65 2.92 4.06 3.87 3.15
M12 2.75 3.92 4.75 3.60 4.46 4.75 5.00 4.96 2.59 3.84 4.72 4.85 3.89 4.40 4.95 3.85
M13 2.91 3.99 4.76 3.44 4.40 4.73 4.89 4.82 2.69 3.93 4.69 4.86 3.90 4.41 4.85 3.83
M14 2.38 3.87 4.54 3.20 4.25 4.70 4.99 4.90 2.42 3.83 4.53 4.74 3.67 4.32 4.84 3.63
M15 2.65 3.81 4.58 3.35 4.33 4.75 4.90 4.95 2.60 3.84 4.61 4.80 3.78 4.32 4.82 3.67
M17 3.05 4.11 4.89 4.00 4.84 4.87 4.97 4.93 3.29 4.08 4.79 4.93 4.30 4.43 4.97 4.23
M20 2.00 2.95 2.99 3.63 2.66 3.57 3.51 3.40 2.22 3.02 3.05 3.97 2.73 3.78 3.47 3.30
M22 3.54 4.09 4.92 4.18 4.83 4.82 4.97 4.94 3.57 4.06 4.94 4.90 4.41 4.43 4.95 4.25
M23 3.00 4.14 4.88 4.16 4.74 4.84 4.94 4.91 3.08 4.05 4.76 4.88 4.10 4.45 4.96 4.26

avg 2.52 3.68 4.35 3.35 4.06 4.59 4.68 4.55 2.59 3.66 4.29 4.61 3.68 4.29 4.65 3.72

Table 25: Average scores for ChatGPT using RTS (Chat-RTS) and MCQ (Chat-MCQ), GPT-4 using RTS (GPT-4),
as well as the human scores.

Dimension Generation

Consistency The summary is inconsistent with the article
as it omits important details and repeats a
phrase multiple times, resulting in a score of
1.

Consistency The summary includes some relevant informa-
tion but lacks coherence and omits important
details, resulting in a score of 2.5 out of 5 for
consistency.

Fluency The summary is well-written and grammat-
ically correct, but lacks important details
from the article such as the potential link
between antibiotics and weight gain, and
the warnings about over-prescription of an-
tibiotics and the development of superbugs.
Score: 3/5.

Fluency The summary lacks coherence and does not
provide a clear understanding of the article,
resulting in a score of 1 for disfluency.

Table 26: Examples of wrong reasons generated during
RTS by ChatGPT that do not correspond to the evalu-
ated dimension. Bolded: reasons that don’t match the
evaluated dimension.

G Incorrect Reasons in RTS

We illustrate some of the observed incorrect rea-
sons generated with the RTS method by ChatGPT
that do not correspond to the evaluated dimension
in Table 26. We further provide incorrect reasons
generated by GPT-4 in Table 27.

We haven’t compiled the exact number of mis-
matched reasons for either LLM, but we do ob-
serve a non-trivial fraction of the evaluations con-
taining unrelated-to-dimension reasoning during
preliminary verification. For instance, on the con-
sistency dimension, ChatGPT-RTS has 42% eval-
uations containing dimension-irrelevant reasoning
for the M11 (avg. score of 2.36) model, and 10%
for the M17 model (avg. score of 4.84).

Dimension Generation

Coherence The summary is somewhat coherent but in-
cludes incorrect information, such as stat-
ing that Merson restarted his row with
Burnley instead of Andros Townsend, and
does not flow smoothly; therefore, I would
give it a score of 3.

Consistency The summary is consistent with the article as
it mentions the helicopter airlifting patients to
the hospital, but it leaves out important de-
tails such as the number of people involved
and their injuries. Final score: 3.

Consistency The summary accurately reflects the main
points of the article, although it could have
mentioned Falcao’s unhappiness in France.
Final score: 4.

Fluency The summary is coherent and grammatically
correct, but it does not provide enough infor-
mation about the incident. Final score: 3.

Fluency The summary is only one sentence and do
not provide enough information about the
article’s content. Final score: 1.

Table 27: Examples of wrong reasons generated during
RTS by GPT-4 that don’t correspond to the evaluated
dimension. Bolded: reasons that don’t match the evalu-
ated dimension.

H GPT-4 Evaluator

We also look into the reasoning of GPT-4 and dis-
cover that it makes the same mistakes as ChatGPT
by penalizing the summary for reasons unrelated
to the evaluated dimension (see Table 27).

