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Abstract

End-to-end spoken language understanding
(SLU) remains elusive even with current large
pretrained language models on text and speech,
especially in multilingual cases. Machine trans-
lation has been established as a powerful pre-
training objective on text as it enables the
model to capture high-level semantics of the
input utterance and associations between differ-
ent languages, which is desired for speech mod-
els that work on lower-level acoustic frames.
Motivated particularly by the task of cross-
lingual SLU, we demonstrate that the task of
speech translation (ST) is a good means of pre-
training speech models for end-to-end SLU on
both intra- and cross-lingual scenarios.

By introducing ST, our models reach higher per-
formance over baselines on monolingual and
multilingual intent classification as well as spo-
ken question answering using SLURP, MINDS-
14, and NMSQA benchmarks. To verify the
effectiveness of our methods, we also create
new benchmark datasets from both synthetic
and real sources, for speech summarization and
low-resource/zero-shot transfer from English to
French or Spanish. We further show the value
of preserving knowledge for the ST pretrain-
ing task for better downstream performance,
possibly using Bayesian transfer regularizers.

1 Introduction

Modern artificial intelligence is characterized by
large pretrained language models (PTLMs) with
strong language capabilities to be adapted to var-
ious downstream tasks. The success of PTLMs
rests on carefully-designed pretraining tasks to be-
stow the capability we expect on the model. Cur-
rent PTLMs are mostly trained on self-supervised
tasks, which started from masked language mod-
elling (MLM) and next sentence prediction (NSP)
in BERT (Devlin et al., 2019), but recently evolved
into more difficult ones such as whole word (Cui
et al., 2021) or span masking (Joshi et al., 2020),

text infilling, and token deletion (Lewis et al.,
2020). While the rather simple NSP has been re-
placed by sentence permutation, document rotation
(Lewis et al., 2020), and sentence order prediction
(Lan et al., 2020). All those efforts introduced more
challenges in the pretraining phase to mine stronger
semantic supervision signals out of unlabelled data.

Such semantic-rich supervision is particularly
relevant for pretrained spoken language models like
wav2vec2 (Baevski et al., 2020) and HuBERT (Hsu
et al., 2021) based on MLM on (sub-)phonetic units
from lower-level audio signals, which are less infor-
mative and require models to carry out additional
labor on acoustics. Therefore, their high-level ca-
pacities are more restricted. This may explain why
automatic speech recognition (ASR) models fine-
tuned upon them with paired data still have a role in
fully end-to-end (E2E) SLU, often as a pretrained
feature extractor (Seo et al., 2022; Arora et al.,
2022). Unlike the cascaded SLU in which ASR
produces transcripts for text processing, in such
E2E systems ASR as an auxiliary or additional pre-
training task provides strong supervision to explic-
itly link audio to representations that correspond to
the denser and semantic-richer textual space, which
is valuable for downstream understanding tasks.

On texts, self-supervised objectives are rather
effective thanks to enormous text data with high
information density, but supervised tasks are still
used in many cases, machine translation (MT) be-
ing an often-seen one. A pioneer of the current
PTLM paradigm, CoVe (McCann et al., 2017), is
a seq2seq model pretrained on MT that achieved
the then state-of-the-art on various downstream
tasks. Belinkov et al. (2020) further validate lan-
guage capabilities of MT on morphological, syn-
tactic, and semantic levels, and T5 (Raffel et al.,
2020) uses an ensemble of supervised tasks includ-
ing MT. Furthermore, when trained with inputs of
multiple languages, the model encoder may align
and push representations for inputs in different lan-
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guages with similar meaning together to have the
same output in the target language, thanks to the
guidance from paired data (Johnson et al., 2017;
Schwenk and Douze, 2017). With this semantic-
centric language agnosticity, such an encoder can
achieve few/zero-shot transfer to another language
in downstream tasks (Eriguchi et al., 2018).

Inspired by those works, we hypothesize that the
counterpart of multilingual MT on speech, i.e., E2E
multilingual speech translation (ST) that directly
maps speech of various languages to texts in other
languages, will also be effective as a pretraining
task on E2E SLU, for three critical advantages:

1. It requires high-level understanding as an in-
terpreter must “understand” the utterance before
interpreting it into a different language, unlike ASR
that transcribes speech verbatim and MLM on pho-
netic units that needs less semantic understanding.

2. It captures long-term dependency and a global
view of the full input, in contrast to ASR and MLM
which can often be resolved with local context.

3. It enables better cross-lingual transfer in com-
parison with multilingual ASR models and self-
supervised PTLMs without the supervision that
promotes language agnosticity.

Admittedly, ST data is only available in a lim-
ited number of language pairs, but for each covered
language, there are infinite number of diverse down-
stream SLU tasks with only rich data in English. It
is a practical need to enroll various such languages
to an English-only model trained on each specific
SLU task. Therefore, as shown in Figure 1, we may
pretrain the model on speech translation between
English and the target language French in both di-
rections (i.e. En↔Fr), and then fine-tune on down-
stream tasks with an additional classifier, reusing
the encoder. We show the benefit of our method
on a variety of tasks for semantic understanding of
speech, including mono- & multilingual intent clas-
sification (IC), spoken question answering (SQA),
as well as speech summarization, for which we
create a synthetic dataset following Huang et al.
(2022). Then we show the strong advantage on
cross-lingual transfer to French. All the experi-
ments are focused on comparing ST with other
tasks like ASR as the pretraining or auxiliary task
to verify our core hypothesis above. In addition, to
show that our method applies to other languages as
well, we also conducted experiments using Spanish
as the target language. This is evaluated by creating
the French and Spanish version of the English IC

Encoder

mBART Decoder

fermer la lumière

It works very well

Il fonctionne très bien

enchanté

Nice to meet you

should i bring gloves
with me tonight

Classifier

Cross-lingual SLU
(Limited/no training data)

quel est le taux de change
entre l'euro et le dollar?

