
Findings of the Association for Computational Linguistics: EMNLP 2023, pages 385–399
December 6-10, 2023 ©2023 Association for Computational Linguistics

Unlocking the Heterogeneous Landscape of Big Data NLP with DUUI

Alexander Leonhardt Giuseppe Abrami Daniel Baumartz Alexander Mehler
Goethe University Frankfurt

Robert-Mayer-Strasse 10
60325 Frankfurt am Main

s0637113@stud.uni-frankfurt.de • {abrami,baumartz,mehler}@em.uni-frankfurt.de

Abstract
Automatic analysis of large corpora is a com-
plex task, especially in terms of time efficiency.
This complexity is increased by the fact that
flexible, extensible text analysis requires the
continuous integration of ever new tools. Since
there are no adequate frameworks for these
purposes in the field of NLP, and especially
in the context of UIMA, that are not outdated
or unusable for security reasons, we present a
new approach to address the latter task: DOCK-
ER UNIFIED UIMA INTERFACE (DUUI), a
scalable, flexible, lightweight, and feature-rich
framework for automatic distributed analysis
of text corpora that leverages Big Data experi-
ence and virtualization with Docker. We evalu-
ate DUUI’s communication approach against
a state-of-the-art approach and demonstrate
its outstanding behavior in terms of time ef-
ficiency, enabling the analysis of big text data.

1 Introduction

Automatic analysis of text corpora is an important
task in many research areas that use Natural Lan-
guage Processing (NLP). This includes fields as
diverse as digital humanities (e.g. Brooke et al.,
2015), economics (e.g. Qureshi et al., 2022), or
biodiversity research (Driller et al., 2020). All
these areas are supported by the availability of
increasingly large text repositories such as news-
paper corpora (e.g. New York Times, 2019), par-
liamentary corpora (e.g. Barbaresi, 2018; Rauh
and Schwalbach, 2020; Abrami et al., 2022) or
Wikipedia (Pasternack and Roth, 2008). However,
text processing of large corpora is time-consuming,
resource-intensive, and thus costly. In addition,
NLP routines are required as pre-processing steps
to perform even more time-consuming tasks as,
e.g., textual entailment (Paramasivam and Nirmala,
2021), rhetorical analysis (Joty et al., 2015) or ar-
gument mining (Ding et al., 2022). In any event,
the application of NLP methods is gaining accep-
tance in almost all text-based disciplines. This

increasingly leads to scenarios in which ever larger
corpora have to be processed regarding ever more
complex tasks while ensuring a mixed methods ap-
proach (Johnson et al., 2007). In contrast, project
participants, especially those outside the NLP field,
often have limited computer skills. Thus, a suit-
able framework for flexible, transparent, and time-
optimized pre-processing of large corpora is essen-
tial, allowing the integration of ever new analysis
methods. For this purpose, software is required,
which serves the following functions:

(A) Horizontal and vertical scaling: Since time
is a significant factor, pre-processing must
be horizontally and vertically scalable. That
is, pre-processing tools should be deployable
on different systems, regardless of whether
they are on servers or workstations. This is
what we call horizontal scaling. In addition,
resource-intensive processes should be auto-
matically delegated to resource-rich machines
to enable their parallelization. This is what
we call vertical scaling. Increasingly large
corpora demand similar scaling properties of
NLP (Divita et al., 2015; Kim et al., 2021).

(B) Capturing heterogeneous annotation land-
scapes: For the various pre-processing tasks
(e.g., tokenization, lemmatization, PoS tag-
ging, parsing, coreference analysis, NER etc.),
there are varieties of tools (e.g. Stanford NLP
(Manning et al., 2014) and spaCy (Honnibal
et al., 2020)), that use proprietary annotation
formats, especially when there are no annota-
tion standards for the task. Therefore, in order
to use the results of such tools and establish
their comparability, it is necessary to do so
in a common environment that abstracts from
the underlying output formats.

(C) Capturing heterogeneous implementation
landscapes: Competing tools for the same

385



task may be implemented in different pro-
gramming languages that impose different re-
quirements on the runtime behavior of these
tools (Bhatnagar et al., 2022). Thus, such
tools should be reusable simultaneously and
independently of the platform and program-
ming language. At the same time, tools may
not be available locally, but only, e.g., via an
API (e.g., RESTful, WebSocket). This in turn
leads to the requirement that a suitable NLP
platform encapsulates the heterogeneity of dif-
ferent implementation landscapes.

(D) Reproducible & reusable annotations: Eval-
uating automatically generated annotations re-
quires tracking the engines or pipelines that
created them. This is important, e.g., if the
data is to be shared among scientists. Thus,
any application of an NLP pipeline should be
reproducible, just as these pipelines should be
reusable and modifiable (Trisovic et al., 2020;
Jupyter et al., 2018; Cacho and Taghva, 2020).
It should be possible to track pipelines at the
level of individual documents or sequences
thereof. As shown by (Leonhardt, 2022), this
approach can induce a considerable overhead
in terms of memory usage and performance
to be managed by the NLP platform.

(E) Monitoring and error-reporting: Running
NLP routines may fail. The reasons for such
failures range from errors in the input data,
missing information, platform peculiarities to
programming errors. Thus, a powerful moni-
toring and error reporting system is needed to
troubleshoot and monitor processing statuses.

(F) Lightweight usability: To utilize the wide
range of NLP methods, knowledge of com-
puter science and programming is required.
In particular, the maintenance and further de-
velopment of such tools requires a high level
of expertise. This results in two requirements:
in terms of ease of use and maintenance of the
entire infrastructure, and the ease with which
tools can be integrated or updated.

Currently, there is no framework in NLP that
meets criteria A–F. Moreover, the number of usable
frameworks has recently decreased significantly
due to Log4j vulnerability (Hiesgen et al., 2022),
which occurred in 2021 (see, e.g., the Apache
framework DUCC). Text corpora are therefore

increasingly processed with proprietary systems,
which increase development effort and are ulti-
mately not reusable. We present an approach that
meets requirements A–F to overcome this trend:
DOCKER UNIFIED UIMA INTERFACE (DUUI),
an efficient, horizontally and vertically scalable
framework that handles big text data in a sim-
ple, modular, and reusable manner, while mitigat-
ing annotation- and implementation-related hetero-
geneities. Similar to TEXTIMAGER (Hemati et al.,
2016), DUUI is based on UIMA (Unstructured
Information Management Applications) (Ferrucci
et al., 2009). UIMA is used in numerous projects
and remains an active area of research, notwith-
standing the shortcomings noted by Götz et al.
(2014) – see Figure 11 in the appendix. DUUI
is available on GitHub1 and provides a lightweight
framework to utilize different annotators in a dis-
tributed setup based on several implementations
embedded into Docker (www.docker.com) contain-
ers used as microservices.

There are many proprietary NLP frameworks
(see Section 2). DUUI accounts for this hetero-
geneity: it integrates these frameworks, supports
interfaces, and stores all generated annotations and
analysis results in UIMA. UIMA allows for defin-
ing software modules for the analysis of unstruc-
tured data (e.g., texts). This is done with so-called
Analysis Engines (AE). The results of an analy-
sis are stored in a Common Analysis Structure
(CAS) (Götz and Suhre, 2004) with reference to a
defined schema description (Type System Descrip-
tors). CAS is the basic data structure in which data
is analyzed and stored with metadata. To process
data, each AE receives a CAS object, performs
its analyses, and passes the revised CAS object
to the next AE. Thereby, each pre-processing step
comprises one to several pipelines, which are en-
capsulated and managed by DUUI.

