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Abstract

The dominant paradigm of textual question
answering with end-to-end neural models ex-
cels at answering simple questions but falls
short on explainability and dealing with more
complex questions. This stands in contrast to
the broad adaptation of semantic parsing ap-
proaches over structured data sources (e.g., re-
lational database), that convert questions to log-
ical forms and execute them with query engines.
Towards the goal of combining the strengths
of neural and symbolic methods, we propose a
framework of question parsing and execution
for textual QA. It comprises two central pil-
lars: (1) parsing a question of varying complex-
ity into an intermediate representation, named
H-expression, which symbolically represents
how an answer to the question can be reached
by hierarchically combining answers from the
primitive simple questions; (2) to execute the re-
sulting expression, we design a hybrid executor,
which integrates deterministic rules to translate
the symbolic operations with a drop-in neural
reader to answer each simple question. The pro-
posed framework can be viewed as a top-down
question parsing followed by a bottom-up an-
swer backtracking. H-expressions closely guide
the execution process, offering higher precision
besides better interpretability while still pre-
serving the advantages of the neural readers for
resolving primitive elements. Our extensive ex-
periments on four different QA datasets show
that the proposed framework outperforms ex-
isting approaches in supervised, few-shot, and
zero-shot settings, while also effectively expos-
ing the underlying reasoning process1.

1 Introduction

End-to-end neural models that transductively learn
to map questions to their answers have been the
dominating paradigm for textual question answer-
ing (Raffel et al., 2020; Yasunaga et al., 2021) ow-

1Our code is available at https://github.com/
salesforce/HPE

Question: 
When was the last time 
Duane Courtney’s team 
beat the winner of the 
1894-95 FA Cup?

JOIN

QA( When was the last 
time Ans#2 beat Ans#1? )

UNION

QA( What is member of sports 
team of Duan Courtney? )

QA( Who is winner of 
1894-95 FA Cup? )

Tree structure of H-expression

Figure 1: An illustration of H-expression.

ing to their flexibility and solid performance. How-
ever, they often suffer from a lack of interpretabil-
ity and generalizability to more complex scenar-
ios. Symbolic reasoning, on the other hand, relies
on producing intermediate explicit representations
such as logical forms or programs, which can then
be executed against a structured knowledge base
(e.g., relational database, knowledge graph, etc.)
to answer questions (Gu et al., 2022; Baig et al.,
2022; Zhao et al., 2023; Wang et al., 2023). These
methods naturally offer better interpretability and
precision thanks to the intermediate symbolic repre-
sentations and their deterministic executions. How-
ever, they might be limited in expressing a broad
range of natural questions in the wild depending on
the semantic coverage of the underlying symbolic
language and its grammar.

Neural Module Networks (Andreas et al., 2016;
Gupta et al., 2019; Khot et al., 2021) have been pro-
posed to combine neural and symbolic modality to-
gether. However, they require a symbolic language
and a corresponding model that only covers limited
scenarios in the specific task or domain. To apply
this approach on new tasks or domains, new lan-
guages and neural modules need to be introduced.
Therefore, designing a generalizable framework
that uses a high-coverage symbolic expression and
a flexible neural network that can be versatilely
used in various scenarios becomes our goal.

In this work, we propose a Hybrid question
Parser and Execution framework, named HPE,
for textual question answering, which combines
neural and symbolic reasoning. We introduce H-
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expression as an explicit representation of the orig-
inal question, which contains primitives and op-
erations (Liu et al., 2022). As shown in Figure
1, we consider the single-hop questions as primi-
tives (leaves) and use symbolic operations (internal
nodes) to connect them hierarchically. We intro-
duce a semantic parser based on a seq2seq frame-
work to parse a complex question into its corre-
sponding H-expression in a top-down manner.

To execute an H-expression, we design a hy-
brid executor (H-executor), which utilizes a neural
model (reader) to answer each single-hop ques-
tion, and then uses deterministic rules to hierar-
chically compose a final answer from the single-
hop answers in a bottom-up fashion. Notably, H-
expression facilitates modularity in that the reader
is replacable and its training can be done globally
with the massive single-hop QA data.

Our contributions can be summarized as follows:
• Architecture We propose to combine the ad-
vantages of both symbolic and neural reasoning
paradigms by parsing questions into hybrid in-
termediate expressions that can be hierarchically
executed against the text to produce the final an-
swer. Our experiments on MuSiQue (Trivedi et al.,
2022b) and 2WikiMultiHopQA (Min et al., 2019)
show that the proposed approach achieves state-of-
the-art performance.
• Generalizability End-to-end neural models are
data hungry and may significantly suffer from poor
generalization to unseen data, especially in limited
resource scenarios. Our design, on the other hand,
naturally splits the reasoning process into parsing
and execution, through which it intends to disentan-
gle learning to parse complex questions structurally
from learning to resolve simple questions therein,
making the process modular. Our few-shot exper-
iments on MuSiQue and 2WikiMultiHopQA and
zero-shot experiments on HotpotQA(Yang et al.,
2018) and NQ (Kwiatkowski et al., 2019) suggest
that even with less training data, our approach can
generalize better to unseen domains.
• Interpretability The execution process of our
model is the same as its reasoning process. Trans-
parency of our approach facilitates spotting and
fixing erroneous cases.