Query_Weather

Light_Turnoff

Query_Currency

Ab SLU

XLSR-53 (lower half)

mBART Encoder

Target Embed Adaptor

Downstream SLU

Figure 1: Our framework of ST-aided SLU, by connect-
ing pretrained XLSR and mBART fine-tuned for ST
following Li et al. (2021), and then reusing the ST en-
coder, transferred to downstream SLU tasks like intent
classification with a stacked classifier also from PTLMs.

benchmark SLURP (Bastianelli et al., 2020), using
both real and synthetic sources. On all the tasks,
our approach outperforms previous baselines and
ASR pretraining, often by a large margin.

Furthermore, unlike knowledge for self-
supervised objectives loosely connected to target
SLU tasks, knowledge to handle tasks with closer
link to semantics such as ST will be more valuable,
following our core hypothesis. Hence it should
be helpful to preserve such knowledge instead
of direct fine-tuning with the risk of catastrophic
forgetting. Therefore, we introduce multi-task
learning as well as Bayesian regularizers for
knowledge preservation, namely L2-SP (Li et al.,
2018b) and EWC (Kirkpatrick et al., 2017), which
show benefits especially in low-resource cases.

To summarize, our contributions are three-fold:
1. We demonstrate the effectiveness of speech

translation pretraining on multiple SLU tasks, es-
pecially in cross-lingual transfer cases.

2. We confirm the value of preserving ST pre-
training knowledge for downstream tasks and the
capability of Bayesian regularizers to achieve that.

3. We build several new datasets for speech
summarization and cross-lingual SLU.
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Our code, models, and datasets will be
released at https://github.com/idiap/
translation-aided-slu.

2 Model Pretraining

As in Figure 1, we first build a speech transla-
tor using an architecture established by Li et al.
(2021), that connects pretrained models on speech
and text with a CNN adaptor: Audio signals
are fed into the lower half of the multilingual
wav2vec2, XLSR-53 (Conneau et al., 2021), to
extract the (sub-)phonetic representations into a
320x-downsampled sequence. The upper half (12
layers) of XLSR is discarded for computational ef-
ficiency, as those parameters are found focused on
MLM pretraining and less useful for downstream
tasks (Zhu et al., 2022). Given the phonetic level
embeddings produced by the half XLSR, the task
is similar to machine translation to map them to the
output text, for which we leverage the MT model
based on mBART (Liu et al., 2020). While the
length of this sequence is still much longer than
the corresponding text. To better align it with typ-
ical textual embeddings as in mBART inputs, a
3-layer 8x-downsampling CNN adaptor is inserted.
A target embedding is then prepended to specify
the target language or task, similar to the target
token used in mBART. To promote language ag-
nosticity, we do not indicate the source language.
Furthermore, it has been found that explicitly pro-
moting language agnosticity may help zero-shot
transfer (Arivazhagan et al., 2019), hence we’ve
also attempted to add language adversarial train-
ing on the encoder outputs during pretraining and
fine-tuning, using a language classifier of a 2-layer
MLP to predict the language of the input speech,
with gradient reversal layer to explicitly align the
representations between different languages.

Based on the architecture, we fine-tune the
model using a combination of the En→Fr portion
of MuST-C (Gangi et al., 2019), and the Fr→En
portion of TEDx (Salesky et al., 2021), both de-
rived from TED talks, plus the Fr→En portion of
CoVoST2 (Wang et al., 2021a) based on general
sentences in Common Voice (Ardila et al., 2020),
with texts further cleaned and sentences that are too
long or contain foreign characters removed. Unlike
Li et al. (2021), the whole model is fine-tuned for
best pretraining results. To compare, we also exper-
iment with pretraining on the task of ASR instead.
As the data are paired with both translations and

ASR WER↓ TEDx MuST-C CoVoST2

ASR 16.58% 8.62% 13.67%
ASR+ST 15.82% 8.28% 13.62%

ST BLEU↑
ST 29.27% 36.30% 31.34%
ASR+ST 31.19% 37.18% 31.93%

Table 1: Test results on the cleaned pretraining datasets
given by word error rate (WER) for ASR and BLEU
score for ST, with French inputs for TEDx and CoV-
oST2, and English inputs for MuST-C.

transcripts, we use the same ST dataset for ASR
training to build a multilingual (En+Fr) ASR model.
We’ve tried to jointly train on ASR+ST in a multi-
task manner as well. With a total of >700 hours
paired speech data, we achieve satisfactory results
on the pretraining tasks as indicated in Table 1, and
ASR+ST training shows better performance com-
pared to the single-task ones. Starting from the
ASR and ST models, we further add Spanish por-
tion from the same set of ST datasets. As a result,
we obtain an ST model supporting both En↔Fr
and En↔Es (Spanish), and a tri-lingual En+Fr+Es
ASR model, both with similar satisfactory results,
details available in Appendix E.

3 Downstream Adaptation

3.1 Tasks

We then fine-tune the whole model on a variety of
direct downstream tasks as follows.

SLURP is a large and challenging English SLU
dataset recently proposed, with 72.2k real speech
recordings and 69.3k synthetic audio for a broad
range of speech commands given to voice assis-
tants. We use its IC labels to classify the input into
18 scenarios and 46 actions.

MINDS-14 is a multilingual IC dataset for bank-
ing scenarios with 14 types of intents in 14 lan-
guages with around 600 utterances per language,
and we use four subsets (en-AU, en-GB, en-US,
and fr-FR) under a 3:2:5 train-dev-test split in
XTREME-S (Conneau et al., 2022). The rather
scarce training data demand data-efficient multilin-
gual modelling.

