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Abstract

Recent studies have shown that many natural
language understanding and reasoning datasets
contain statistical cues that can be exploited
by NLP models, resulting in an overestimation
of their capabilities. Existing methods, such
as “hypothesis-only” tests and CheckList, are
limited in identifying these cues and evaluating
model weaknesses. We introduce ICQ (I-See-
Cue), a lightweight, general statistical profil-
ing framework that automatically identifies po-
tential biases in multiple-choice NLU datasets
without requiring additional test cases. ICQ
assesses the extent to which models exploit
these biases through black-box testing, address-
ing the limitations of current methods. In this
work, we conduct a comprehensive evaluation
of statistical biases in 10 popular NLU datasets
and 4 models, confirming prior findings, re-
vealing new insights, and offering an online
demonstration system to encourage users to
assess their own datasets and models. Further-
more, we present a case study on investigating
ChatGPT’s bias, providing valuable recommen-
dations for practical applications.

1 Introduction

Deep neural models have made remarkable strides
in a broad spectrum of natural language understand-
ing (NLU) tasks (Bowman et al., 2015; Wang et al.,
2018; Mostafazadeh et al., 2016; Roemmele et al.,
2011; Zellers et al., 2018). These tasks often em-
ploy a multiple-choice framework, as illustrated in
Example 1. However, the inherent sensitivity of
these models to minute variations calls for a robust
and precise evaluation mechanism (Jurafsky et al.,
2020).

Example 1 Natural language inference in the
SNLI dataset, with the correct answer bolded.

Premise: A swimmer playing in the surf watches
a low flying airplane headed inland.

∗The corresponding author.

Hypothesis: Someone is swimming in the sea.

Label: a) Entailment. b) Contradiction. c) Neu-
tral.

In tasks akin to Example 1, humans typically rely
on the logical relationship between the premise and
hypothesis. Contrarily, some NLP models might
bypass this logical reasoning, focusing instead on
the biases embedded within the dataset and, more
specifically, within the hypotheses (Naik et al.,
2018; Schuster et al., 2019). These biases—such
as sentiment or shallow n-grams—could provide
misleading cues for correct predictions.

We refer to these biases as “artificial spurious
cues” when they pervade both the training and test
datasets, maintaining a similar distribution over
predictions. An example of such a cue is a model’s
disproportionate dependence on the word “some-
one” in Example 1. These cues, when absent or
altered, can significantly impair a model’s perfor-
mance, underlining the importance of identifying
them to enhance model robustness in the future.

Training Data

Distribution of a certain pattern

Possible distribution

Test Data not a cue

 a cue

Label1 Label2

(1)

not a cue

(2)

(3)

Figure 1: Example of a cue.

To tackle the issue of cues, it’s crucial to distin-
guish between cues embedded in the dataset and
those learned by the model. Conventional bias
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detection and mitigation tools, such as the AI Fair-
ness 360 toolkit (Bellamy et al., 2018), primarily
target dataset biases, inadequately addressing those
learned by models during training.

While existing methods like “hypothesis-only”
tests and CheckList can uncover model vulnera-
bilities, they’re not expressly designed to identify
model-learned cues. “Hypothesis-only” tests can
highlight dataset issues where the hypothesis alone
can provide a correct answer but fail to realisti-
cally depict the model’s capabilities as they don’t
evaluate the model using the full data context used
during both training and prediction.

Drawing from the tenets of black-box testing in
software engineering, CheckList scrutinizes model
weaknesses without detailed knowledge of the
model’s internal architecture. It achieves this by de-
livering additional stress test cases premised on pre-
defined linguistic features. However, CheckList’s
dependence on meticulously designed templates
limits its scope, and it also falls short of illuminat-
ing the knowledge the model has actually gleaned
from the data.

To address these limitations, we introduce ICQ
(“I-see-cue”), a resilient statistical analysis frame-
work 1 engineered to identify model-learned cues.
Diverging from traditional methods, ICQ identifies
biases in multiple-choice NLU datasets without ne-
cessitating additional test cases. Employing black-
box testing, ICQ assesses how models utilize these
biases, delivering a comprehensive understanding
of the bias in NLU tasks.