2 Related Work

2.1 Neural Symbolic Systems
Gupta et al. (2019) introduce a neural module net-
work (NMN), which solves QA using different

modules by performing text span extraction and
arithmetic operations. Khot et al. (2021) propose
an NMN variant that decomposes a question into a
sequence of simpler ones answerable by different
task-specific models. Systematic question decom-
position has also been explored in (Talmor and Be-
rant, 2018; Min et al., 2019; Wolfson et al., 2020;
Zhang et al., 2023).

Although our framework shares some similar-
ities with this line of studies, there is a crucial
difference in that we keep both symbolic and neu-
ral representations coincide, whereas they use a
neural model to replace the non-differentiable sym-
bolic representation to be able to train end-to-end.
Furthermore, our main contribution is the use of H-
expressions and the answer backtracking procedure
for QA and not the question decomposition.

2.2 Chain-of-Thought Reasoning

A series of prior studies focus on generating expla-
nations, which can be viewed as reasoning chains.
The methods proposed in (Yavuz et al., 2022;
Latcinnik and Berant, 2020; Jhamtani and Clark,
2020) formulate the multi-hop QA as single se-
quence generation, which contains an answer along
with its reasoning path. Along this line, Large Lan-
guage Models (LLMs) have recently shown its ca-
pability to answer complex questions by producing
step-by-step reasoning chains, known as chains-of-
thought (CoT), when prompted with a few exam-
ples (Wang et al., 2022; Zhou et al., 2022; Wei et al.,
2022; Lyu et al., 2023) or even without any exam-
ple (Kojima et al., 2022; Kadavath et al., 2022).

Even though the generated reasoning path by
these methods may provide some explanation on
how the question being solved, there is no guar-
antee that the answer is indeed generated by the
predicted reasoning path. Furthermore, CoT reason-
ing paths are aimed at providing more context for
the LLMs to be able to locate the right answer. This
is different from our objective where our symbolic
representation gives a deterministic and hierarchi-
cal reasoning (execution) path to derive an answer.

3 Approach

We formulate textual question answering as the
task of answering a question q given the textual evi-
dence provided by a set of passages. We assume ac-
cess to a dataset of tuples {(qi, ai, Pi)}ni=1, where
ai is a text string that defines the correct answer to
question qi with Pi being the passage set.

4438



Question: 
When was the last time Duane Courtney’s team beat the winner 
of the 1894-95 FA Cup?

H-Parser

H-Expression: 
JOIN ( QA( When was the last time Ans#2 beat Ans#1? ) , 
UNION ( QA( What is member of sports team of Duan Courtney ), 
            QA( Who is winner of 1894-95 FA Cup ) ) )

JOIN

QA( When was the last 
time Ans#2 beat Ans#1? )

UNION

QA( What is member of sports 
team of Duan Courtney? )

QA( Who is winner of 
1894-95 FA Cup? )

Q1Q2

Q3

Figure 2: An overview of parsing with H-parser, which
involves translating the input question into an H-
expression, and subsequently reshaping it into a tree-
structure, facilitating the determination of the node’s
execution sequence.

In this work, we cast the task as question pars-
ing with hybrid execution. For a given question qi,
a question parser (H-parser) is tasked to generate
the corresponding H-expression li (Sec. 3.1). This
along with the supporting passage set Pi are then
given to the execution model (H-executor) to gen-
erate an answer (Sec. 3.2). The H-executor uses
a reader for simple question answering and exe-
cutes the symbolic operations based on answers in
a bottom-up manner to get the final prediction.

3.1 H-parser
To improve the compositional generalization, we
follow (Liu et al., 2022) to define H-expression as
a composition of primitives and operations.

H-expression Grammar We consider single-
hop questions as primitives, which are the atomic
units that form a complex question. We use opera-
tions to represent relations between primitives. We
consider eight types of operations: JOIN, UNION,
AND, COMP_=, COMP_>, COMP_<, SUB, and
ADD. Each is a binary operation that takes two
operands as input, written as OP [q2, q1], where
each of q1 and q2 can be a single-hop question or
result of another operation. In the execution step, q1
is executed first, then q2. The operations can be hi-
erarchically combined into more complex one, for
example, JOIN [q3, UNION [q2, q1]]. For a single-
hop question, its H-expression is the question itself.

We describe the operations in Table 1 with an

example. Specifically, the JOIN[q2(Ans#1), q1] op-
eration is used for a linear-chain reasoning type —
q1 is an independent question that can be answered
directly, while q2’s execution depends on q1’s an-
swer. In the execution step, the operations will be
executed in a sequence: first q1, then the answer of
q1 will be used to replace the placeholder (Ans#1)
in q2. The AND [q2, q1] and UNION [q2, q1] oper-
ations respectively return the common answers or
all of the answers for q2 and q1; see Figure 2 for
an example.

The COMP_= [q2, q1] operation is used to deter-
mine if the answers of q2 and q1 are equal and it
returns “Yes” or “No”. The COMP_< [q2,q1] and
COMP_> [q2, q1] operations respectively select the
question entity corresponding to the smaller or the
bigger answer of q2 and q1. Finally, the SUB and
ADD are numeric operations and perform subtrac-
tion and addition, respectively.