In this paper, we describe the principles and im-
plementation of DUUI. We evaluate its efficiency
and show that DUUI meets the criteria A–F. In
Section 2, we present related work and introduce
DUUI in Section 3. In Section 4, we present an
evaluation based on benchmark studies and address
issues regarding annotation frameworks. We con-
clude with an outlook on future work (Section 5)
and a conclusion (Section 6).

1https://github.com/texttechnologylab/
DockerUnifiedUIMAInterface

386

www.docker.com
https://github.com/texttechnologylab/DockerUnifiedUIMAInterface
https://github.com/texttechnologylab/DockerUnifiedUIMAInterface


2 Related Work

DUUI’s use cases are related to various research ar-
eas, including high-performance computing (HPC)
and reproducible pipelines.

Several approaches exist to improve application
scalability based on UIMA. One of the most com-
mon approaches to scale AEs, the Apache Hadoop
cluster (Apache, 2006), is used by Exner and
Nugues (2014); Zorn et al. (2013); Nesi et al.
(2015); Aydin and Hallac (2018). It works well
for simple pipelines that are decomposable into
map reduce jobs, but has problems with more com-
plex scenarios. Scenarios regarding routines that do
not entirely fit into main memory are particularly
difficult to model with an Apache Hadoop cluster.
In addition, detecting and fixing Out Of Memory
(OOM) issues appears to be a recurring problem
in Apache Hadoop (Xu et al., 2015). Further, com-
plex AEs that combine multiple aggregations after
initial information extraction are difficult to accom-
plish (Götz et al., 2014). An alternative approach
is proposed by Hodapp et al. (2016), which follows
a similar microservice-centric approach as DUUI.

Despite this similarity, DUUI offers a consider-
ably simpler setup that does not require the labori-
ous setup of an Apache Message Broker.

An alternative approach based on microser-
vices is the Computation Flow Orchestrator (CFO)
(Chakravarti et al., 2019). It uses technologies,
such as Docker and Kubernetes2, and Google’s
Buffer Interface Definition Language protocol.
CFO organizes analyses as flows and distributes
them to individual nodes addressed by an orches-
trator, which generates a set of startup scripts and
REST interfaces using Docker in preparation.

In this way one gets access to the individual end-
points and to debug information. This approach
is similar to DUUI, but requires time-consuming
learning of the scripting language, while native
UIMA integration is not directly possible – a prob-
lem for many frameworks. Further, its setup is
not straightforward, as profound knowledge of
Docker and the underlying network bridge is re-
quired; alternatively, the makefile would have to be
changed to allow the system to be compiled without
Docker. Another approach comes from Agerri et al.
(2015) and Arshi Saloot and Nghia Pham (2021).
It is based on Apache Storm, which also enables
distributed processing of texts via microservices.
GATE Cloud (Tablan et al., 2013) allows for dis-

2https://kubernetes.io

Framework A B C D E F
Apache DUCC + + ○ − ○ −

Apache Storm + + ○ − ○ ○

Hadoop Cluster + ○ + − ○ −

CFO + + + − ○ ○

TEXTIMAGER + + + − − ○

GATE Cloud + + ○ − ○ ○

Data-Centric − + + − ○ +

Flyte + + + − + −

argo + + + − + −

DUUI + + + + + +

Table 1: Comparison of frameworks according to the
criteria A–F (columns) of Section 1: + (fulfilled), ○
(partially fulfilled), − (not fulfilled).

tributing processes with UIMA components. But
since GATE is a large and complex system, its use
requires a significant amount of learning.

The Data-Centric Framework (Liu et al., 2020)
offers a more complete workflow, which allows for
pre-processing, visualization and post-annotation.
It generalizes the UIMA schema to map NLP data
in a Python environment based on Forte3. This solu-
tion lacks the ability to split pre-processing across
servers and is neither platform nor programming
language independent. In addition, its proprietary
use of UIMA makes reuse difficult.

A similar tool is Flyte4, implemented in Golang
and available for Python, Java, and Scala, which
distributes pre-processing to Kubernetes contain-
ers. This rather complex framework shares some
features with DUUI, but getting started and setting
up are challenging. While it is positive that data
formats are not predefined, it makes subsequent use
in existing frameworks more time-consuming. This
also holds for argo5, which also uses Kubernetes
to realize the mapping and running of workflows.

Using criteria A–F from Section 1, these frame-
works can be compared with each other, as shown
in Table 1. It should be noted that is difficult to
compare the use and effort required to maintain or
reuse the components of these frameworks (Crite-
rion F). However, in addition to providing powerful
NLP methods, a desired framework should be easy
to use, especially for non-experts. Since there was
no framework that meets all the criteria from A to F,
we developed DUUI to fill this gap. DUUI enables

3https://github.com/asyml/forte
4https://flyte.org/
5https://argoproj.github.io/

387

https://kubernetes.io
https://github.com/asyml/forte
https://flyte.org/
https://argoproj.github.io/


Composer
è LUA Sandbox

oõ
Driver Component

1

n

1 m

LUA

Monitoring
Logging

Figure 1: The modular architecture of DUUI

the implementation of these criteria by using UIMA
as annotation standard. Thus, documents annotated
in UIMA can be reused without DUUI. However,
feature D concerning reproducibility, which is ful-
filled by DUUI, goes further: it refers to the ability
to reconstruct and reuse all annotations performed,
including analysis engines, models, and settings.

3 Docker Unified UIMA Interface

The problems described so far cause that the im-
plementation of all approaches from Section 2 is
time-consuming and ultimately makes their mainte-
nance impossible. Most of these frameworks meets
more than half of the requirements A–F from Sec-
tion 1 (cf. Table 1) for NLP based on Big Data.

To overcome this shortcoming, DUUI integrates
functions in a modular way, making its operation
reproducible and usable by non-experts. It enables
source-text reduced programming and is mainly
based on Docker containers, while allowing for in-
tegrating other systems (see Figure 1). DUUI uses
so-called COMPOSERs, possibly connected to a
database to enable dynamic monitoring, which con-
sist of n DRIVERs, each containing up to m COM-
PONENTs, each of which encapsulates an Analy-
sis Engine (AE). Since this cross-programming-
language system bridges functions given their het-
erogeneous implementations, it is reasonable to
create a unified interface for Docker containers to
enable cross-implementation operations. This in-
cludes two aspects, as Docker allows individual
containers to use different programming languages
(Section 1, Feature C) and taggers (Feature B). Be-
yond that, processes can also be executed in the
local Java Runtime Environment (JRE) as shown
in Figure 2.