NMSQA or Natural Multi-Speaker Question An-
swering is a spoken QA dataset consisting of audio
for the questions and segmented context articles
from SQuAD (Rajpurkar et al., 2016), with 97.6k
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question-answer pairs given in >300 hours of syn-
thetic audio from 12 speakers produced by Amazon
TTS, coupled with a 60-speaker real test set of 2.7
hours of recordings. In this task, the goal is sim-
ilar to textual QA to predict the correct span in
the spoken context audio that answers the ques-
tion, and the performance is measured by Audio
Overlapping Score (AOS) (Li et al., 2018a), de-
fined as AOS = X ∩ Y /X ∪ Y , in which X is the
predicted audio span and Y the ground truth.

Spoken Gigaword is the synthetic spoken ver-
sion of the summarization or headline generation
task on Gigaword (Rush et al., 2015), proposed
by Huang et al. (2022), aimed at generating a brief
headline from a short piece of English spoken news.
As it was not released, we follow their method to
filter the data and create a synthetic dataset of 131.5
hours of audio using Google TTS from 9 neural
voices in en-US, with 50k training samples, 1k val-
idation samples, and 385 test samples, as a result
of filtering out the frequent noise in the test set.

Synthetic data are used in those established
datasets for training and evaluation. Despite be-
ing possibly different from real data, it is observed
that they are often reliable to reflect model perfor-
mances and well correlated with real cases.

3.2 Methods

For these downstream tasks, we reuse the encoder
further pretrained on ST/ASR (with French, unless
otherwise stated). It should be noted that the 12-
layer mBART encoder we use is slightly smaller
than half XLSR. So when connected, the total en-
coder size and the computational cost to fine-tune
it is comparable with fine-tuning the whole original
XLSR. Upon the encoder we stack a 3-layer trans-
former, which is also transferred from a PTLM. As
for IC, we use layer 2-4 from pretrained XLM-R
(Conneau et al., 2020) for possibly better under-
standing capabilities, stacked with linear classifier
heads over mean-pooled outputs. Particularly, for
SLURP in which the intent consists of a scenario
and an action, two heads are used. As for SQA,
we use layer 2-4 of pretrained Longformer (Belt-
agy et al., 2020), a PTLM dedicated for long ut-
terances due to the length of each segment in the
data, as in Lin et al. (2022). Two linear classi-
fiers are then applied to each frame to predict the
start and end of the span, along with an answer
existence classifier over mean-pooled outputs to
predict if the answer exists in the provided seg-

ment. We then concatenate the question audio with
each segment in the spoken article as model in-
puts, and pick the predicted answer span from the
segment with the highest answer existence likeli-
hood. For these two tasks, the pretrained decoder is
simply discarded. While speech summarization is
more similar to ASR and distinct from other down-
stream tasks that the model first needs to capture
general meaning of the speech as encoded repre-
sentations, and then generate a textual summary by
the decoder, which demands a seq2seq architecture
identical to the ST/ASR pretraining task. Hence
we reuse the whole encoder-decoder model and
formulate the task as generation in an extra “tar-
get language”. With the needs to both understand
the general meaning and generate in the same lan-
guage, we hypothesize that combining ASR and
ST will lead to the best results.

Furthermore, as mentioned above, direct model
fine-tuning may lead to catastrophic forgetting of
the knowledge on ASR or ST and harm semantic
understanding capabilities. Hence we also tried a
multi-task joint training approach on both the pre-
training and target task. Results are compared be-
tween the model pretrained with ST, ASR, or both,
or one directly derived from self-supervised pre-
training without further supervision (None), plus
other baselines. More, the recent Whisper (Rad-
ford et al., 2023) is trained on multiple speech tasks
including ASR and ST, which matches our idea
despite not aiming at SLU. Hence we also try to
fine-tune the Whisper encoder, using the medium
version with size similar to our encoder.

3.3 Results

English IC Following the previous works, we
report the test accuracy on SLURP as in Table 2.
It can be observed that the models with ST pre-
training outperform those trained on ASR only,
while adding ASR to ST pretraining makes lim-
ited improvements, though it gives better WER and
BLEU during pretraining; it is the same case for the
model with the extra Spanish ST task introduced
in pretraining. However, ASR does help consider-
ing the None model directly fine-tuned from self-
supervised PTLMs without any additional pretrain-
ing. By joint training with both the pretraining and
downstream task, results are consistently improved.
However, despite being a strong ASR+ST model,
Whisper is found not suitable for fine-tuning on
SLURP in this way as shown by the low accuracy.
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Pretraining task Accuracy↑
ASR 87.38%

w/ Joint training 88.37%
ST 87.84%

w/ Joint training 89.35%
w/ Joint training + Es 89.59%

ST+ASR 87.75%
w/ Joint training 89.43%

None 84.80%
Whisper 80.39%

ESPnet-SLU (Arora et al., 2022) 86.30%
CTI (Seo et al., 2022) 86.92%
Generative IC+SF (Wang et al., 2021b)

based on wav2vec2 87.13%
based on HuBERT 89.38%

CIF-PT (Dong et al., 2023) 91.43%

Table 2: SLURP test results of our models, fine-tuned
from wav2vec2, compared to baselines without addi-
tional supervised pretraining or reusing Whisper as the
encoder, as well as results reported in literatures.

This might be explained by the fact that Whisper
is trained on En ASR and X→En ST but not for
En→X ST. Our hypothesis is that the ST pretrain-
ing on a specific language would enhance the se-
mantic understanding capabilities of the model in
that language, which may not help Whisper much
on the English SLURP benchmark. Also, Whis-
per is trained on 30-second chunks, while SLURP
contains more shorter utterances.