H-expression Generation The semantic pars-
ing process of queries over knowledge bases or
databases typically needs to consider the back-
ground context to match natural questions to their
corresponding logical forms with the specified
schema, which is a necessary condition to execute
in knowledge base (Ye et al., 2022) or table (Lin
et al., 2020). However, in textual QA, the ques-
tion parsing process should be context-independent
as we want the meaning of the original question
and the H-expression to be equivalent without any
additional information from the context.

Our parser is a Seq2Seq model that takes a
natural question q as input and generates its H-
expression l as output. Seq2seq formulations have
been successfully used for parsing tasks (Vinyals
et al., 2015). We use a T5 model (Raffel et al., 2020)
as the basis of our parser, as it demonstrates strong
performance on various text generation tasks. We
train the model by teacher forcing – the target H-
expression is generated token by token, and the
model is optimized using cross-entropy loss. At in-
ference time, we use beam search to decode the top-
k target H-expression in an auto-regressive manner.
It is easy to transform the nested H-expression to
a binary tree structure in a top-to-down manner,
where the primitives constitute the leaf nodes and
the internal nodes represent the deterministic sym-
bolic operations.
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Operation & Return type Description & Example
JOIN[ q2(Ans#1), q1]
Text span

q2’s execution depends on q1’s answer to replace the placeholder “Ans#1”. Finally returns q2’s answer.
Question: Where was the birth place of film The Iron Man director?
H-expression: JOIN[ Where is Ans#1’s place of birth?, Who is director of The Iron Man? ]
Return: New York

UNION[ q2, q1]
Dictionary

Execuates q2 and q1 simultaneously and returns a dictionary as {Ans#1: a1, Ans#2: a2}, where a1/2 is the answer of q1/2.
Question: Which state is Horndean located in and what is McDonaldization named after?
H-expression: UNION[ Which state is Horndean located in?, What is McDonaldization named after? ]
Return: {Ans#1:McDonald’s , Ans#2:England }

AND[ q2, q1]
Text spans

Execuates q2 and q1 simultaneously and returns intersection of q2 and q1’s answers.
Question: Which former member of the Pittsburgh Pirates was nicknamed “The Cobra”?
H-expression: AND[ Who is the former member of the Pittsburgh Pirates?, Who was nicknamed “The Cobra”? ]
Return: Dave Parker

COMP_=[ q2, q1 ]
Yes/No

Compare if the answers of q2 and q1 are equal.
Question: Are North Marion High School (Oregon) and Seoul High School both located in the same country?
H-expression: COMP_=[ Which is country of North Marion High School (Oregon)?, Which is country of Seoul High School? ]
Return: No

COMP_<[q2, q1]
COMP_>[q2, q1]
Main Entity in q2/q1

Compare the answers of q2 and q1 and return the main entity of q2 or q1.
Question: Which film was came out first, Blind Shaft or The Mask of Fu Manchu?
H-expression: COMP_<[ When is publication date of Blind Shaft?, When is publication date of The Mask of Fu Manchu? ]
Return: The Mask of Fu Manchu

SUB[ q2, q1 ]
Number

Subtract q2’s numeric answer from q1’s answer.
Question: How many years does Giuseppe Cesari live?
H-expression: SUB[ When does Giuseppe Cesari dead?, When does Giuseppe Cesari born? ]
Return: 72

ADD [ q2, q1 ]
Number

Add q2’s and q1’s numeric answers.
Question: How many siblings does Mary Shelley have?
H-expression: ADD[ How many sisters does Mary Shelley have?, How many brothers does Mary Shelley have? ]
Return: 4

Table 1: Operations defined in our H-expressions and its corresponding example of question, H-expression and
return; q2 and q1 are single-hop natural questions.

Q +

Plug-in Single-hop Reader

Ans

Answer: 
1 December 2010

JOIN

QA( When was the last 
time Ans#2 beat Ans#1? )

UNION

QA( What is member of sports 
team of Duane Courtney? )

QA( Who is winner of 
1894-95 FA Cup? )

QA( When was the last 
time Birminghan City 
beat Aston Villa? )

Ans#2: Birminghan City Ans#1: Aston Villa

Question: 
When was the last time Duane Courtney’s team beat the winner of the 
1894-95 FA Cup?

Figure 3: An overview of the H-executor. It involves
execution of the question node and utilization of a plug-
in neural reader to provide answer feedback for each
question. Subsequently, the deterministic symbolic inter-
preter executes the expression to yield the final answer.

3.2 H-executor

Unlike the execution in databases or knowledge
bases which is fully program-based, our execution
has both a neural component and a symbolic com-
ponent. All the primitives in the H-expression tree
are executed by a neural reader and the results are
aggregated by the symbolic rules expressed by the
operations in the internal nodes.

Specifically, the H-executor traverses from the
rightmost primitive, followed by its parent node

and the left branch recursively. This is similar to in-
order traversal (with opposite leaf order). As shown
in Figure 3, the question “who is winner of 1894-95
FA Cup” is the first primitive to be executed and
the single-hop reader is called to answer it, which
yields the answer “Aston Villa”. Then internal node
operation UNION is visited, which stores “Aston
Villa” as Ans#1. Then the left primitive “what is
member of sports team of Duane Courtney” is vis-
ited, and the single-hop reader is called again to
answer this. The reader yields “Birminghan City”,
which is stored as Ans#2. Operation JOIN is vis-
ited next, which replaces the placeholder Ans#1
and Ans#2 with the stored answer and produce a
new primitive “When was the last time Birminghan
City beat Aston Villa”. This resulting primitive is
answered by the single-hop reader, which predicts
the final answer “1 December 2010”.