3.1 Composer
The role of the COMPOSER is similar to the role of
the master in the Map Reduce Framework (Dean
and Ghemawat, 2004). It initializes all DRIVERs
with their respective COMPONENTs, controls the
document flow through the pipeline and reports

metrics to the database. The COMPOSER also man-
ages the global Lua (Ierusalimschy et al., 2007)
state, providing a shared set of global libraries and
security policies to the underlying DRIVERs. Lua is
used to realize programming language independent
communication between the individual AEs (see
Section 3.4). By taking control over the error han-
dling and the advanced control flow mechanisms,
every pipeline can have a policy fit to its task. The
COMPOSER starts pipeline processing by reading
a set of documents and passing them through the
pipeline. Upon completion of the pipeline, the
COMPOSER terminates and cleans up instantiated
DRIVERs and COMPONENTs. COMPOSERs allow
for monitoring and logging of NLP routines (Ta-

Java Application

CollectionReader

Pipeline

@

LanguageDetection

spaCy3

GNfinder

TaxonGazetter

SentimentBert

SRL

XMI-Writer

Ò

o

o

Swarm

Å

Composer

B

Docker

UIMA

Remote

Figure 2: An example DUUI pipeline which, like all
DUUI pipelines, is part of a Java application: a com-
poser is instantiated containing a set of drivers and asso-
ciated components. Several pipelines are registered as
components in corresponding drivers. Each driver de-
fines the communication between the implementations
of the components. UIMA and Remote are executed
in Java Runtime Environment (Ò). Components can
also be run as Docker containers, that is, as DOCKER
DRIVER or SWARM DRIVER. In the first driver, ser-
vices are used as Docker images running on the local
system as Docker containers to provide vertical scaling.
The second driver also uses Docker images, but is dis-
tributed in a Swarm network of attached Docker nodes
to provide horizontal scaling. For security reasons, us-
ing Docker Swarm is only possible if the pipeline is
initially executed on the Docker leader node.

388



ble 1, Feature E). For this purpose, an SQLite
database and a Docker connection via ArangoDB6

or InfluxDB7 are available. Due to our interface
design, other database management systems can be
added. This eases troubleshooting and performance
analyses. Further, a Docker image instantiated in
Swarm mode can be used to overview the workload
on the Swarm network.

3.2 Driver
A DRIVER instantiates, orchestrates and manages
a set of COMPONENTs. Each DRIVER serves as
a bridge to a specific functionality, thereby giving
almost native access to the underlying software.
This enables advanced use cases, e.g., scheduling
containers on specific nodes or restricting system
resources for specific parts of a pipeline. Because
DRIVERs are designed as interfaces, further appli-
cation environments can be included extending the
given ones. DUUI currently includes four prede-
fined DRIVERs to scale NLP processes horizontally
and vertically while running COMPONENTs on the
local machine as well within Docker swarm:

1. The UIMA DRIVER runs a UIMA AE on the
local machine (using local memory and pro-
cessor) in the same process within the JRE and
allows scaling on that machine by replicating
the underlying AE (Feature A in Section 1).
This enables the use of all previous analysis
methods based on UIMA AE without further
adjustments.

2. DOCKER DRIVER: The DUUI core DRIVER

runs COMPONENTs on the local Docker dae-
mon and enables machine-specific resource
management (vertical scaling, Feature A).
This requires that the AEs are available as
Docker images according to DUUI to run as
Docker containers. It is not relevant whether
the Docker image is stored locally or in a re-
mote registry, since the Docker container is
built on startup. This makes it very easy to
test new AEs (as local containers) before be-
ing released. The distinction between local
and remote Docker images is achieved by the
URI of the Docker image used.

3. The SWARM DRIVER complements the
DOCKER DRIVER; it uses the same function-
alities, but its AEs are used as Docker images

6https://www.arangodb.com/
7https://www.influxdata.com

distributed within the Docker Swarm network
(horizontal scaling, Feature A). A swarm con-
sists of n nodes and is controlled by a leader
node within the Docker framework. However,
if an application using DUUI is executed on
a Docker leader node, the individual AEs can
be executed on multiple swarm nodes.

4. REMOTE DRIVER: AEs that are not avail-
able as containers and whose models can or
should not be shared can still be used if they
are available via REST. Since DUUI commu-
nicates via Restful, remote endpoints can be
used for pre-processing. In general, AEs im-
plemented based on DUUI can be accessed
and used via REST, but the scaling is limited
regarding request and processing capabilities
of the hosting system. In addition, COMPO-
NENTs addressed via the REMOTE DRIVER

can be used as services. This has advantages
for AEs that need to hold large models in
memory and thus require a long startup time.
To avoid continuous reloading, it may be nec-
essary to start a service once or twice in a ded-
icated mode and then use a REMOTE DRIVER

to access it. To use services, their URL must
be specified to enable horizontal scaling.

DRIVERs can be added to integrate processes in
other runtime environments (see Section 5). The
encapsulation of the implementation of the AEs is
done by means of their COMPONENTs.

3.3 Component
A COMPONENT represents an AE according to
UIMA and is defined by the instantiating DRIVER

which imposes requirements on its COMPONENT.
The implementations of the DRIVERs differ, with
UIMA DRIVER being closest to the AEs of UIMA.
The latter instantiates and uses its COMPONENT

based solely on the associated AE, so no modifi-
cation to an existing AE is required. Therefore,
existing AEs implemented in Java can be used di-
rectly in DUUI, although scaling is limited to the
vertical level due to the limitation of execution in
the JRE. Unlike UIMA DRIVER, COMPONENTs
of all other DRIVERs (see Section 3.2 – Drivers)
must follow the RESTful scheme of DUUI.

3.4 Communication
Given heterogeneous programming languages (Sec-
tion 1), there is a need for a method for the commu-
nication of COMPONENTs that is fast, flexible, and

389

https://github.com/dockersamples/docker-swarm-visualizer
https://www.arangodb.com/
https://www.influxdata.com


error tolerant. The communication within DUUI
is designed to integrate a variety of programming
languages, even without direct access to the UIMA
framework. This requires a transformer that con-
verts UIMA documents so that they can be pro-
cessed by the programming language of the re-
spective COMPONENT. In addition, partial serial-
ization of documents is required because the size
of UIMA documents increases rapidly during pre-
processing. To meet these requirements, we use
Lua as an embedded scripting language for commu-
nication. Through fine-grained access and interop-
erability within a Java Virtual Machine (JVM), Lua
allows annotators to precisely define elements of
the documents to be processed, and to use all com-
munication formats that Lua or Java support. This
flexibility is exemplified by implementations of an-
notators in Java, Python, and Rust using various
formats such as MessagePack, JSON, UIMA XMI
and UIMA Binary. Figure 12 and 13 (appendix),
compare this in detail. By using Lua (see Figure 15
(appendix)), DUUI meets Feature B and C.

3.5 Lua Sandbox
Although the potential of Lua is outstanding, one
aspect deserves special attention because it can
harm the host system. A Lua script allows the
client COMPONENT to execute invoked methods
without verification by the host system, allowing
unrestricted access to the host. To solve this prob-
lem, we implemented a “sandbox” that limits the
number of statements executed by the Lua inter-
preter before it aborts execution. The sandbox
works like a class loader, restricting Lua calls and
allowing only a certain number of named classes.
This means that the COMPOSER (Figure 1) can be
equipped with a firewall (the so-called sandbox)
that restricts LUA scripts to use only authorized
classes like a white list. Therefore all other classes
on the host system (COMPOSER) are not accessible
(as shown in Figure 14 in lines 07-10).