HuBERT, used in multiple baselines in Table 2,
has been found stronger on various downstream
tasks compared to wav2vec2. Owing to the lack of
a multilingual HuBERT (large) model, we rely on
the multilingual wav2vec2 as our acoustic encoder.
However, we reach much better results compared
to many notable baselines, including the approach
of jointly generating the intents and slots (Wang
et al., 2021b), with 87.13% accuracy, the highest
among wav2vec2-based baselines. We also reach
slightly higher accuracy than its HuBERT version,
which was the previous state-of-the-art. The very
recent CIF-PT (Dong et al., 2023), concurrent with
ours also injects more semantic signal, but by learn-
ing frame-to-token alignments on the encoder and
then distilling from PTLMs, significantly pushing
the state-of-the-art on this monolingual benchmark.
Nevertheless the method is distinct from ours, rais-
ing the possibility of applying both methods or-

thogonally for further improvement, and we main-
tain advantages on cross-lingual transfer and pos-
sibly also generative tasks by reusing a pretrained
seq2seq decoder, as elaborated below.

Multilingual IC We then report the accuracy on
MINDS-14 as in Table 3 on four languages plus
the average accuracy across languages, compared
to a baseline directly fine-tuned from XLSR. The
results are consistent with the monolingual case
that ST pretraining can significantly improve the
performance on SLU tasks, that joint training is
beneficial, and that adding ASR gives limited gains.

Spoken QA We compare our methods with re-
sults reported by Lin et al. (2022), including the
results from a cascaded pipeline that fine-tunes
Longformer upon transcripts from wav2vec2-based
ASR, and the DUAL approach that fine-tunes Long-
former upon units pre-extracted by a frozen Hu-
BERT, hence not fully end-to-end. For fair compar-
ison, we fine-tune the classifier built by layers 2–4
of Longformer and the top 5 layers of the mBART
encoder, while the rest of the model is frozen and
used as a feature extractor, so that they have a com-
parable number of trainable parameters with the
baselines. Therefore we do not conduct experi-
ments on joint training in this task as most shared
parameters are frozen. The results reported in the
more recent T5lephone (Hsu et al., 2023) including
the E2E and cascaded approach are also mentioned,
though they are almost twice as large as other mod-
els. All the baselines enjoy a view of the whole
article, while in our experiments we use a model
that works on a shorter context window with the
question and each segment in the article individ-
ually, in order to have an end-to-end architecture
given our computational resources that is consistent
with other experiments. Therefore, the baselines
possess a strong advantage over ours. However, as
shown in Table 4, the additional pretraining stage
leads to better results compared to all the E2E base-
lines, which further demonstrates the advantage
of our approach. Particularly, ST considerably im-
proves the performance and could successfully beat
the cascaded system reported by Lin et al. (2022)
in the more challenging test portion.

Speech summarization We report the results
compared between different auxiliary tasks as in Ta-
ble 5 using the ROUGE-1/2/L metrics (Lin, 2004).
In the experiments, we observed that simply fine-
tuning the model rapidly leads to overfitting, hence
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Pretraining task en-AU en-GB en-US fr-FR Average

ASR 95.7% 97.3% 96.5% 95.2% 96.2%
w/ Joint training 96.3% 98.3% 98.2% 93.7% 96.6%

ST 96.9% 99.0% 98.2% 97.8% 98.0%
w/ Joint training 97.3% 98.7% 99.3% 98.2% 98.3%

ST+ASR 95.4% 98.3% 97.5% 95.6% 96.7%
w/ Joint training 96.3% 98.3% 98.9% 98.5% 98.0%

XLSR (Lozhkov, 2022) 92.4% 93.2% 93.3% 94.4% 93.3%

Table 3: Test accuracies for models on MINDS-14 multilingual IC, comparing with directly fine-tuning the full
XLSR model. Both ST pretraining and joint training show benefits.

Pretraining task dev test

ASR 54.6% 53.0%
ST 58.2% 59.4%
ST+ASR 57.8% 58.0%

DUAL E2E 48.5% 49.1%
- Cascaded 58.3% 57.4%

ByT5lephone E2E - 53.3%
- Cascaded 59.2% 70.5%

Table 4: AOS (↑) scores for models on NMSQA, com-
pared to baselines reported in DUAL (Lin et al., 2022)
as well as the much larger ByT5lephone model (Hsu
et al., 2023). The pretraining tasks prove helpful, par-
ticularly ST pretraining, which may reach performance
close or better certain cascaded system.

we perform joint-training only, and use a spe-
cial target embedding to indicate the summariza-
tion task. ASR is helpful on the summarization
task as the ST+ASR model consistently outper-
forms the ST one, while the ST one is still bet-
ter than the ASR-only model, signifying the im-
portance of the semantic understanding capability
brought by ST pretraining. In addition, we com-
pare with a cascaded baseline that first transcribes
the inputs with our ASR model, which introduces
WER of 9.1% and 8.9% on dev and test respec-
tively. Then we leverage a BART-based model fine-
tuned on the full textual Gigaword with ROUGE-
1/2/L=37.28/18.58/34.53 to produce the summaries.
When applied to the relatively simple utterances in
Spoken Gigaword, it reaches a higher performance
on dev, which suggests the challenges for E2E sys-
tems in our benchmark, though the gap is narrow
compared to our E2E approach with ST+ASR pre-
training, and on the noisier test set our E2E models
consistently get much better results.