Plug-in Reader Network The reader network
serves as a plug-in fasion that can be replaced with
any model. In our experiment, we commence with
generative encoder-decoder model, FiD (Izacard
and Grave, 2021) and further extend it by exper-
imenting with various versions of FiD, each pos-
sessing distinct input and output configurations.
Each supporting passage is concatenated with the
question, and processed independently from other
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passages by the encoder, which makes it efficient.
The decoder attends to the concatenation of all en-
coded representations from the encoder. To distin-
guish different components, we add the special to-
kens question:, title: and context: be-
fore the question, title and text of each passage.
Note that the reader network is detachable and may
be replaced by any generative or extractive reader
model at our choice.

Our assumption is that the single-hop questions
are easier to answer and it is feasible to have a
global single-hop reader, which can be adapted to
an unseen data. To reduce training cost, we first
train a T5-large in the reading comprehension set-
ting, with one positive passage. For this, we lever-
age the large-scale QA pairs from Probably-Asked
Questions/PAQ (Lewis et al., 2021). Then we use
the trained T5-large model to initialize the FiD
model and further train the model using training
sets of TriviaQA (Joshi et al., 2017), SQuAD (Ra-
jpurkar et al., 2016), BoolQ (Clark et al., 2019) in
a multiple passage setting (with one positive pas-
sage and nineteen negative passages). We believe,
our model, being trained on multiple datasets, can
be used to unseen questions in a zero-shot manner.
It can also boost the performance when used to
initialize in a fine-tuning setting.

4 Experiments

We conduct experiments on two multi-hop multi-
passage textual QA datasets, MuSiQue and
2Wikimulti-hopQA, which contain complex ques-
tions and the corresponding decomposed simple
questions for the supervised setting. We also test
models’ generalization on the few shot setting us-
ing 5-20% of the training data. In real scenarios,
neither the decomposed questions nor the complex-
ity of questions is known. Therefore, we also in-
vestigate our models under the zero-shot setting on
both complex (HotpotQA) and simple (NQ) QA
datasets. In the end, we carry out a case study to
show the interpretability of our framework.

4.1 Supervised Experiments
4.1.1 Datasets
We describe each dataset and then explain how to
convert the original data into the training format
for both question parsing and execution.

MuSiQue (Trivedi et al., 2022b) contains multi-
hop reasoning questions with different number of
hops and question entities which can be asked from

20 supporting passages. It contains 19,938, 2,417,
and 2,459 instances for train, dev and test sets,
respectively, with 2hop1 (meaning questions with
2 hops and 1 entity), 3hop1, 4hop1, 3hop2, 4hop2
and 4hop3 reasoning types.

2Wikimulti-hopQA (2WikiQA) (Ho et al.,
2020) requires models to read and perform
multi-hop reasoning over 10 passages. Three
types of reasoning are included, namely compar-
ison, bridge, and bridge-comparison. It contains
167,454, 12,576, and 12,576 for train, dev and test,
respectively.

For each complex question, MuSiQue provides
a reasoning type and the decomposed single ques-
tions with their answers. We use JOIN operation to
combine linear-chain type questions together and
use AND to combine intersection type questions.
In 2WikiQA, we use evidences (in form of triplet
<subject, relation, object>) and reasoning type to
create the H-expression. We first convert the subject
and relation into natural questions using templates
and the object is the answer of this natural question.
Then, we use the operation to combine those single-
hop questions into an H-expression based on their
reasoning type. In Table 1, we show a few exam-
ples of complex questions and their corresponding
H-expressions; see Appendix A for more examples.

Evaluation Metrics. We use official evaluation
scripts for each dataset with two metrics to measure
answer exact match accuracy (EM) and answer
token-level accuracy (F1).

4.1.2 Baselines
Press et al. (2022) and Trivedi et al. (2022a) make
use of large language models like GPT-3 (Brown
et al., 2020). They iteratively generate an answer-
able question, use retrieval to get supporting pas-
sages, and answer the question based on the re-
trieved passages. SA (Trivedi et al., 2022b) is the
state-of-the-art model on the MuSiQue dataset,
which first uses a RoBERTa based (Liu et al., 2019)
ranking model to rank supporting passages and
then uses an End2End reader model to answer com-
plex questions using the top-k ranked passages.
EX(SA) (Trivedi et al., 2022b) decomposes a com-
plex question into single-hop questions and builds
a directed acyclic graph (DAG) for each single-
hop reader (SA) to memorize the answer flow. NA-
Reviewer (Fu et al., 2022) proposes a reviewer
model that can fix the error prediction from incor-
rect evidence. We include FiD (Izacard and Grave,
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MuSiQue 2WikiQA
EM F1 EM F1

Large LM Self-ask + Search (Press et al., 2022) 15.2 - 40.1 -
IRCoT (Trivedi et al., 2022a) - 35.5 - 65.2

SOTA
SA (Trivedi et al., 2022b) - 52.3 - 79.5
EX(SA) (Trivedi et al., 2022b) - 49.0 - 71.2
NA-Reviewer (Fu et al., 2022) - - 76.9 82.3

End2End

FiD 37.6 45.3 76.9 80.8
FiD+PT 40.0 48.8 78.8 83.0
FiDLF−>Ans 36.1 44.8 76.9 80.5
FiDCQ−>LF+Ans 33.7 42.1 74.2 77.6

Ours HPE 42.9 50.1 80.1 84.5
HPE+PT 45.5 53.7 84.7 87.7

Table 2: Answer Exact match (EM) and F1 scores on dev/test split of MuSiQue and 2WikiQA. PT represents
pre-training on reader network. The methods in Large LM and SOTA are reported from the previous work. The
methods in End2End is implemented by us following the training details in the paper.