3.6 Reproducibility
DUUI fulfills Feature D: reproducibility at docu-
ment level. Each pipeline component is fully serial-
izable and annotates each processed document. The
reproducibility level of a component depends on
its type: components of UIMA DRIVER and RE-
MOTE DRIVER are less reproducible than the com-
ponents of other drivers. For REMOTE DRIVER,
this is partly because the endpoint providing the
annotation service cannot be controlled. Because

of this design, users can provide services that are
copyrighted or otherwise legally restricted without
having to redistribute the software. Despite the
specification of the full COMPONENT in the pro-
cessed document, different package managers and
the inability of Java to provide source code along
with the package version mean that the respective
pipelines cannot be reproduced without the help of
the user. DOCKER DRIVER and REMOTE DRIVER

overcome these limitations by enabling pipeline
replication across multiple hosts and environments.

3.7 DUUI-integration

The goal of DUUI is the straightforward integra-
tion of NLP routines on three levels: (1) Oper-
ation of existing and new AEs without the need
to integrate a new library (e.g. Flyte, argo) or
build a more complex infrastructure (e.g. Flyte,
GATE, CFO) and integrate AEs with different pro-
gramming languages. (2) Integrate simple to com-
plex AEs by connecting self-contained tools with
DUUI, which provides a set of existing compo-
nents in Docker images8 each routine runs as usual,
with its results returned to the COMPOSER only via
REST to keep the overall integration manageable.
(3) Using DUUI within existing infrastructures re-
quires that they use XMI as an exchange format;
otherwise, existing readers or writers (e.g. CoNLL,
JSON, etc.) must be used. The use is directly possi-
ble via Java or a terminal call by passing documents
to be processed. This is certainly the most complex
solution compared to the previous points, but it can
be encapsulated by a web API. In any event, DUUI
can be implemented and used with manageable to
low effort, as required by Feature F. All DUUI
libraries can be included via Maven (see Figure 14
in the appendix for an example setup).

4 Evaluation

We conducted several tests to show the feasibility
of DUUI. Besides the projects listed in Section 2,
there is only one project that is not implemented
in Java and enables UIMA processing directly in
Python: dkpro-cassis (Klie and de Castilho, 2020).
As tools are increasingly developed exclusively in
Python, the use of a native Python library is impor-
tant for UIMA, and its performance characteristics
are a key basis for comparison with implementa-
tions in non-native (e.g., non-Java) programming
languages. We computed benchmarks for the Ger-

8Several AE’s are available via GitHub

390

https://github.com/texttechnologylab/duui-uima


man parliamentary corpus (Barbaresi, 2018) and
the largest corpus of German parliamentary min-
utes, GerParCor (Abrami et al., 2022), which con-
tains 37 881 with spaCy annotated minutes from
three centuries. At first sight, the subset relation of
both corpora seems odd, but their individual pro-
cessing is an important indicator, as will be shown.

4.1 Serialization

For evaluating the serialization speed between Java
and Python (using dkpro-cassis as a reference) all
texts in the test corpus are processed with spaCy
and BreakIteratorSegmenter. To this end, we use
the Barbaresi (2018) corpus, since GerParCor (due
to its coverage period) contains characters that are
not XML 1.0 conform and thus cannot be processed
by dkpro-cassis. Figure 3 and 4 show that the serial-
ization speed is linear for the Java CAS implemen-
tation and linear with a tendency to be polynomial
for dkpro-cassis. In any event, the former outper-
forms the latter by a large margin (see Table 2 and
Figure 5). dkpro-cassis’ serialization performance
quickly degrades when handling larger documents
(see Figure 6). Moreover, its mandatory use of
XML 1.0 limits the processable character set in
contrast to the Lua communication of DUUI.

Using UIMA documents directly in Python via
dkpro-cassis is a step ahead. But since more and
more NLP tools are implemented in Python, a (de-
)serialization in this language leads to a significant
increase in runtime depending on document size.

Framework Mean speed Max exec. time
Java XMI 154,42 ms 1 034,31 ms
dkpro-cassis 1 619,58 ms 14 464,83 ms

Table 2: (De-)serialization performance of the Java XMI
and the Python dkpro-cassis implementation.

4.2 Partial serialization

Often, annotators need only a subset of all avail-
able annotations. Therefore, it is important to allow
partial serializations of a document to save band-
width and CPU cycles. Since we introduced the
Lua bridge for communication between annotators
of different programming languages, we next com-
pared document (de-)serialization between Java,
Python and Rust annotators: To this end, we devel-
oped the first annotator in Rust that is usable with a
UIMA pipeline. The task was to serialize all tokens
from GerParCor. The reason for this choice was

0 10000 20000 30000 40000 50000 60000 70000
Total Annotations

0

2

4

6

8

10

12

14

A
nn

ot
at

or
Ti

m
e

(s
)

Annotator Time vs Total Annotations Python

data
linear fit
polynomial degree=2

Figure 3: Python, using dkpro-cassis, (de-)serialization
speed (seconds) against the total number of document
annotations.

0 10000 20000 30000 40000 50000 60000 70000
Total Annotations

0.0

0.2

0.4

0.6

0.8

1.0

A
nn

ot
at

or
Ti

m
e

(s
)

Annotator Time vs Total Annotations Java

Figure 4: Java (de-)serialization speed in seconds plot-
ted against the total number of document annotations.

that token annotations account for about one-third
of all annotations in documents. Figure 7 shows a
clear disadvantage of the Python implementation
compared to Java and Rust, whose times are linear
to the number of annotations.

4.3 Bottleneck
COMPOSERs execute Lua code to transform CAS
documents into a domain processable by the re-
spective annotator and transform the annotator’s
response back into the CAS domain. This creates
a bottleneck, as this conversion is currently per-
formed on the executing system. We use Amdahl’s
law (Rodgers, 1985) to investigate this bottleneck:

Slatency(s) = s/((1− p) · p)

It describes a program’s speedup with two param-
eters: the fraction p of the program that is paral-
lelizable and the number s of concurrent execu-
tors working on the parallelizable fraction of the
program. We process GerParCor with the spaCy-
COMPONENT and deduce the parallelizable frac-

391

https://tinyurl.com/BreakIteratorSegmenter


0 10000 20000 30000 40000 50000 60000 70000
Document Size (Bytes)

0

2

4

6

8

10

A
nn

ot
at

or
Ti

m
e

(s
)

Annotator Time vs Document Size

Python
Java

Figure 5: Java and Python (de-)serialization speed in
seconds plotted against the total document annotations.

0.0 0.2 0.4 0.6 0.8
Quantile of documents by size

0

1

2

3

4

A
ve

ra
ge

an
no

ta
to

rt
im

e
in

s

Quantile Java vs Python

Java annotator time
Python annotator time

Figure 6: Document selection by quantile number: e.g.,
0.8 refers to all documents that make up the top 20% of
the largest documents. The frameworks are compared
by their mean (de-)serialization time on each quantile.

tion of it from the mean time spent in the COM-
PONENT according the total time for the COMPO-
NENT to run. Figure 16 in the appendix shows
the parameter space and the balance between the
computational power of the computer running the
COMPOSER and the number of instances that can
be distributed over any available network.