4 Cross-lingual Transfer

For cross-lingual transfer, IC models trained
on SLURP are then applied on/fine-tuned to
French/Spanish data below:

Datasets A French version of SLURP, SLURP-
Fr, is created to evaluate the cross-lingual trans-
fer capabilities of the model, which is based on
MASSIVE (FitzGerald et al., 2023), a translation
of SLURP texts into multiple languages. With the
same input domain and output categories, zero-shot
transfer becomes possible. We first produce the au-
dio for the 16.5k French samples in MASSIVE
with a 7:2:1 train-dev-test split using Google TTS
from four different WaveNet-based speakers. Then
we invite two native French speakers to read out a
total of 477 randomly-selected category-balanced
held-out utterances, forming the real test set. To
mimic SLURP, we record the audio indoors with
two microphones under both near-field and far-field
conditions. We also define a 100-shot per category
subset with 4.5k samples in total to simulate a con-
dition with even lower resource. SLURP-Es is
created in a way similar to SLURP-Fr with 16.5k
Spanish samples in MASSIVE, though we are un-
able to create a real set.

Experiments The advantage of our method on
cross-lingual transfer is evaluated under the full-
data, 100-shot, and zero-shot cases, using different
pretraining strategies compared to the None model
trained on SLURP without further supervision but
directly upon the multilingual self-supervised pre-
trained models. Hence it is noteworthy that all the
compared models have been pretrained in a mul-
tilingual way. As given in Table 6 on French, ex-
tra multilingual ST/ASR supervision consistently
leads to better results on different data amounts.
ST pretraining outperforms ASR, similar to previ-
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dev test
Joint task ROUGE-1 ROUGE-2 ROUGE-L ROUGE-1 ROUGE-2 ROUGE-L

ASR 40.16 18.39 37.69 35.90 16.25 33.77
ST 40.61 18.95 38.23 36.70 16.39 34.47
ST+ASR 41.39 19.50 38.83 37.63 17.80 35.20
None 21.49 7.44 20.37 18.39 6.16 17.41
Cascaded 42.00 21.42 39.60 32.24 15.03 30.14

Table 5: ROUGE (↑) scores for models on Spoken Gigaword speech summarization. ST still proves beneficial,
while best results could be obtained by combining ASR for this task of generating summaries in the same language.

Full 100-shot Zero-shot
Pretrain task dev test real dev test real dev test real
ASR 83.3% 84.0% 79.7% 69.6% 69.0% 71.3% 39.0% 39.8% 39.4%
ST 85.2% 86.1% 84.9% 78.1% 77.0% 79.0% 58.9% 58.9% 56.6%
ST+ASR 85.8% 85.7% 82.4% 78.0% 77.0% 78.8% 63.9% 62.6% 59.1%
ST+Adv. 86.4% 84.9% 84.1% 78.3% 78.1% 80.9% 67.0% 67.7% 63.7%

None 75.9% 74.0% 65.4% 57.5% 52.4% 53.5% 15.3% 16.1% 13.6%

Table 6: Results on SLURP-Fr cross-lingual IC transferred from SLURP with different data amounts. Comparing
different supervised pretraining (or w/o additional supervision), results highlight ST and adversarial training.

None ASR ST

Full dev 75.6% 83.7% 85.6%
test 75.1% 82.5% 84.5%

100-shot dev 64.4% 76.5% 80.3%
test 63.8% 75.1% 79.6%

Zero-shot dev 12.3% 39.7% 55.2%
test 12.8% 39.1% 54.4%

Table 7: Results on SLURP-Es cross-lingual IC trans-
ferred from SLURP with different data amounts.

ous experiments, while ST+ASR joint pretraining
brings some improvements in the zero-shot case.
Notably, the gap between ASR and ST models
becomes larger with fewer data, especially with
zero shot, which implies the importance of ST
on cross-lingual transfer. Accuracy on the real
near-field speech is reported, which correlates well
with those on synthetic ones, indicating that perfor-
mance on synthetic speech is reliable for evaluation.
The ST+Adv. model incorporates language adver-
sarial training during pretraining and fine-tuning
to further promote language agnosticity as men-
tioned above, which outperforms other models in
most cases, particularly with zero shot, implying
the usefulness of language adversarial training and
the importance of language agnosticity of input

features to the classifier. In addition, we build a
cascaded system which first translates the speech
into English text using our ST model, with BLEU
scores of 26.08/26.34/21.56 on dev/test/real. Then
a BART-based textual SLURP model with 85.7%
test accuracy is used. This essentially zero-shot
system gives a competitive 62.2% real accuracy,
which poses challenges to the future development
of E2E cross-lingual models. The model on Span-
ish, based on En+Fr+Es ST/ASR pretraining along
with training on SLURP in an identical protocol,
shows similar results as in Table 7, indicating the
applicability of our approach to other languages.

5 Pretraining Knowledge Preservation

Methods As mentioned above, the knowledge
to perform ASR/ST that connects speech and
semantic-rich texts could be valuable for down-
stream tasks, which motivates us to use joint train-
ing above that maintains the performance on the
pretraining tasks. This is verified by the consid-
erable performance improvement or gap between
the joint and single models. However, it is com-
putationally intensive and requires access to the
pretraining data. To alleviate the gap without
joint training, we intend to explore Bayesian trans-
fer/continual learning regularizers that limit the pa-
rameter shift by applying a prior on the parameters,
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Figure 2: Results for Bayesian transfer regularizers when applied to different tasks, with the goal of mitigating
the gap between the performance of single-task and joint-training models, indicated by the lower and the upper
horizontal lines. The x-axis indicates the regularization weight for EWC/L2-SP, and the y-axis the accuracy. The
regularizers bring positive effects on the data-scarce MINDS-14 task, but not on SLURP.

based on the Laplacian approximation of posterior
parameter distributions in pretraining (MacKay,
1992). Particularly, the L2-SP method formulate
the prior as an isotropic Gaussian distribution with
the pretrained parameters θ0 as the mean and iden-
tical variance for all parameters, which leads to an
L2 regularization term with weight α centered at θ0
in the loss for the maximum likelihood estimation
of the parameters (Li et al., 2018b). While elas-
tic weight consolidation (EWC) (Kirkpatrick et al.,
2017) considers the variance of each parameter θi
decided by the Fisher diagonal Fi, which could be
further estimated using squared gradients by aver-
aging over the stochastic gradient descent (SGD)
trajectory. However, for optimization we use the
Adam algorithm

θt ← θt−1 − α · m̂t/(
√
v̂t + ϵ), (1)

that already computes v̂t, an exponential moving
average of squared gradients (Kingma and Ba,
2015), close to linear averaging with a smoothing
parameter β2 = 0.999. Hence we reuse them to
set the per-parameter weight αFi for regularization.
For both methods, the hyperparameter α is used
to control the strength of the knowledge preserva-
tion or the restraint to the parameter update. See
Appendix A for more theoretical explanations.