2021) as the baseline End2End reader model. In the
original FiD, it takes the question as well as the sup-
porting passages as input, and generates the answer
as a sequence of tokens. Moreover, we propose two
variants of FiD to compare the influence using H-
expression: one uses H-expressions as the input,
instead of original questions, to generate answers
(referred to as FiDLF−>Ans), and the other uses
questions as input to generate both H-expressions
and answers (referred to as FiDCQ−>LF+Ans).

4.1.3 Implementation Details
We describe fine-tuning details for question parsing
and single-hop reader models in Appendix B.

Pre-training (PT) To pretrain the single-hop
reader, we use a subset of PAQ (Lewis et al., 2021)
consisting of 20M pairs, which is generated based
on named entities and the greedy decoded top-1 se-
quence with the beam size of 4. We train a T5-large
model for 400k steps, with one gold passage, maxi-
mum length of 256 and batch size of 64. Then we
initialize FiD with the PAQ pre-trained model and
further train it for 40k steps, with batch size of 8
and 20 supporting passages, on the combined train-
ing sets of TriviaQA (Joshi et al., 2017), SQuAD
(Rajpurkar et al., 2016) and BoolQ (Clark et al.,
2019). Our code is based on Huggingface Trans-
formers (Wolf et al., 2019). All the experiments are
conducted on a cloud instance with eight NVIDIA
A100 GPUs (40GB).

4.1.4 Fine-tuning Results
We present our main results on MuSiQue and 2Wik-
iQA in Table 2. We observe that Self-ask and

IRCoT, which are based on large language mod-
els and search engines, underperform most super-
vised models. This indicates that multi-hop multi-
paragraph question answering is a difficult task,
and there still has an evident gap between super-
vised small models and large models with few-shot
or zero-shot.

Moreover, our framework outperforms the pre-
vious SOTA methods on both datasets. We notice
that the baseline EX(SA) underperforms SA by
a large margin, but our HPE outperforms FiD by
5.3% on MuSiQue EM. This shows the difficulty
to build a good H-expression and executor. More-
over, EX(SA) gets a bad performance on 2Wik-
iQA, which shows that using DAG to represent the
logical relationship between sub-questions is not
adaptable to any reasoning type. Compared with
the End2End baseline (FiD) that our model is built
on, our framework with an explicit representation
performs much better.

As for FiDLF−>Ans and FiDCQ−>LF+Ans, using
H-expression as the input or output of the Seq2Seq
model, expecting this facilitates the model to cap-
ture the decomposition and reasoning path in an
implicit way, does not help the model. This sug-
gests that only the proposed execution method can
help the model capture the logical reasoning repre-
sented in the H-expression.

4.2 Few-shot Results

To illustrate the generalization ability of our frame-
work, we show the analysis of our method under
the few-shot setting in Table 3. We run three ex-
periments, random sampling 5, 10, and 20 percent-
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Method MuSiQue 2WikiQA
EM F1 EM F1

5% FiD 29.7 38.7 55.6 60.6
HPEFiD 34.6 42.3 67.0 72.3

10% FiD 31.2 40.5 58.3 63.0
HPEFiD 35.2 43.3 68.3 73.8

20% FiD 31.9 41.0 69.1 73.5
HPEFiD 36.4 44.2 73.0 78.0

Table 3: Few-shot setting Exact match (EM) and F1
scores on test/dev split of the MuSiQue and 2WikiQA.

age of the training data. We use the End2End FiD
model as the baseline, which inputs complex ques-
tions and generates the answers as token sequences.
In 5% of MuSiQue dataset, it shows that our frame-
work obtains a 4.9% absolute gain on MuSiQue
EM score in comparison to the FiD model. More-
over, with 20% MuSiQue training data, our frame-
work achieves 36.4 EM, which is a comparable
performance with FiD trained on full-data (37.6
EM). Similar trends are also observed on 2Wik-
iQA. In summary, the overall experiment shows
that our model has better generalization ability than
the End2End model, which is obtained by decom-
posing complex questions into single-hop ones and
representing in H-expressions.

4.3 Zero-shot Results

We expect the H-parser to work well on questions
of varying levels of complexity. To verify this, we
test the models on two benchmarks HotpotQA and
Natural Questions without any tuning. The former
does not contain any decomposed questions, and
the latter contains common real-world questions.

4.3.1 Dataset
HotpotQA we use the distractor setting (Yang
et al., 2018) that a model needs to answer each ques-
tion given 10 passages. To produce correct answer
for a question, the dataset requires the model to
reason across two passages. Note that two main rea-
soning types bridge and comparison in HotpotQA
are included in MuSiQue and 2WikiQA.