4.4 DUUI benchmarks

The major bottleneck is (de-)serialization of doc-
uments. Since this factor increases linearly and is
greatly reduced by the use of Lua, there remains
the processing time within each AE. To evaluate
the usability of DUUI, we performed a runtime
measurement in different scenarios. Processing
with DUUI for spaCy was performed for a ram-
domized sample of GerParCor with 100, 200, 500,
and 1,000 documents using 1, 2, 4, and 8 Docker
instances. Figure 8 shows the results: the process-
ing time improves considerably by increasing the
number of processes. This is evident in both vari-

0 5000 10000 15000 20000 25000
Total Annotations

0.0

0.5

1.0

1.5

2.0

2.5

A
nn

ot
at

or
Ti

m
e

(s
)

Annotator Time vs Total Annotations

Rust
Java XMI Serialize
Python dkpro cassis

Figure 7: Token (de-)serialization in Java, Rust and
Python.

ants, local Docker and Swarm, although increasing
the number of local Docker instances to more than
8 would not be practical due to hardware limita-
tions in the evaluation setup. Examples 100 and
500 show that a reduction in processing time can
be achieved by increasing the number of instances.
However, this is not always the case, as depend-
ing on the system load, the total runtime can also
be higher for multiple processes (e.g. Sample 200
/ 1000, Docker8). Although similar behavior oc-
curs in Swarm mode, the overall processing time
is higher compared to local Docker because the
network-based I/O of the components consumes
additional time. In the setup used, no prioritiza-
tion of the available swarm nodes was done, so
the usage of each node is random. Since the indi-
vidual nodes have different hardware performance
and are located in different network segments, this
results in lower performance for large documents.
The result in Figure 17 (see appendix), using up to
32 instances in swarm mode, shows similar behav-
ior, although here sample size was not randomized,
but the n smallest documents were chosen in each
case to neglect network latencies. This shows that
the number of COMPONENTs in a swarm network
can be dynamically increased using DUUI. Next,
we compared DUUI with Flyte and CFO (for the
results, see Figure 9 and Figure 10) for the com-
parison with Flyte, documents from the Barbaresi
(2018) corpus were preprocessed with spaCy, us-
ing XMI as I/O. For both tools a Python script with
dkpro-cassis was implemented to (de)serialize the
XMI documents. When comparing with CFO, the
same corpus but a different library was used to
enrich the input documents; this concerns tokeniza-
tion using NLTK (Bird et al., 2009). The results
show the clear advantages of DUUI over Flyte in

392



processing UIMA documents, while it is on par
with CFO but increases the versatility of the data
flow by embedding a Turing-complete language.

10
0

10
0020
0

50
0

0

200

400

600

4
3
.1
3

4
0
7
.9
5

9
2
.8
8 2
0
3
.3
8

4
0
.1
3

3
8
3
.7
5

7
1
.1
2 1
8
7
.1
2

2
4
.1
5

3
4
8
.1
8

5
3
.1
7 1
8
2
.8
5

1
2
.3
7

4
1
6
.0
7

7
2
.1
8 1
8
0
.1
8

4
3
.7
2

3
8
2
.2
3

8
4
.5
8

4
9
6
.2
2

5
2
.4

3
6
0
.1
8

1
0
1
.2
5

3
5
4
.2
3

2
0
.2
7

6
9
6
.7

7
7
.4
7

3
0
7
.5
8

1
1
.4

5
9
4
.8
8

6
2
.4
7

2
3
5
.2
5

Sample size (documents)

C
om

pu
ta

tio
n

tim
e

in
m

in
ut

es

Docker1 Docker2 Docker4 Docker8
Swarm1 Swarm2 Swarm4 Swarm8

Figure 8: To illustrate the performance of DOCKER
DRIVER and SWARM DRIVER, we processed a GerPar-
Cor sample using a spaCy-COMPONENT.

D
U

U
I

Fl
yt

e

0

200

400

14
9.
53

38
1
.3
6

10
6
.2
7

4
12
.5
9

66
.4
9

21
9

27
.9
8 11
7
.3
7

Framework

C
om

pu
ta

tio
n

tim
e

in
m

in
ut

es

Thread1 Threads2 Threads4 Threads8

Figure 9: Runtime comparison between DUUI and
Flyte, for processing German political speeches (Bar-
baresi, 2018) with 1, 2, 4 and 8 threads respectively. The
single-core variant for Flyte was run outside; the vari-
ants with 2, 4 and 8 threads were run using the Docker in
Docker demo provided by the Flyte sandbox. In DUUI,
all processing performed ran in a spaCy-COMPONENT
within the DOCKER DRIVER.

5 Future Work

Since there are container solutions besides Docker
(e.g., OpenShift, Kubernetes and Podman), they
are candidates for DUUI drivers. This would solve
a problem with Docker, as GPU usage is limited:
an issue that has been pending for over six years.
The bottleneck of single-machine multi-threaded
(de-)serialization may be solved with ActiveMQ
(Snyder et al., 2011). Since we implemented a
new form of Big Data NLP, optimization becomes
urgent. This concerns prioritization in clusters and
parallelization of individual COMPONENTs within
the pipeline, as long as these components do not

D
U

U
I

C
FO

20

25

30

3
3.
3
1

33
.0
3

28
.2
1

29
.1
8

1
9.
55

20
.3
9

Framework

C
om

pu
ta

tio
n

tim
e

in
m

in
ut

es

Thread1 Threads2 Threads4

Figure 10: Runtime comparison between DUUI and
CFO, for processing German political speeches (Bar-
baresi, 2018) with 1, 2, 4 threads respectively. Both
runtimes were set up to run in a dockerized environ-
ment. As can be seen here the performance of DUUI
and CFO is almost on par even though CFO makes al-
ready use of high performance optimizations like the
usage of HTTP/2 and dedicated docker networks.

depend on the results of previous analyses. Finally,
the future of DUUI requires a web interface for
managing and running of COMPONENTs.

6 Conclusion

We introduced DOCKER UNIFIED UIMA INTER-
FACE, a framework for Big Data NLP. Its design
and implementation leverage experience with TEX-
TIMAGER and Apache DUCC to create a platform-
independent, scalable, and lightweight environ-
ment that combines the functionality of a number
of frameworks. It enables horizontal scaling via
a native Docker Swarm implementation. Regard-
ing platform and programming language indepen-
dence based on UIMA, problems arise with XMI
serialization with Python. To address this issue,
DUUI implements Lua-based communication be-
tween COMPONENTs and COMPOSERs, resulting
in a massive improvement in performance (see our
evaluation). DUUI is currently the most powerful
system meeting the requirement of Big Data NLP.
It implements a Lua sandbox for security reasons
to ensure that only permitted methods are executed
on the host system. Due to the sandbox and the self-
sufficiency of all annotators, DUUI can easily be
hosted in public registries without causing conflicts
between annotators. Its use of Docker containers as
standalone analysis components is a new approach
to implementing UIMA annotators and will be pub-
lished under the AGPLv3 license. It will support
Big Data analysis in a variety of disciplines that
use NLP for their scientific purposes.

393

https://www.openshift.com
https://podman.io


Limitations

In the current implementation of DUUI there are a
few limitations that are explicitly listed here. The
strength of DUUI becomes apparent when running
all analyses in Docker containers, especially in
swarm mode. Unfortunately, this also brings the
following limitations:

1. In Docker Swarm, there is currently no useful
way to specify load balancing, prioritization,
and service management for the individual
analysis processes.

2. At the same time, but this is independent of
the Docker swarm, no GPU container can cur-
rently be started in a native way in order for
the Docker image to access the GPU.

3. Considering that Lua invocations are executed
directly on the host system, it is important for
security reasons to define within a Lua sand-
box which methods and classes are available.

4. In addition, one more, but small, limitation
is that there are currently not many tools im-
plemented according to DUUI, which would
make it easier to use them broadly.