We authenticate ICQ’s efficacy by deploying it
on various NLU datasets to probe potential cues
learned by models during training. ICQ facilitates
an in-depth understanding of how models like Chat-
GPT 2 learn potential cues, and it offers illustrative
examples to guide the selection of suitable prompts,
providing invaluable guidance for model optimiza-
tion.

In summary, this paper contributes the following:

• We unveil ICQ, a lightweight yet potent
method for identifying statistical biases and
cues in NLU datasets, proposing simple and
efficient tests to quantitatively and visually
evaluate whether a model leverages spurious
cues in its predictions.

1The code and dataset are available at https://
github.com/flora336/icq

2https://chat.openai.com/

• We execute a comprehensive evaluation of sta-
tistical bias issues across ten popular NLU
datasets and four models, corroborating previ-
ous findings and unveiling new insights. We
also offer an online demonstration system to
showcase the results and invite users to evalu-
ate their own datasets and models.

• Through a case study, we delve into how Chat-
GPT learns potential biases, offering valu-
able recommendations for its practical appli-
cations.

2 Preliminary

2.1 Task Definition

We define an instance x of an NLU task dataset X
as

x = (p, h, l) ∈ X, (1)

where p is the context against which to do the rea-
soning (p corresponds to “premise” in Example 1);
h is the hypothesis given the context p; l ∈ L is
the label that depicts the type of relation between
p and h. The size of the relation set L varies with
tasks.

2.2 Linguistic Features

As demonstrated in previous work (Naik et al.,
2018; Jurafsky et al., 2020), we consider the fol-
lowing linguistic features:

Word: The existence of a specific word in the
premise or hypothesis of a dataset instance.

Sentiment: The sentiment value of an instance,
calculated as the sum of sentiment polarities of
individual words.

Tense: The tense feature (past, present, or future)
of an instance, determined by the POS tag of the
root verb.

Negation: The existence of negative words
(e.g.,“no”, “not”, or“never”) in an instance, deter-
mined by dependency parsing.

Overlap: The existence of at least one word (ex-
cluding stop words) that occurs in both the premise
and hypothesis.

NER: The presence of named entities (e.g., PER,
ORG, LOC, TIME, or CARDINAL) in an instance,
detected using the NLTK NER toolkit.

Typos: The presence of at least one typo in an in-
stance, identified using a pretrained spelling model.

For multiple-choice datasets, all features except
Overlap are applied exclusively to hypotheses.
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3 Approach

The ICQ framework, depicted in Figure 2, consists
of three phases: data extraction, cue discovery, and
model probing. In the data extraction phase, in-
stances containing a specific linguistic feature f
are extracted from the dataset. The cue discovery
phase identifies potential cues among pre-defined
features. Finally, the model probing phase conducts
two tests: the “accuracy test” and “distribution test”.
We will discuss these phases in more detail below.

Figure 2: ICQ Workflow. 1⃝: data extraction phase;
2⃝: cue discovery phase; 3⃝: model probing phase.
f=a specific feature, R=training data, S=test data,
Rf=extracted training data, Sf=extracted test data,
Snf=remaining test data without feature f , Sf=flatten
test data, M=a specific model.

3.1 Data Extraction Phase
After defining the linguistic features, our system’s
fundamental step is constructing a data extractor
for each feature value f . An extractor processes a
dataset and retrieves a set of instances associated
with the specified feature value. More specifically,
for a specific feature, if an instance contains that
feature, then that instance will be singled out as a
part of the subset bearing that feature.

3.2 Cue Discovery Phase
For each feature f , we apply its extractor to both
the training and test data of dataset X , denoted
as R and S in Figure 2. This results in clustered
subsets of training instances (Rf ) and test instances
(Sf ). A feature is considered a possible cue for a
dataset only if it is present in both the training and
test data.