Natural Questions (NQ) (Kwiatkowski et al.,
2019) contains open-domain questions collected
from Google search queries. Usually, NQ is treated
as a simple question dataset and previous works
usually use End2End multi-passage reader like FiD.
However, we argue that certain questions in NQ
involve multi-hop reasoning and the model perfor-
mance can be improved by decomposing them into

HotpotQA
EM F1

Standard (Yao et al., 2022) 28.7 -
CoT (Wei et al., 2022) 29.4 -
FiD (PT) 32.5 44.7
HPE(PT) 32.6 43.4
Union HPE+FiD 47.2 55.1
Supervised SoTA 72.3 84.9

Table 4: Zero-shot performance on HotpotQA. Standard
and CoT are prompted method using large language
model like GPT3 (Brown et al., 2020).

single-hop questions.

4.3.2 Global Question Parser
To seamlessly generate H-expressions on unseen
questions, we need a global question parser. This
question parser can understand the complexity of
the question, which means it can decompose a com-
plex question into several simple questions and
keep the simple question as is. To get a global
question parser, we train a pretrained generative
model T5 (Raffel et al., 2020) to convert questions
to H-expressions using MuSiQue and 2Wikimulti-
hopQA datasets. As the two datasets are not the
same size, we categorize the complex question
based on their reasoning type and sample the same
amount of data for each category. To endow the
model with the ability of understanding question
complexity, we also use the simple questions in
those datasets (the H-expression of a simple ques-
tion is itself). Moreover, we decouple the composi-
tion of complex H-expressions into a few of simple
H-expressions to ensure the coverage of all levels
of complexity.

4.3.3 Zero-Shot Results on HotpotQA
We show the HotpotQA results in Table 4. We use
FiD pre-trained on PAQ and TriviaQA, SQuAD
and BoolQ as our zero-shot reader. Our framework
outperforms both Standard and CoT, using prompt-
based large language models. This shows that with
the hybrid question parsing and execution frame-
work, a small language model is generalizable on
unseen questions. Compared with FiD (PT), we
get a comparable performance. But checking the
union of HPE and FiD, which takes the correct
predictions from both methods, we find 15% ab-
solute gain can be obtained. This shows that HPE
correctly answers around 15% of questions that
FiD predicts incorrectly, with the help of the ques-
tion decomposition and symbolic operation. On the
other hand, we conjecture that the reason that HPE
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wrongly predicts some questions is that the global
question parser fails to generate H-expression cor-
rectly. Hence, it is worth exploring how to design a
generalizable global question parser in future work.

4.3.4 Results on NQ
We use the global question parser to decompose
NQ question in a zero-shot manner. If a question is
recognized as single-hop reasoning and cannot be
further decomposed, the parser will keep the ques-
tion unchanged. We use the DPR model (Karpukhin
et al., 2020) to retrieve the Top-20 documents from
Wikipedia as the supporting documents. Among
the 8k dev set examples, 32 questions have been
decomposed into single-hop questions with the log-
ical operations and the rest are left as is. For ex-
ample, a question “when did the last survivor of
the titanic die” is converted into the H-expression
“JOIN [when did A1 die, who was the last person
to survive the titanic]”. The result in Table 5 shows
that HPE can handle questions of different com-
plexity levels and will not degenerate on simple
questions.

EM F1

FiD (FT) 51.4 56.2
HPE (FT) 51.7 56.3

Table 5: Answer exact match (EM) and F1 scores on
dev split of the simple QA NQ.

4.4 Ablation Study
Impact of H-parser We show the performance
of different H-parsers. Table 6 shows using T5-
large rather than T5-base, we can get around 2
to 4 percent performance improvement on both
datasets. Compared to the result using gold H-
expression, there is more room for improvement on
the MuSiQue dataset. This might also be the case
as the questions in MuSiQue are generally more
complex than 2WikiQA.

MuSiQue 2WikiQA
EM F1 EM F1

Gold 50.2 57.5 83.6 86.5
T5-base 39.8 46.5 78.9 82.3
T5-large 42.9 50.1 80.1 84.5

Table 6: Different question parsers and the gold H-
expression impact on Answer EM and F1 on MuSiQue
and 2WikiQA under same FiD as the single-hop reader.

Executability of H-parser We employ exe-
cutability as a metric to assess the quality of the
generated outputs. In Table 7, we showcase the rate
at which the T5-large model generates executable
logical forms within the Top-k decoded list. As
we can see, the Top-1 logical forms demonstrate a
high executable rate (96% - 98%), underscoring the
model’s expertise in producing syntactically correct
generations. As the beam size broadens, majority
of the Top-k logical forms prove to be executable,
greatly enhancing our inference process.

MuSiQue 2WikiQA
Top-1 95.6 98.3
Top-10 99.7 100.0

Table 7: The execution rate of the H-parser.

Impact of H-executor Our hybrid executor is
combined with symbolic operations and replace-
able reader network. We analyze the influence of
different reader networks to the final performance
and experiment with different versions of FiD. Sup-
portFiD generates both answers and the supporting
document titles. SelectFiD is a two-step method
that first uses a RoBERTa-based (Liu et al., 2019)
ranking model to predict the Top-5 relevant doc-
uments and feeds them into FiD to generate the
answer. From results in Table 8, we can see that
a better single-hop reader produces better perfor-
mance on MuSiQue. The improvement on single-
hop reader translates to a significant performance
boost on complex questions.