These limitations can already be bypassed at
present. For instance, limit 1 can be handled by
manually configuring the Docker Swarm network if
the knowledge is available. In addition, all Docker
containers that should use a GPU (limit 2) can be
started and invoked manually with the required
launch as a service (REMOTE DRIVER). How-
ever, existing tools are migrated in the context of
projects, and the fallback provided by the UIMA
DRIVER means that all existing approaches can
already be reused (limit 4).

Ethical aspects

This work has been developed with the ACL Code
of Ethics in consideration. With our contribution,
we would like to provide an innovation in terms of
systematic data processing with reference to text
corpora. Therefore, due to the subject matter, our
contribution does not entail any ethical issues. Re-
gardless of this, in the long run we cannot prevent
texts that are hurtful, disturbing or even legally pro-
hibited from being processed with our framework.
The authors are aware of this situation, but we also
respect free research.

References
Giuseppe Abrami, Mevlüt Bagci, Leon Hammerla, and

Alexander Mehler. 2022. German Parliamentary
Corpus (GerParCor). In Proceedings of the Lan-
guage Resources and Evaluation Conference, pages
1900–1906, Marseille, France. European Language
Resources Association.

Rodrigo Agerri, Xabier Artola, Zuhaitz Beloki, Ger-
man Rigau, and Aitor Soroa. 2015. Big data for
natural language processing: A streaming approach.
Knowledge-Based Systems, 79:36–42.

Apache. 2006. Apache Hadoop. https://hadoop.
apache.org/. Last accessed: 04/28/2022.

Mohammad Arshi Saloot and Duc Nghia Pham. 2021.
Real-time text stream processing: A dynamic and
distributed nlp pipeline. In 2021 International Sym-
posium on Electrical, Electronics and Information
Engineering, ISEEIE 2021, page 575–584, New York,
NY, USA. Association for Computing Machinery.

Galip Aydin and Ibrahim Riza Hallac. 2018. Distributed
nlp.

Adrien Barbaresi. 2018. A corpus of German political
speeches from the 21st century. In Proceedings of
the Eleventh International Conference on Language
Resources and Evaluation (LREC 2018), Miyazaki,
Japan. European Language Resources Association
(ELRA).

Roopal Bhatnagar, Sakshi Sardar, Maedeh Beheshti,
and Jagdeep T Podichetty. 2022. How can natural
language processing help model informed drug de-
velopment?: a review. JAMIA Open, 5(2). Ooac043.

Steven Bird, Ewan Klein, and Edward Loper. 2009. Nat-
ural language processing with Python: analyzing text
with the natural language toolkit. O’Reilly Media,
Inc.

Julian Brooke, Adam Hammond, and Graeme Hirst.
2015. Gutentag: an nlp-driven tool for digital hu-
manities research in the project gutenberg corpus. In
Proceedings of the Fourth Workshop on Computa-
tional Linguistics for Literature, pages 42–47.

Jorge Ramón Fonseca Cacho and Kazem Taghva. 2020.
The state of reproducible research in computer sci-
ence. In 17th International Conference on Infor-
mation Technology–New Generations (ITNG 2020),
pages 519–524, Cham. Springer International Pub-
lishing.

Rishav Chakravarti, Cezar Pendus, Andrzej Sakrajda,
Anthony Ferritto, Lin Pan, Michael Glass, Vittorio
Castelli, J. William Murdock, Radu Florian, Salim
Roukos, and Avi Sil. 2019. CFO: A framework for
building production NLP systems. In Proceedings of
the 2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP): System Demonstrations, pages

394

https://aclanthology.org/2022.lrec-1.202
https://aclanthology.org/2022.lrec-1.202
https://doi.org/https://doi.org/10.1016/j.knosys.2014.11.007
https://doi.org/https://doi.org/10.1016/j.knosys.2014.11.007
https://hadoop.apache.org/
https://hadoop.apache.org/
https://doi.org/10.1145/3459104.3459198
https://doi.org/10.1145/3459104.3459198
https://doi.org/10.48550/ARXIV.1802.03606
https://doi.org/10.48550/ARXIV.1802.03606
https://aclanthology.org/L18-1127
https://aclanthology.org/L18-1127
https://doi.org/10.1093/jamiaopen/ooac043
https://doi.org/10.1093/jamiaopen/ooac043
https://doi.org/10.1093/jamiaopen/ooac043
https://doi.org/10.18653/v1/D19-3006
https://doi.org/10.18653/v1/D19-3006


31–36, Hong Kong, China. Association for Computa-
tional Linguistics.

Jeffrey Dean and Sanjay Ghemawat. 2004. Mapreduce:
Simplified data processing on large clusters.

Dimension.AI. uima in publications - dimensions.

Yuning Ding, Marie Bexte, and Andrea Horbach. 2022.
Don’t drop the topic - the role of the prompt in ar-
gument identification in student writing. In Proceed-
ings of the 17th Workshop on Innovative Use of NLP
for Building Educational Applications (BEA 2022),
pages 124–133, Seattle, Washington. Association for
Computational Linguistics.

G. Divita, M. Carter, A. Redd, Q. Zeng, K. Gupta,
B. Trautner, M. Samore, and A. Gundlapalli. 2015.
Scaling-up nlp pipelines to process large corpora of
clinical notes. Methods of information in medicine,
54(06):548–552.

Christine Driller, Markus Koch, Giuseppe Abrami,
Wahed Hemati, Andy Lücking, Alexander Mehler,
Adrian Pachzelt, and Gerwin Kasperek. 2020. Fast
and easy access to central european biodiversity data
with biofid. Biodiversity Information Science and
Standards, 4:e59157.

Peter Exner and Pierre Nugues. 2014. KOSHIK-
A large-scale distributed computing framework for
NLP. ICPRAM 2014 - Proceedings of the 3rd Inter-
national Conference on Pattern Recognition Applica-
tions and Methods, pages 463–470.

David Ferrucci, Adam Lally, Karin Verspoor, and Eric
Nyberg. 2009. Unstructured Information Manage-
ment Architecture (UIMA) Version 1.0. OASIS Stan-
dard.

T. Götz and O. Suhre. 2004. Design and implementa-
tion of the UIMA Common Analysis System. IBM
Systems Journal, 43(3):476–489.

Thilo Götz, Jorn Kottmann, and Alexander Lang. 2014.
Quo Vadis UIMA? Proceedings of the Workshop
on Open Infrastructures and Analysis Frameworks
for HLT, OIAF4HLT 2014 - Held at the 25th Inter-
national Conference on Computational Linguistics,
COLING 2014, pages 77–82.

Wahed Hemati, Tolga Uslu, and Alexander Mehler.
2016. Textimager: a distributed uima-based system
for nlp. In Proceedings of the COLING 2016 System
Demonstrations. Federated Conference on Computer
Science and Information Systems.

Raphael Hiesgen, Marcin Nawrocki, Thomas C.
Schmidt, and Matthias Wählisch. 2022. The race
to the vulnerable: Measuring the log4j shell incident.

Sven Hodapp, Sumit Madan, Juliane Fluck, and Marc
Zimmermann. 2016. Integration of UIMA Text Min-
ing Components into an Event-based Asynchronous
Microservice Architecture. Proceedings of the Work-
shop on Cross-Platform Text Mining and Natural

Language Processing Interoperability (INTEROP
2016) at LREC 2016, pages 19–23.