The bias of the label distribution for an extracted
set is computed using the mean squared error

(MSE) and Jensen-Shannon Divergence (JSD) (Lin,
1991). The cueness score indicates the extent to
which dataset X is biased against a feature f .

MSE(F ) =
1

|L|
∑

i

(yi − yi)
2 (2)

Here, yi represents the number of instances with
label li in the extracted dataset F , and yi is the
mean number of instances for each label. A larger
MSE(F ) implies a more pointed label distribution
and greater bias. If the extracted training set (Rf )
and the extracted test set (Sf ) exhibit similar biases,
the JSD between their distributions will be small:

JSD =
1

2
(Q(Rf ) ∥ A) +

1

2
(Q(Sf ) ∥ A) , (3)

where A = 1
2 (Q(Rf ) +Q(Sf )). The function

Q() denotes the label distribution of the extracted
dataset. We define the cueness score as:

cue(f,X) =
MSE(Rf )

exp(JSD(Rf , Sf ))
(4)

This cueness score represents the degree to
which a dataset X is biased against a feature f .

3.3 Model Probing Phase

In the previous section, we established that a
dataset X could be influenced by a cue f . However,
a model trained on this dataset may not necessarily
exploit that cue, as models depend on both data
and architecture. In this section, we introduce a
framework to probe any model instance trained on
the biased dataset, assessing if it utilizes cue f and
to what degree. We achieve this through two tests:
the accuracy test and the distribution test.

3.3.1 Accuracy Test
The accuracy test examines the model’s perfor-
mance on data subsets with and without specific
features. By comparing the model’s accuracy on
these two subsets, we can understand the model’s
generalization capabilities under different condi-
tions. If the model’s performance shows a notice-
able improvement on the subset containing a spe-
cific feature, it may suggest that the model has
exploited that feature for prediction.

In the accuracy test, we assess the prediction ac-
curacies of the model M on the extracted test set
(with feature f ) and on the remaining test set (with-
out feature f ), denoted as acc(Sf ) and acc(Snf ),
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respectively. The accuracy test computes the differ-
ence between these two accuracies:

∆Acc(f) = acc(Sf )− acc(Snf ) (5)

A positive or negative value of ∆Acc indicates
the direction of the model’s performance change
when comparing its accuracy on data subsets with
and without specific features. A positive value
suggests that the model exploits the feature for pre-
diction, while a negative value implies struggles to
generalize or detrimental sensitivity to the feature.

The magnitude of the absolute value of ∆Acc
reflects the degree to which a model’s performance
is affected by the presence or absence of specific
features in the data subsets. A larger absolute value
indicates a stronger reliance on or sensitivity to the
feature, whereas a smaller absolute value suggests
a more robust model that is less affected by the
presence or absence of the feature.

3.3.2 Distribution Test
The distribution test is a visual examination that
focuses on how changes in specific feature distri-
butions within datasets affect a model’s predictive
performance.

First, we create a “stress dataset” Sf by “flatten-
ing” the label distribution in Sf . We achieve this by
removing random instances from all labels except
for the one with the smallest number of instances,
stopping when a balance is reached. In other words,
we retain the minimum number of instances present
in each label, while randomly discarding the excess
instances. This approach effectively eliminates bias
in the extracted test set, and challenges the model.

Next, we apply the model to the stress test set
and obtain prediction results. We then compare
the label distribution of the prediction results on
the stress test set with the label distribution of the
extracted training data (Rf ). The rationale is that
if the extracted training data contains a cue, its
label distribution will be skewed towards a specific
label. If the model exploits this cue, it will prefer to
predict that label as much as possible, amplifying
the skewness of the distribution, despite the input
test set being neutralized. We aim to observe such
amplification in the output distribution to identify
the model’s weaknesses.

In summary, the accuracy test and distribution
test are related in terms of assessing a model’s
sensitivity to specific features, but they emphasize
different aspects. Distribution testing focuses on

the impact of feature distribution changes on model
performance, while accuracy testing evaluates the
model’s performance on data subsets with and with-
out specific features. By combining these two test-
ing methods, a model’s sensitivity to particular fea-
tures can be more comprehensively assessed. If
both tests determine that the model is sensitive to
a certain feature, we can have a higher degree of
confidence in this conclusion.