4.5 Case Study
In this section, we analyze the error cases. More-
over, we show the performance under each reason-
ing type on MuSiQue and 2WikiQA in Appendix
C. In the end, we show a case of how our model
reasons on a complex question in Appendix D.

Error Analysis There are two types of errors of
our model prediction. One is the error from the
semantic parsing of the H-expression. The other is
the error from the single-hop question answer on
H-execution stage. The percentage of the first type
of error is 67% and the second type is 33% on the
MuSiQue dataset.

Even though our model boasts a high execution
rate, as highlighted in the table, it is not without
challenges. In particular, the H-expression gener-
ated by our model might not correspond with the
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FiD(T5-base) FiD(T5-large) FiD(PT) SupportFiD(PT) SelectFiD(PT)
Ans EM/F1 Ans EM/F1 Ans EM/F1 Ans EM/F1 SP EM/F1 Ans EM/F1 SP EM/F1

MuSiQue SQ 64.9/70.7 68.5/74.9 73.3/79.5 72.3/78.5 78.6/92.2 76.8/82.6 73.8/90.2
CQ 34.9/44.6 42.9/50.1 45.5/53.7 43.8/53.4 41.7/72.1 45.9/54.8 39.2/70.5

Table 8: EM and F1 scores of Answer and Support Passage on MuSiQue using different reader models. SQ represents
simple question and CQ represents complex question.

reasoning type of the gold standard, thus failing
to yield the correct final answer. To illustrate, if
the gold H-expression is a 3-Hop while our model
produces a 2-Hop, it indicates a missed decompo-
sition into two distinct questions. As a result, the
necessary context to answer the question is absent.
Addressing this issue in an open-domain setting
(Liu et al., 2021) could enhance the likelihood of
accurately responding to more intricate questions.

As the number of hops increases, our model
might face exposure bias (Bengio et al., 2015),
where an error in one step can affect the final an-
swer. However, once we identify the error’s source,
we can correct it, whether it’s an incorrect H-
expression or a single-hop answer at H-execution
stage. This exposure bias can also be mitigated
using a beam search (Wiseman and Rush, 2016),
generating multiple answers at each step and select-
ing the highest-scoring one.

5 Conclusion

We propose HPE for answering complex questions
over text, which combines the strengths of neural
network approaches and symbolic approaches. We
parse the question into H-expressions followed by
the hybrid execution to get the final answer. Our
extensive empirical results demonstrate that HPE
has a strong performance on various datasets un-
der supervised, few-shot, and zero-shot settings.
Moreover, our model has a strong interpretability
exposing its underlying reasoning process, which
facilitates understanding and possibly fixing its er-
rors. By replacing our text reader with KB or Table
based neural network, our framework can be ex-
tended to solve KB and Table QA.
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Limitations

We acknowledge that our work could have the
following limitations:

• Even if the defined H-expression can be used
on various reasoning types and different text
question answering datasets, it is not mature to
be used to any type of reasoning. When the new
reasoning type comes, we need to retrain the
question parser. To solve the new reasoning type
question, we plan to take advantage of in-context
learning in a large language model to generate
H-expression as future work. It’s worth mentioning
that our executor can be easily adapted to new
reasoning types by adding new symbolic rules
and the reader network doesn’t need to be retrained.

• As mentioned in the error analysis section, the
bottom-up question answering process could
suffer from exposure bias since the next step
question answering may depend on the previous
predicted answers. To deal with this limitation, we
anticipate that generating multiple answers using
beam search in each step may greatly solve this
issue. Since predicted candidates by current reader
models have a strong lexical overlap, general beam
search needs to be revised to provide a sufficient
coverage of semantic meanings. We leave it for
future work.
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A H-expression Examples of Musique
and 2WikiQA

In table 9 and 10, we show the H-expression exam-
ples and parsing tree under each reasoning type of
Musique and 2WikiQA.

B Supervised Training Details

To train the question parser, we initiate H-parser
using T5-large model. We trained it with batch
size of 32 with a learning rate of 3e-5 for 20
epochs on both MuSiQue and 2WikiQA. We se-
lected the model weight based on evaluating the
H-expression exact match. We base our reader net-
work FiD on T5-large. We use 20 passages with
maximum length of 256 tokens for input blocks
on MuSiQue dataset and use 10 passages with 356
tokens as text length on the 2WikiQA dataset. We
trained the reader model with a batch size of 8 with
a learning rate of 5e-4 for 40k steps.

C Performance of each Different
Reasoning Type

We represent the Answer F1 performance under
different reasoning types on both MuSiQue and
2WikiQA in Figure 5. Our hybrid question parsing
and execution model performs significantly better
than directly getting the answer model in both QA
showing that the advantage of delegating seman-
tic parsing to solve complex textual questions. In
MuSiQue, for the relevant simple reasoning types
(2hop, 3hop1), our model outperform FiD by a
great margin. For complex reasoning types (3hop2,
4hop1, 4hop2 and 4hop3), our model gets lower
performance compared with the simple reasoning
types because the exposure bias issue becomes
worse with the step of reasoning increase. But it
still has a equivalent or better perform comparing
End-to-End FiD. In 2WikiQA, our model performs
best on all four reasoning type. Especially on the
most complex type bridge comparison, our frame-
work greatly outperform, which shows using deter-
ministic symbolic representation is more robust to
produce a correct answer.

