Text-guided 3D Human Generation from 2D Collections

Tsu-Jui Fu, Wenhan Xiong, Yixin Nie, Jingyu Liu, Barlas Oguz, William Wang


Abstract
3D human modeling has been widely used for engaging interaction in gaming, film, and animation. The customization of these characters is crucial for creativity and scalability, which highlights the importance of controllability. In this work, we introduce Text-guided 3D Human Generation (T3H), where a model is to generate a 3D human, guided by the fashion description. There are two goals: 1) the 3D human should render articulately, and 2) its outfit is controlled by the given text. To address this T3H task, we propose Compositional Cross-modal Human (CCH). CCH adopts cross-modal attention to fuse compositional human rendering with the extracted fashion semantics. Each human body part perceives relevant textual guidance as its visual patterns. We incorporate the human prior and semantic discrimination to enhance 3D geometry transformation and fine-grained consistency, enabling it to learn from 2D collections for data efficiency. We conduct evaluations on DeepFashion and SHHQ with diverse fashion attributes covering the shape, fabric, and color of upper and lower clothing. Extensive experiments demonstrate that CCH achieves superior results for T3H with high efficiency.
Anthology ID:
2023.findings-emnlp.298
Volume:
Findings of the Association for Computational Linguistics: EMNLP 2023
Month:
December
Year:
2023
Address:
Singapore
Editors:
Houda Bouamor, Juan Pino, Kalika Bali
Venue:
Findings
SIG:
Publisher:
Association for Computational Linguistics
Note:
Pages:
4508–4520
Language:
URL:
https://aclanthology.org/2023.findings-emnlp.298
DOI:
10.18653/v1/2023.findings-emnlp.298
Bibkey:
Cite (ACL):
Tsu-Jui Fu, Wenhan Xiong, Yixin Nie, Jingyu Liu, Barlas Oguz, and William Wang. 2023. Text-guided 3D Human Generation from 2D Collections. In Findings of the Association for Computational Linguistics: EMNLP 2023, pages 4508–4520, Singapore. Association for Computational Linguistics.
Cite (Informal):
Text-guided 3D Human Generation from 2D Collections (Fu et al., Findings 2023)
Copy Citation:
PDF:
https://aclanthology.org/2023.findings-emnlp.298.pdf