Experiments We experiment with these regu-
larizers, targeted on ST-pretraining on SLURP
and MINDS-14, plus the ST+ASR pretraining on
MINDS-14 which has a considerable 1.32% ac-
curacy gap. We try to use various weights α for
L2-SP regularization ranging from 1e-5 to 1e-2.
Then we inspect the distribution of the approxi-
mated Fi, which ranges from 1e-20 to 1e-5 as in
Appendix F. For optimization stability we clamp

the weight αFi above 1e-2, and use EWC weights
of 2e2, 2e4, 2e6, and 2e7 to roughly match the
magnitude of those for the L2-SP regularizer.

Results are shown in Figure 2, and for MINDS-
14 the average accuracies are reported. In the case
of SLURP, it is possible that the amount of data is
already sufficient that the preservation of the pre-
training knowledge could be helpful only if it is
carried out in a fully adaptive way, namely joint
training. Therefore, the regularizers lead to limited
help or even harm to the accuracy when the weight
is large. However, under the low-resource condi-
tion in MINDS-14, both regularizers are effective.
As in Li et al. (2018b), although being more flexi-
ble and adaptive, EWC doesn’t necessarily lead to
better transfer learning. This is consistent with our
observations: Both regularizers can successfully
overcome the accuracy gap or even go beyond the
joint training model under an appropriate weight,
while the best regularizer varies in different cases,
though the more adaptive EWC has a chance to
reach better results as in the MINDS-14 ST+ASR
case. In this way, we demonstrate the effectiveness
of Bayesian parameter-preserving regularizers for
transfer learning on such large pretrained models.

6 Related Work

Translation as an auxiliary task It has been
found that representations from MT models cap-
ture various aspects of the input utterance such as
syntax (Shi et al., 2016), morphology (Belinkov
et al., 2017), and also semantic inferences (Po-
liak et al., 2018; Belinkov et al., 2020). Hence
MT has been established as a pretraining task as
in CoVe (McCann et al., 2017) for various down-
stream tasks. But unlike this paper, recent works
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on the direction has been focused on multilingual
and cross-lingual cases, starting from attempts to
reuse MT representations as sentence embeddings
for text classification (Shi et al., 2016; Lu et al.,
2018), and, particularly often, for semantic sim-
ilarity and bi-text mining (Schwenk and Douze,
2017; Vázquez et al., 2019; Raganato et al., 2019;
Artetxe and Schwenk, 2019). As for pretraining
PTLMs to be fine-tuned, MT proves effective for
downstream cross-lingual tasks on few-shot and
zero-shot transfer (Eriguchi et al., 2018), while
often accompanied with similar tasks like trans-
lation language modelling (Conneau and Lample,
2019; Kale et al., 2021), cross-lingual MLM (Chi
et al., 2021), and dictionary denoising (Reid and
Artetxe, 2022). Particularly, MT has been used as
an auxiliary task for cross-lingual intent classifica-
tion on texts (Schuster et al., 2019; Siddhant et al.,
2020; van der Goot et al., 2021), and is widely used
on cross-lingual generation, including summariza-
tion (Zhu et al., 2019; Cao et al., 2020; Xu et al.,
2020; Takase and Okazaki, 2022), simplification
(Mallinson et al., 2020), question generation (Chi
et al., 2020), and data-to-text generation (Kale and
Roy, 2020).

End-to-end SLU Cascaded SLU methods work
on ASR transcripts, for which error propagation is
a major challenge (Chang and Chen, 2022; Cheng
et al., 2023a). Hence recently end-to-end meth-
ods have gained popularity (Serdyuk et al., 2018;
Haghani et al., 2018), especially with the perfor-
mance gap compared with cascaded systems miti-
gated in many cases thanks to the PTLM paradigm.
Besides directly fine-tuning existing PTLMs on
speech (Wang et al., 2021b; Arora et al., 2022),
there are also explorations for end-to-end interface
to connect pretrained models on speech and text
(Saxon et al., 2021; Seo et al., 2022; Raju et al.,
2022), as well as joint speech-text modelling, pre-
training, or distillation (Chuang et al., 2020; Chung
et al., 2021; Kim et al., 2021; Villatoro-Tello et al.,
2023; Dong et al., 2023), prompt tuning for PTLMs
(Gao et al., 2022; Chang et al., 2022), combining
PTLM features (Cheng et al., 2023b), and multitask
learning with ASR (Huang et al., 2022).

Bayesian transfer learning Viewing the pre-
trained model not as a point estimation but a distri-
bution is critical for continual learning as in EWC
(Kirkpatrick et al., 2017), and the idea has been
also applied to transfer learning to regularize fine-

tuning as in L2-SP for image classification (Li et al.,
2018b), though similar regularizers have been used
on MT (Barone et al., 2017) and ASR (Liao, 2013).
More recently, Shwartz-Ziv et al. (2022) propose
to approximate the prior using SGD trajectory as in
SWAG (Maddox et al., 2019) for transfer learning.