4 Evaluation

We first present the experimental setup, followed
by results on cue discovery, model probing, and
analysis. The entire framework is implemented in
an online demo.

4.1 Setup

We evaluate this framework on 10 popular NLR
datasets in Table 1 and 4 well-known models,
namely FASTText (FT) (Joulin et al., 2017), ESIM
(ES) (Chen et al., 2016), BERT (BT) (Devlin
et al., 2018) and RoBERTA (RB) (Liu et al., 2019)
on these datasets. All these datasets except for
SWAG (Zellers et al., 2018) and RECLOR (Yu
et al., 2020) are collected through crowdsourcing.
SWAG is generated from an LSTM-based language
model. Specifications of the datasets are listed in
Table 1.

Dataset Type Data Size Train/Test Human Acc

Ratio (%)

SNLI CLS 570K 56:1 80.0
QNLI CLS 11k 19:1 80.0
MNLI CLS 413k 40:1 80.0
ROC MCQ 3.9k 1:1 100.0
COPA MCQ 1k 1:1 100.0
SWAG MCQ 113k 4:1 88.0
RACE MCQ 100k 18:1 94.5
RECLOR MCQ 6k 9:1 63.0
ARCT MCQ 2k 3:1 79.8
ARCT_adv MCQ 4k 3:1 -

Table 1: 10 Datasets. Data size refers to the num-
ber of questions in each dataset. CLS=Classification.
MCQ=Multiple Choice Questions. By our definition,
k-way MCQs will be split into k instances in prepro-
cessing.

These datasets can mainly be classified into two
types of tasks. SNLI, QNLI, and MNLI (Williams
et al., 2018) are classification tasks, while
ROC, COPA (Roemmele et al., 2011), SWAG,
RACE (Lai et al., 2017), RECLOR, ARCT (Haber-
nal et al., 2017) and ARCT_adv (Schuster et al.,
2019) are multiple-choice reasoning tasks. Fea-
tures appearing a minimum of five times in training
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or testing sets are considered cues.

4.2 Cues in Datasets

In this section, we showcase the cues identified in
each dataset using the cueness metric, as described
in Section 3.

We first filter the training and test data for each
dataset using all the features defined in this paper.
The left half of Table 2 displays the top 5 cues dis-
covered for each of the 10 datasets, along with their
cueness scores. ARCT_adv, an adversarial dataset,
is intentionally well-balanced. Consequently, we
only found one cue, OVERLAP, with a very low
cueness score. This is unsurprising since OVER-
LAP is the only “second-order” feature in our list
of linguistic features that considers tokens in both
the premise and hypothesis, and likely evaded data
manipulation by the creator.

Mostly, the top 5 cues discovered are word fea-
tures. However, besides OVERLAP, we also see
NEGATION and TYPO appearing in the lists. In
fact, SENTIMENT and NER features would have
emerged if we expanded the list to the top 10. In-
terestingly, several features previously reported as
biased by other works, such as “not” and NEGA-
TION in ARCT, “no” in MNLI and SNLI, and “like”
in ROC, are also found. Particularly in MNLI, all
five discovered cues are related to negatively toned
words, suggesting significant human artifacts in
this dataset that can lead to model fragility.

Additionally, we observe that some word cues
are indicative of certain syntactic, semantic, or sen-
timent patterns in the questions. For example, “be-
cause” in SNLI implies a cause-effect structure;
“like” in ROC indicates positive sentiment; “proba-
bly” and “may” in RACE suggest uncertainty, and
so on. These features can serve as clues for revising
datasets.

4.3 Biases in Models

To investigate whether a model is affected by a
specific cue or feature in a dataset, we train four
models on their original training sets and evaluate
them using accuracy and distribution tests.

