@inproceedings{schouten-etal-2023-reasoning,
title = "Reasoning about Ambiguous Definite Descriptions",
author = "Schouten, Stefan and
Bloem, Peter and
Markov, Ilia and
Vossen, Piek",
editor = "Bouamor, Houda and
Pino, Juan and
Bali, Kalika",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2023",
month = dec,
year = "2023",
address = "Singapore",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.findings-emnlp.296",
doi = "10.18653/v1/2023.findings-emnlp.296",
pages = "4479--4484",
abstract = "Natural language reasoning plays an increasingly important role in improving language models{'} ability to solve complex language understanding tasks. An interesting use case for reasoning is the resolution of context-dependent ambiguity. But no resources exist to evaluate how well Large Language Models can use explicit reasoning to resolve ambiguity in language. We propose to use ambiguous definite descriptions for this purpose and create and publish the first benchmark dataset consisting of such phrases. Our method includes all information required to resolve the ambiguity in the prompt, which means a model does not require anything but reasoning to do well. We find this to be a challenging task for recent LLMs. Code and data available at: https://github.com/sfschouten/exploiting-ambiguity",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="schouten-etal-2023-reasoning">
<titleInfo>
<title>Reasoning about Ambiguous Definite Descriptions</title>
</titleInfo>
<name type="personal">
<namePart type="given">Stefan</namePart>
<namePart type="family">Schouten</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Peter</namePart>
<namePart type="family">Bloem</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ilia</namePart>
<namePart type="family">Markov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Piek</namePart>
<namePart type="family">Vossen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: EMNLP 2023</title>
</titleInfo>
<name type="personal">
<namePart type="given">Houda</namePart>
<namePart type="family">Bouamor</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Juan</namePart>
<namePart type="family">Pino</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kalika</namePart>
<namePart type="family">Bali</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Singapore</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Natural language reasoning plays an increasingly important role in improving language models’ ability to solve complex language understanding tasks. An interesting use case for reasoning is the resolution of context-dependent ambiguity. But no resources exist to evaluate how well Large Language Models can use explicit reasoning to resolve ambiguity in language. We propose to use ambiguous definite descriptions for this purpose and create and publish the first benchmark dataset consisting of such phrases. Our method includes all information required to resolve the ambiguity in the prompt, which means a model does not require anything but reasoning to do well. We find this to be a challenging task for recent LLMs. Code and data available at: https://github.com/sfschouten/exploiting-ambiguity</abstract>
<identifier type="citekey">schouten-etal-2023-reasoning</identifier>
<identifier type="doi">10.18653/v1/2023.findings-emnlp.296</identifier>
<location>
<url>https://aclanthology.org/2023.findings-emnlp.296</url>
</location>
<part>
<date>2023-12</date>
<extent unit="page">
<start>4479</start>
<end>4484</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Reasoning about Ambiguous Definite Descriptions
%A Schouten, Stefan
%A Bloem, Peter
%A Markov, Ilia
%A Vossen, Piek
%Y Bouamor, Houda
%Y Pino, Juan
%Y Bali, Kalika
%S Findings of the Association for Computational Linguistics: EMNLP 2023
%D 2023
%8 December
%I Association for Computational Linguistics
%C Singapore
%F schouten-etal-2023-reasoning
%X Natural language reasoning plays an increasingly important role in improving language models’ ability to solve complex language understanding tasks. An interesting use case for reasoning is the resolution of context-dependent ambiguity. But no resources exist to evaluate how well Large Language Models can use explicit reasoning to resolve ambiguity in language. We propose to use ambiguous definite descriptions for this purpose and create and publish the first benchmark dataset consisting of such phrases. Our method includes all information required to resolve the ambiguity in the prompt, which means a model does not require anything but reasoning to do well. We find this to be a challenging task for recent LLMs. Code and data available at: https://github.com/sfschouten/exploiting-ambiguity
%R 10.18653/v1/2023.findings-emnlp.296
%U https://aclanthology.org/2023.findings-emnlp.296
%U https://doi.org/10.18653/v1/2023.findings-emnlp.296
%P 4479-4484
Markdown (Informal)
[Reasoning about Ambiguous Definite Descriptions](https://aclanthology.org/2023.findings-emnlp.296) (Schouten et al., Findings 2023)
ACL
- Stefan Schouten, Peter Bloem, Ilia Markov, and Piek Vossen. 2023. Reasoning about Ambiguous Definite Descriptions. In Findings of the Association for Computational Linguistics: EMNLP 2023, pages 4479–4484, Singapore. Association for Computational Linguistics.