7 Conclusion

We confirm our hypothesis that speech translation
can be a powerful pretraining and joint-training
means for various end-to-end models on tasks in-
volving semantic understanding of speech. Partic-
ularly, it benefits multilingual scenarios and cross-
lingual transfer, including the zero-shot case. We
also create two new datasets for the above tasks.
Furthermore, we demonstrate the effectiveness of
Bayesian regularizers to preserve the knowledge
from pretraining for downstream tasks.

Limitations

Some of the limitations of our paper are:
1. The best results are mostly achieved with

multi-task learning, which adaptively preserves the
knowledge from the pretraining task, but much
slower, computationally intensive, and energy con-
suming. Therefore we explore the regularizers
from continual learning for knowledge preserva-
tion, while there are some other continual learn-
ing approaches (e.g. Learning without Forgetting,
Gradient Episodic Memory) that might be helpful.
Also, we haven’t explored alternative regulariza-
tion approaches and light-weight tuning.

2. On the monolingual case (i.e. on SLURP),
despite getting much better result under fair com-
parison with the alternative training methods and
other baselines based on wav2vec2, our result is
only slightly better than the HuBERT-based gener-
ative approach (Wang et al., 2021b), which is the
state-of-the-art before us. Very recently, CIF-PT
(Dong et al., 2023), parallel with our work in time,
reaches 1.9% higher than both types of models,
marking a new state-of-the-arts. This approach ap-
pears to be orthogonal to ours and the two methods
might be jointly applied to the SLU model to reach
even better results, but this is left for future work.

3. The dataset we built is relatively small and
with limited number of real samples.

Ethics Statement

We honor the ACL Code of Ethics. Particularly, as
our work involves data collection, we go through a
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formal process at the institution for collecting au-
dio data, strictly follow the general and local rules
for data protection, and receive full consent of par-
ticipants to process and release the data. Since
cross-lingual transfer is highlighted in our work,
the work could have positive societal impacts for
the application of speech and language technology
in the non-English population. We believe that
there is little chance for the method to be misused,
except in cases of misusing SLU, such as mass
surveillance. We also emphasize the reproducibil-
ity, and will release relevant code and models.
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A Bayesian Transfer Learning

As in the standard machine learning configura-
tion, we determine the parameters by optimiz-
ing loss with an L2 regularizer, i.e. minimizing
L(D; θ) + α∥θ∥22 for the parameters θ ∈ RN

given data D = {(x, y)} and the hyperparameter
α, in which the cross-entropy loss L corresponds
to the negative log-likelihood − log p(y|θ) of the
label upon model outputs. This can be formu-
lated as maximum likelihood estimation (MLE)
of θ by maximizing log p(θ|D), which is equal to
log p(D|θ) + log p(θ)− log p(D) by Bayes’ theo-
rem. With constant p(D) and a zero-mean isotropic
Gaussian prior N (0, σ2I) on θ with scalar σ, the
optimization objective corresponds to

log p(θ|D) ∝ log p(D|θ) + log p(θ)

= log p(D|θ) + log(N (θ; 0, σ2I))

∝ −L(D; θ)− 1

2σ2

N∑

i=1

θ2i

(2)
Hence L2 regularization can be viewed as giving
an isotropic zero-mean Gaussian prior to the model
parameters that assigns higher probability to close-
to-zero parameters, with a larger α indicating a
smaller scalar σ2. While instead of zero, L2-SP
(Li et al., 2018b) proposes to limit the parameter
shift from the pretrained ones during fine-tuning
by assigning a Gaussian prior N (θ0, σ

2) centered
at pretrained parameters θ0, which has been found
to lead to better downstream performance.

Nevertheless, it is an over-simplification of the
prior as different parameters are unequal and some
parameters are more critical for the performance
on the pretraining task than others. The impor-
tance of a parameter can be represented by poste-
rior distribution p(θ|Dp) near θ0 on the pretraining
data Dp that corresponds to the pretraining loss
L(Dp; θ) ∝ p(Dp|θ). In this way, elastic weight
consolidation (EWC) (Kirkpatrick et al., 2017) as-
signs a Gaussian prior N (θ0, σ

2I) with diagonal
covariance σi according to the estimated posterior
distribution (i.e. loss landscape) of θi on the pre-
training task. A parameter θi with larger impact
to the L(Dp; θ) will have sharper p(θi|Dp) and
smaller σ2

i = 1/(αFi), thus less flexibility in fine-
tuning, lower variance in the fine-tuning prior, and
higher weight for its L2 regularizer under the goal
of preserving knowledge for the pretraining task.

To estimate this posterior distribution or loss
landscape on the pretraining data Dp, we can

perform Taylor expansion for the log likelihood
log f(θ) = log p(θ|Dp) near the parameters after
pretraining, namely θ0, which is assumed to be near
to the optimum, making∇ log f(θ0) ≈ 0. Hence,

log f(θ) = log f(θ0) +∇ log f(θ0)(θ − θ0)

+
1

2
(θ − θ0)

THlog f (θ0)(θ − θ0) + · · ·

≈ log f(θ0) +
1

2
(θ − θ0)

THlog f (θ0)(θ − θ0)

(3)

Therefore, through a second-order expansion,
p(θ|Dp) is approximated by a Gaussian distribu-
tion corresponding to the negation of the quadratic
term above, with θ0 being the mean and the Hes-
sian matrix corresponding to the inverse covariance.
To estimate the Hessian matrix, we use Bayes’ the-
orem and take a flat prior on Dp, forming

Hlog f (θ) =
∂2 log p(θ|Dp)

∂θ2

=
∂2 log p(Dp|θ)

∂θ2

= Ex∼p(x|θ)[
∂2 log p(x|θ)

∂θ2
]

(4)

While the Fisher information matrix can be written
as

F = −Ex∼p(x|θ)[
∂2 log p(x|θ)

∂θ2
], (5)

Therefore, the posterior distribution of the pa-
rameter θ on the pretraining task is approximated
by a Gaussian distribution with the mean µ = θ0
and the inverse covariance Σ−1 = F . The Fisher
matrix can then be estimated by squared gradients
as in Pascanu and Bengio (2014), and EWC further
simplifies it by only considering diagonal terms.