Another major difference is that GPT-4 tends
to give overly generous scores. In one exception-
ally extreme case, GPT-4 gives full scores for all
generations by M12 in terms of consistency. Ta-
ble 25 also shows the much higher average scores
given by GPT-4 across all dimensions than those
of ChatGPT-RTS.
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Coherence Consistency Fluency Relevance

ID Spear. Pear. Kend. Spear. Pear. Kend. Spear. Pear. Kend. Spear. Pear. Kend.

M8 0.429 0.446 0.362 0.449 0.597 0.433 0.412 0.409 0.385 0.425 0.489 0.365
M9 0.288 0.346 0.243 0.349 0.350 0.331 0.462 0.465 0.407 0.413 0.490 0.358
M10 0.495 0.480 0.403 0.518 0.683 0.469 0.406 0.579 0.360 0.510 0.537 0.429
M11 0.584 0.572 0.474 0.529 0.536 0.439 0.448 0.436 0.358 0.500 0.519 0.405
M12 0.245 0.360 0.209 - - - 0.387 0.506 0.372 0.169 0.106 0.149
M13 0.271 0.271 0.230 0.535 0.444 0.518 0.093 0.337 0.089 0.237 0.337 0.206
M14 0.263 0.312 0.222 -0.040 -0.026 -0.040 0.311 0.432 0.291 0.277 0.315 0.241
M15 0.403 0.418 0.342 0.158 0.504 0.155 0.240 0.242 0.225 0.307 0.402 0.267
M17 0.285 0.240 0.246 0.390 0.748 0.385 0.091 0.131 0.088 0.210 0.253 0.185
M20 0.427 0.418 0.334 0.378 0.362 0.313 0.482 0.468 0.402 0.479 0.491 0.391
M22 0.026 0.004 0.023 0.346 0.608 0.343 0.248 0.141 0.242 0.143 0.084 0.126
M23 0.320 0.330 0.283 0.360 0.168 0.354 0.267 0.136 0.251 0.005 0.003 0.005

Table 28: Spearman (Spear.) correlations, Pearson (Pear.) correlations, and Kendall’s Tau (Kend.) between GPT-4
RTS and human scores on the 100 summaries for each model. Values in light gray color are insignificant (p-value
≥ 0.05). Note that for the consistency of M12, correlations cannot be calculated because GPT-4 gives 5 scores to all
examples.

Coherence Consistency Fluency Relevance

ID Spear. Pear. Kend. Spear. Pear. Kend. Spear. Pear. Kend. Spear. Pear. Kend.

M8 0.464 0.455 0.407 0.557 0.613 0.526 0.391 0.367 0.341 0.517 0.514 0.471
M9 0.436 0.415 0.416 0.215 0.342 0.195 0.578 0.571 0.517 0.450 0.485 0.412
M10 0.374 0.345 0.340 0.300 0.297 0.270 0.631 0.585 0.551 0.506 0.507 0.459
M11 0.326 0.428 0.307 0.437 0.421 0.393 0.354 0.509 0.303 0.467 0.486 0.419
M12 0.500 0.469 0.444 0.446 0.486 0.424 0.273 0.320 0.241 0.588 0.591 0.542
M13 0.462 0.450 0.408 0.470 0.510 0.445 0.325 0.345 0.282 0.515 0.498 0.475
M14 0.524 0.460 0.463 0.325 0.293 0.307 0.216 0.257 0.194 0.501 0.476 0.455
M15 0.534 0.499 0.470 0.266 0.326 0.251 0.383 0.369 0.337 0.584 0.550 0.535
M17 0.312 0.294 0.274 -0.016 -0.008 -0.015 0.251 0.261 0.225 0.530 0.479 0.504
M20 0.636 0.623 0.566 0.733 0.664 0.644 0.566 0.556 0.492 0.570 0.565 0.496
M22 0.314 0.338 0.276 0.245 0.151 0.241 0.371 0.341 0.330 0.471 0.412 0.451
M23 0.380 0.386 0.337 0.158 0.496 0.153 0.296 0.275 0.259 0.450 0.505 0.421

Table 29: Ri, the reliability indicator calculated by the Spearman (Spear.) correlations, Pearson (Pear.) correlations,
and Kendall’s Tau (Kend.) between ChatGPT-RTS and ChatGPT-MCQ. Values in light gray color are insignificant
(p-value ≥ 0.05).
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