Matthew Honnibal, Ines Montani, Sofie Van Lan-
deghem, and Adriane Boyd. 2020. spaCy: Industrial-
strength Natural Language Processing in Python.

Roberto Ierusalimschy, Luiz Henrique de Figueiredo,
and Waldemar Celes. 2007. The evolution of lua.

R. Burke Johnson, Anthony J. Onwuegbuzie, and Lisa A.
Turner. 2007. Toward a definition of mixed meth-
ods research. Journal of mixed methods research,
1(2):112–133.

Shafiq Joty, Giuseppe Carenini, and Raymond T. Ng.
2015. CODRA: A Novel Discriminative Framework
for Rhetorical Analysis. Computational Linguistics,
41(3):385–435.

Project Jupyter, Matthias Bussonnier, Jessica Forde,
Jeremy Freeman, Brian Granger, Tim Head, Chris
Holdgraf, Kyle Kelley, Gladys Nalvarte, Andrew Os-
heroff, M Pacer, Yuvi Panda, Fernando Perez, Ben-
jamin Ragan-Kelley, and Carol Willing. 2018. Binder
2.0 - reproducible, interactive, sharable environments
for science at scale. pages 113–120.

Soojeong Kim, Sunho Choi, and Junhee Seok. 2021.
Keyword extraction in economics literatures using
natural language processing. In 2021 Twelfth In-
ternational Conference on Ubiquitous and Future
Networks (ICUFN), pages 75–77.

Jan-Christoph Klie and Richard Eckart de Castilho.
2020. Dkpro cassis - reading and writing uima cas
files in python.

Alexander Leonhardt. 2022. Reproducible annotations.

Zhengzhong Liu, Guanxiong Ding, Avinash Bukkittu,
Mansi Gupta, Pengzhi Gao, Atif Ahmed, Shikun
Zhang, Xin Gao, Swapnil Singhavi, Linwei Li, Wei
Wei, Zecong Hu, Haoran Shi, Xiaodan Liang, Teruko
Mitamura, Eric Xing, and Zhiting Hu. 2020. A data-
centric framework for composable NLP workflows.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 197–204, Online. Association
for Computational Linguistics.

Christopher D Manning, Mihai Surdeanu, John Bauer,
Jenny Rose Finkel, Steven Bethard, and David Mc-
Closky. 2014. The stanford corenlp natural language
processing toolkit. In Proceedings of 52nd annual
meeting of the association for computational linguis-
tics: system demonstrations, pages 55–60.

Paolo Nesi, Gianni Pantaleo, and Gianmarco Sanesi.
2015. A hadoop based platform for natural language
processing of web pages and documents. J. Vis. Lang.
Comput., 31:130–138.

New York Times. 2019. New York Times. https://
developer.nytimes.com/apis. Accessed: 2019;
Data provided by The New York Times.

395

https://app.dimensions.ai/discover/publication?search_mode=content&search_text=uima&search_type=kws&search_field=full_search
https://doi.org/10.18653/v1/2022.bea-1.17
https://doi.org/10.18653/v1/2022.bea-1.17
https://doi.org/10.3897/biss.4.59157
https://doi.org/10.3897/biss.4.59157
https://doi.org/10.3897/biss.4.59157
https://doi.org/10.5220/0004707704630470
https://doi.org/10.5220/0004707704630470
https://doi.org/10.5220/0004707704630470
https://docs.oasis-open.org/uima/v1.0/uima-v1.0.html
https://docs.oasis-open.org/uima/v1.0/uima-v1.0.html
https://doi.org/10.1147/sj.433.0476
https://doi.org/10.1147/sj.433.0476
https://doi.org/10.3115/v1/w14-5209
http://arxiv.org/abs/2205.02544
http://arxiv.org/abs/2205.02544
https://doi.org/10.13140/RG.2.1.3014.1206
https://doi.org/10.13140/RG.2.1.3014.1206
https://doi.org/10.13140/RG.2.1.3014.1206
https://doi.org/"10.5281/zenodo.1212303"
https://doi.org/"10.5281/zenodo.1212303"
https://doi.org/10.1162/COLI_a_00226
https://doi.org/10.1162/COLI_a_00226
https://doi.org/10.25080/Majora-4af1f417-011
https://doi.org/10.25080/Majora-4af1f417-011
https://doi.org/10.25080/Majora-4af1f417-011
https://doi.org/10.1109/ICUFN49451.2021.9528546
https://doi.org/10.1109/ICUFN49451.2021.9528546
https://doi.org/10.5281/zenodo.3994108
https://doi.org/10.5281/zenodo.3994108
http://publikationen.ub.uni-frankfurt.de/frontdoor/index/index/docId/67688
https://doi.org/10.18653/v1/2020.emnlp-demos.26
https://doi.org/10.18653/v1/2020.emnlp-demos.26
https://developer.nytimes.com/apis
https://developer.nytimes.com/apis


Aarthi Paramasivam and S. Jaya Nirmala. 2021. A sur-
vey on textual entailment based question answering.
Journal of King Saud University - Computer and
Information Sciences.

Jeff Pasternack and Dan Roth. 2008. The wikipedia
corpus. Technical report.

Shafiullah Qureshi, Ba Chu, Fanny S Demers, Michel
Demers, et al. 2022. Using natural language pro-
cessing to measure covid19-induced economic policy
uncertainty for canada and the us. Technical report,
Carleton University, Department of Economics.

Christian Rauh and Jan Schwalbach. 2020. The Parl-
Speech V2 data set: Full-text corpora of 6.3 million
parliamentary speeches in the key legislative cham-
bers of nine representative democracies.

David P. Rodgers. 1985. Improvements in multiproces-
sor system design. SIGARCH Comput. Archit. News,
13(3):225–231.

Bruce Snyder, Dejan Bosnanac, and Rob Davies. 2011.
ActiveMQ in action, volume 47. Manning Greenwich
Conn.

Valentin Tablan, Ian Roberts, Hamish Cunningham, and
Kalina Bontcheva. 2013. Gatecloud. net: a platform
for large-scale, open-source text processing on the
cloud. Philosophical Transactions of the Royal So-
ciety A: Mathematical, Physical and Engineering
Sciences, 371(1983):20120071.

Ana Trisovic, Philip Durbin, Tania Schlatter, Gus-
tavo Durand, Sonia Barbosa, Danny Brooke, and
Mercè Crosas. 2020. Advancing computational re-
producibility in the dataverse data repository plat-
form. In Proceedings of the 3rd International Work-
shop on Practical Reproducible Evaluation of Com-
puter Systems, P-RECS ’20, page 15–20, New York,
NY, USA. Association for Computing Machinery.

Lijie Xu, Wensheng Dou, Feng Zhu, Chushu Gao, Jie
Liu, Hua Zhong, and Jun Wei. 2015. Experience
report: A characteristic study on out of memory er-
rors in distributed data-parallel applications. In 2015
IEEE 26th International Symposium on Software Re-
liability Engineering (ISSRE), pages 518–529.

Hans-Peter Zorn, Johannes Simon, Martin Riedl,
Richard Eckart de Castilho, and Steffen Remus.
2013. DKPro BigData. https://dkpro.github.
io/dkpro-bigdata/. Last accessed: 04/28/2022.