B Implementation Details

We pretrain the model following the common set-
tings in the field on single 24GB V100 GPUs using
the Adam optimizer with a learning rate schedule
of 20k linear warmup steps from 0 to 1e-4, fol-
lowed by an inverse-sqrt decay to 3e-5. Models are
selected and early stopping is performed according
to the WER or BLEU on the dev set. 5-beam search
is used during evaluation. The PTLMs we use are
the 24-layer “large” versions provided by Hugging
Face. A dynamic batching strategy is adopted to ac-
commodate input utterance with different lengths.
Accompanied with gradient accumulation, an av-
erage batch size of ∼25 with ∼500 target tokens
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SLURP Script Label ASR ST ST+ASR

is there a meeting on my
calendar this afternoon

calendar,query calendar,set calendar,query calendar,query

look for apple pie recipe cooking,recipe qa,stock qa,recipe cooking,recipe
can you really see russia
from alaska

qa,factoid alarm,remove qa,factoid general,quirky

are there morning shows
available

calendar,query weather,query recommendation,
events

lists,query

Table 8: Examples of SLURP IC benchmark and predictions produced by different models.

per step is used. The wav2vec2 part is frozen for
the first 10k steps, and utterances shorter than 0.1s
or longer than 10s are not used during the first
20k steps. The L2 regularization with α=5e-3 is
applied to the weights, except the Bayesian trans-
fer learning experiments. The setting is similar
for the fine-tuning cases except that the encoder is
frozen during the initial steps, and for joint-training
models a 1:3 ratio between data for the pretraining
and target task is used. While for smaller datasets
including MINDS-14, SLURP-Fr, and Spoken Gi-
gawords, the data ratio, dropout rate, and learning
rate schedule are further tuned to avoid overfitting.
We also build and compare with several cascaded
pipelines based on our ST model, for which we
directly use the model outputs with beam search
without external LM as the model already lever-
ages a strong language model. More details could
be found from the source code.

C Examples

Several examples in the SLURP IC benchmark and
the predictions from different models are provided
here in Table 8 for a more direct demonstration for
the understanding capability of the models.

D Dataset Details

Three new datasets are introduced in this work.
Among them, SLURP-Fr is our main dataset for
experiments on cross-lingual transfer, while we ad-
ditionally carry out a series of experiments on Span-
ish (Es) to show that our methods work on more
than one language. For the synthetic portion of
SLURP-Fr/Es, we built the dataset based on MAS-
SIVE, textual translation of SLURP, each using 4
speakers from Google TTS, with total 11.3H and
13.9H audio respectively. Therefore the contents
are identical to MASSIVE. While for the real por-
tion of SLURP-Fr, we leverage two native French

train dev test real

#Samples 11514 2033 2974 477
Avg. sec (Fr) 2.47 2.44 2.44 2.35
Avg. sec (Es) 3.03 3.01 3.01 /

Table 9: Statistics of the SLURP-Fr/Es datasets.

train dev test

#Samples 50000 1000 385
Mean length (sec) 9.21 9.30 9.24
Article word count 23.9 24.0 24.0
Headline word count 7.8 8.1 8.0

Table 10: Statistics of the Spoken Gigaword dataset.

speakers to read the held-out samples from MAS-
SIVE. The dataset size and mean length (in sec-
onds) of the utterances are given in Table 9.

As for speech summarization, we follow MTL-
SLT (Huang et al., 2022) to build the synthetic
spoken version of Gigaword (Rush et al., 2015), us-
ing 9 speakers from Google TTS, with total 131.5H
audio. We follow the data split in the original Gi-
gaword dataset with a small and noisy test split
(which we further filtered) and randomly sample
from the train and dev split. The resultant size and
mean length of the utterances are given in Table 10.

E Spanish Experiments

Similar to the default type of models using only
data with English and French, we first introduce
the Spanish data to the En+Fr ASR model or the
En↔Fr ST model to pretrain a En+Fr+ES ASR
model as well as a En↔Fr+En↔Es ST model, with
satisfactory results as in Table 11. Both ASR and
ST models are then fine-tuned with joint training
on SLURP, reaching 87.63% and 89.59% accuracy
respectively. Then they are used for cross-lingual
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TEDx MuST-C CoVoST2

ASR WER↓ 15.05% 8.94% 11.34%
ST BLEU↑ 25.84% 30.06% 33.90%

Table 11: Test results of the model with Spanish data
added on the cleaned pretraining datasets given by word
error rate (WER) for ASR and BLEU score for ST, with
Spanish inputs for TEDx and CoVoST2, and English
inputs for MuST-C.

22.5 20.0 17.5 15.0 12.5 10.0 7.5

22.5

20.0
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Figure 3: The distribution of the estimated Fisher diag-
onals shown in heat map, with x-axis for the means of
the log squared gradients of each weight or bias, and
y-axis the standard deviation.

transfer to SLURP-Es.

F EWC Weight Distribution

The distributions of the log estimated Fisher di-
agonals for each weight matrix or bias vector are
illustrated in Figure 3. It can be observed that most
weights are concentrated around 1e-5 to 1e-10, and
they are close to each other as the standard devi-
ations are at the similar magnitude. Hence with
α=1e-7, most weights will reach the 1e-2 clamping
threshold. The exceptions are the biases for key
projection in attention modules, which correspond
to the lower-left cluster and have much smaller
weights.
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