D A case study of how HPE reasoning

In Figure 4, we show an example that FiD pre-
dicts a wrong answer but our model correctly pre-
dicts. Given a complex question, our framework

first parses the complex question into H-expression.
Then hybrid executor will convert the binary tree
Complex Question: When did the party who holds the majority in the House of 
Representatives, take control of the political body that the President calls on for 
support in his USAF appointments?
End2End predicted answer: 1931 

JOIN

Q3:When did A2 take 
control of the A1?

UNOIN

Q2: Upon whom does the 
president call on for support in 
his appointments to the USAF?

Q1: Who hold the majority in 
the house of representatives?

Q1 + A1: the 
Republicans 

A2: SenateQ2 +

A3: January 2015Q3’ +

Figure 4: 3hop2-type MuSiQue question example and
how our framework finds the final answer.

from the H-expression, where operation and natu-
ral sub-question as its nodes. H-executor parses the
binary tree from the rightmost left node to the left
and upper layer with considering the operation.

At each question node, the reader neural network
will take sub-questions and multiple paragraphs as
input to generate the sub-answers. We store the
sub-answer in memory for later substitution of the
placeholder. For example, Q3 will be rewritten in
A1 with the answer of Q1 (the Republicans) and A2
with the answer of Q2 (Senate) as the new question
Q3’ “when did Senate take control of the Republi-
cans”. The final answer is obtained by answering
Q3’.

Figure 5: Answer F1 score on each reasoning type on
MuSiQue and 2WikiQA.
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Type: 2-Hop

Question: Who is the deputy prime minister of the country that encompasses Inagua National Park?

H-expression: JOIN [ Who is the deputy prime minister of the Ans#1 , What is country of Inagua National Park ]

Tree:
JOIN

Who is the deputy prime minister of the Ans#1 What is country of Inagua National Park

Type: 3-Hop 1-Entity

Question: When did the greek orthodox church split from the religious institution located in the city where the creator of The Last Judgment died?

H-expression: JOIN [ When did the greek orthodox church split from Ans#2? , JOIN [ In what city did Ans#1 die? , Who is creator of The Last Judgment ] ]

Tree:
JOIN

When did the greek orthodox church split from Ans#2 JOIN

In what city did Ans#1 die? Who is creator of The Last Judgment

Type: 3-Hop 2-Entity

Question: When did the capitol of Virginia move from Robert Banks’ birthplace to the town WTVR-FM is licensed in?

H-expression: JOIN [ When did the capital of virginia moved from Ans#2 to Ans#1 , UNION [ What town is WTVR-FM liscensed in? , What is place of birth of Robert Banks ] ]

Tree:
JOIN

When did the capital of virginia moved from Ans#2 to Ans#1 UNION

What town is WTVR-FM liscensed in? What is place of birth of Robert Banks

Type: 4-Hop 1-Entity

Question: When did the civil war start in the country whose capitol was home to the man after whom Korolyov was named?

H-expression: JOIN [ When did the civil war in Ans#3 start , JOIN [ Ans#2 is the capital city of which country , JOIN [ What is residence of Ans#1 , Korolyov is named after What ] ] ]

Tree:
JOIN

When did the civil war in Ans#3 start JOIN

Ans#2 is the capital city of which country JOIN

What is residence of Ans#1 Korolyov is named after What

Type: 4-Hop 3-Entity

Question: When did Muslim armies invade the country containing Al-Mastumah and the country of the man who followed the reign of Al-Mu’tamid?

H-expression: JOIN [ When did muslim armies invade Ans#3 and Ans#2 , UNION [ What is country of Al-Mastumah , JOIN [ What is country of citizenship of Ans#1 , Al-Mu’tamid is followed by What ] ] ]

Tree:
JOIN

When did muslim armies invade Ans#3 and Ans#2 UNION

What is country of Al-Mastumah JOIN

What is country of citizenship of Ans#1 Al-Mu’tamid is followed by What

Table 9: Examples of H-expression and parsing tree under each reasoning types in MuSiQue.
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Type: Comparision

Question: Which film was released first, Who Is Kissing Me? or Bush Christmas?

H-expression: COMP < [ What is publication date of And Who Is Kissing Me? , What is publication date of Bush Christmas]

Tree:
COMP_<

What is publication date of Who Is Kissing Me? What is publication date of Bush Christmas?

Type: Bridge Comparison

Question: Which film has the director who was born later, Sleepers East or Leaving Fear Behind?

H-expression: COMP > [ JOIN [ When is date of birth of #3 , Who is director of Sleepers East ] , JOIN [ When is date of birth of #1 , Who is director of Leaving Fear Behind ] ]

Tree:
COMP_>

JOIN

When is date of birth of #3 Who is director of Sleepers East

JOIN

When is date of birth of #1 Who is director of Leaving Fear Behind

Type: Inference

Question: Who is the sibling-in-law of Favila Of Asturias?

H-expression: JOIN [ Who is spouse of #1 , Who is sibling of Favila Of Asturias ]

Tree:
JOIN

Who is spouse of #1 Who is sibling of Favila Of Asturias

Type: Compositional

Question: Where did the founder of University Of Piura die?

H-expression: JOIN [ Where is #1’s place of death , The Universidad De Piura is founded by Who ]

Tree:
JOIN

Where is #1’s place of death The Universidad De Piura is founded by Who

Table 10: Examples of H-expression and parsing tree under each reasoning types in 2WikiQA.
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