A Appendix

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

20
22

Number of Papers with full text including uima

0

50

100

150

200

250

Ye
ar

Research interest in UIMA

papers

Figure 11: Research interest in UIMA in the previous
years based on the number of papers including UIMA
in the full text of their paper (Dimension.AI).

msgpack xmi binary json
Method

0

50

100

150

200

250

300

350

S
iz

e
in

K
B

0.20

1.98

1.00

0.41

Figure 12: Serialized document payload size by method.

msgpack xmi binary json
Serialization method

0

5

10

15

20

25

P
as

se
d

tim
e

in
m

s

5.51

7.35

1.00

17.22

2.87

8.14

1.00

13.49

deserialize
serialize

Figure 13: Serialize and deserialize performance by
method, the binary serialization is set as baseline to
determine the factors for the other methods.

396

https://doi.org/https://doi.org/10.1016/j.jksuci.2021.11.017
https://doi.org/https://doi.org/10.1016/j.jksuci.2021.11.017
https://doi.org/10.7910/DVN/L4OAKN
https://doi.org/10.7910/DVN/L4OAKN
https://doi.org/10.7910/DVN/L4OAKN
https://doi.org/10.7910/DVN/L4OAKN
https://doi.org/10.1145/327070.327215
https://doi.org/10.1145/327070.327215
https://doi.org/10.1145/3391800.3398173
https://doi.org/10.1145/3391800.3398173
https://doi.org/10.1145/3391800.3398173
https://doi.org/10.1109/ISSRE.2015.7381844
https://doi.org/10.1109/ISSRE.2015.7381844
https://doi.org/10.1109/ISSRE.2015.7381844
https://dkpro.github.io/dkpro-bigdata/
https://dkpro.github.io/dkpro-bigdata/


1int iWorkers = 2; // define the number of workers
2JCas jc = JCasFactory.createJCas(); // A empty CAS document is defined.
3// load content into jc ...

5DUUILuaContext ctx = LuaConsts.getJSON(); // Defining LUA-Context for
communication

6// Definition of an LUA sandbox that restricts LUA to using only the listed
classes

7ctx.withSandbox(new DUUILuaSandbox().withAllowedJavaClass("java.lang.String")
8.withAllowedJavaClass("java.nio.charset.StandardCharsets")
9.withAllowedJavaClass("org.apache.uima.fit.util.JCasUtil")
10.withAllowedJavaClass("Taxon"));

12// Defining a storage backend based on SQlite.
13DUUISqliteStorageBackend sqlite = new

DUUISqliteStorageBackend("loggingSQlite.db")
14.withConnectionPoolSize(iWorkers);

16// The composer is defined and initialized with a standard Lua context as
well with a storage backend.

17DUUIComposer composer = new DUUIComposer().withLuaContext(ctx)
18.withScale(iWorkers).withStorageBackend(sqlite);

20// Instantiate drivers with options (example)
21DUUIDockerDriver docker_driver = new DUUIDockerDriver().withTimeout(10000);
22DUUIRemoteDriver remote_driver = new DUUIRemoteDriver(10000);
23DUUIUIMADriver uima_driver = new DUUIUIMADriver().withDebug(true);
24DUUISwarmDriver swarm_driver = new DUUISwarmDriver();

26// A driver must be added before components can be added for it in the
composer. After that the composer is able to use the individual drivers.

27composer.addDriver(docker_driver, remote_driver, uima_driver, swarm_driver);

29// A new component for the composer is added
30composer.add(new DUUIDockerDriver.
31Component("gnfinder:latest")
32.withScale(iWorkers)
33// The image is reloaded and fetched, regardless of whether it already

exists locally (optional)
34.withImageFetching());

36// Adding a UIMA annotator for writing the result of the pipeline as XMI
files.

37composer.add(new DUUIUIMADriver.Component(
38createEngineDescription(XmiWriter.class,
39XmiWriter.PARAM_TARGET_LOCATION, sOutputPath,
40)).withScale(iWorkers));

42// The document is processed through the pipeline. In addition, files of
entire repositories can be processed.

43composer.run(jc);

Figure 14: A lightweight implementation of a example pipeline with DUUI based on Docker images as well as on
XMI writer.

397



-- Bind static classes from java
StandardCharsets = luajava.bindClass("java.nio.charset.StandardCharsets")
Taxon = luajava.bindClass("Taxon")

-- This "serialize" function is called to transform the CAS object into an stream
that is sent to the annotator (Analyse Engine running in a docker container)

-- Inputs:
-- - inputCas: The actual CAS object to serialize
-- - outputStream: Stream that is sent to the annotator, can be e.g. a string,

JSON payload, ...
function serialize(inputCas, outputStream)

-- Get text from CAS, other methods are possible i.e. all Tokens, all Lemmas,
etc.

local doc_text = inputCas:getDocumentText()

-- Encode data as JSON object and write to stream
outputStream:write(json.encode({

text = doc_text
}))

end

-- This "deserialize" function is called on receiving the results from the
annotator that have to be transformed into a CAS object

-- Inputs:
-- - inputCas: The actual CAS object to deserialize into
-- - inputStream: Stream that is received from to the annotator, can be e.g. a

string, JSON payload, ...
function deserialize(inputCas, inputStream)

-- Get string from stream, assume UTF-8 encoding
--local inputString = luajava.newInstance(Taxon, inputCas)
--print(inputStream)
local inputString = luajava.newInstance("java.lang.String",

inputStream:readAllBytes(), StandardCharsets.UTF_8)

-- Parse JSON data from string into object
local results = json.decode(inputString)

-- Add taxons
for i, tax in ipairs(results["taxons"]) do

if tax["write_token"] then
print("----------------")
local taxon_anno = luajava.newInstance("Taxon", inputCas)
taxon_anno:setBegin(tax["begin"])
taxon_anno:setEnd(tax["end"])
taxon_anno:setValue(tax["text"])
taxon_anno:addToIndexes()

end
end

end

Figure 15: Lua example for (de-)serialization XMI or accessing a UIMA document via Lua. In this example the text
is taken from an annotator via serialize and sent to the associated component. Afterwards, the result of the analysis
will directly sent to the invoker via the deserialize function creating directly - in this example - taxon.398



0 25 50 75 100 125 150 175 200
Container replicas

0

10

20

30

40

50

Th
eo

re
tic

al
sp

ee
du

p

Amdahl’s law

Host threads n=2
Host threads n=4
Host threads n=6
Host threads n=8
Host threads n=10
Host threads n=12
Host threads n=14
Host threads n=16
Host threads n=18

Figure 16: Parameter space of Amdahl’s law for spaCy.

10
0

10
0020
0

50
0

0

10

20

0
.2

9
.6
7

1
.7
5

2
.8
7

6
.6
7
·1

0
−

2

8
.4
8

0
.3
7

2

6
.6
7
·1

0
−

2 8
.9
5

0
.3
3

1
.9
3

0
.1
3

2
0
.6
8

0
.1
3

1
.9
2

0
.3

1
5
.3
3

0
.2
7 3
.0
5

0
.5
3

1
6
.7
2

0
.5
3 3
.4

Sample size (documents)

C
om

pu
ta

tio
n

tim
e

in
m

in
ut

es

SortedSwarm1 SortedSwarm2 SortedSwarm4
SortedSwarm8 SortedSwarm16 SortedSwarm32

Figure 17: Unlike Figure 8, a sample with the same
number but very small documents was selected.

399