Accuracy Test: The results are presented in
Table 2. As mentioned in Section 3.3.1, a posi-
tive or negative ∆ value indicates the direction of
a model’s performance change when comparing
its accuracy on data subsets with and without spe-
cific features. The absolute value of ∆ reflects
the degree to which the model’s performance is

influenced by these features, with larger values sug-
gesting stronger reliance or sensitivity and smaller
values indicating a more robust model.

The bottom of Table 2 shows that, across all 10
datasets, the sum of the absolute values of ∆ fol-
lows the order: RoBERTA < BERT < ESIM <
FastText. This is consistent with earlier hypothesis-
only tests and the community’s common perception
of these popular models. However, examining indi-
vidual datasets and features reveals a more nuanced
situation. For instance, FastText tends to pick up
individual word cues rather than semantic cues,
while more complex models such as BERT and
RoBERTA appear more sensitive to structural fea-
tures like NEGATION and SENTIMENT, which
are actually classes of words. This is well explained
by FastText’s design, which focuses more on mod-
eling words than syntactic or semantic structures.

Interestingly, FastText exhibits a strong negative
correlation with TYPO. We speculate that FastText
might have been trained with a more orthodox vo-
cabulary, making it less tolerant of typos in the
text.
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Figure 3: Four test examples for distribution comparison
with 4 different models

Distribution Test: We highlight three interest-
ing findings in Figure 3. The bars for the four
models represent the distribution percentage based
on each predicted label. Rf denotes the extracted
training data distribution with a specific feature.
We observe that all models on the cue “no” in
MNLI achieve positive ∆ in Table 2, particularly
FastText. Consistent with the “Accuracy Test,” we
find that the prediction label distribution skewness
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Dataset Top Cues Cueness FT ES BT RB
% (∆) (∆) (∆) (∆)

SNLI

“sleeping” 13.95 30.3 6.81 5.34 4.87
“no” 13.33 18.09 3.32 2.05 2.6

“because” 9.24 18.89 4.88 5.61 4.31
“friend” 8.82 22.96 6.66 3.51 3.05
“movie” 7.73 16.64 0.06 9.47 -0.19

QNLI

“dioxide” 4.52 9.78 -0.06 4.97 10.56
“denver” 4.26 13.59 7.14 2.23 3.11

“kilometre” 4.24 4.85 6.43 4.67 2.55
“mile” 3.95 7.16 15.64 -1.65 -6.65

“newcastle” 3.8 3.44 12.0 0.89 -1.23

MNLI

“never” 10.4 29.15 26.41 9.86 10.6
“no” 8.98 19.49 20.17 1.2 3.32

“nothing” 8.98 25.5 26.84 5.11 4.32
“any” 6.79 20.4 19.39 7.76 3.74

“anything” 5.73 18.43 15.74 3.31 1.14

ROC

“threw” 12.99 1.28 4.69 10.88 0.97
“now” 8.68 -10.01 14.51 1.75 5.69

“found” 8.16 -2.31 4.45 5.12 -3.13
“won” 7.71 2.43 0.74 1.05 5.51
“like” 7.3 4.77 10.06 8.81 1.67

COPA

“went” 3.61 -10.83 6.46 7.92 1.04
“got” 2.74 5.45 -9.89 -12.52 -10.3
“for” 2.14 10.11 -1.89 9.05 11.58

“with” 1.38 -15.64 -6.98 3.3 13.82
TYPO 0.84 -12.46 -2.33 3.8 -8.22

SWAG

“football” 7.38 6.13 8.55 1.2 1.55
“anxious” 6.65 7.55 -4.67 -6.66 -1.67

“concerned” 6.19 12.6 4.58 8.27 -5.66
“skull” 5.73 -2.77 0.49 8.43 3.49
“cop” 5.01 2.79 5.3 -0.92 -0.04

RACE

“above” 13.74 8.73 -8.43 -0.22 -1.92
“b” 12.84 16.97 -4.8 3.52 -3.45
“c” 11.83 15.69 -6.94 8.6 -7.6

“probably” 6.77 9.91 -0.06 -3.8 2.86
“may” 4.2 7.75 -3.45 -6.67 -1.8

RECLOR

“over” 2.07 1.76 -2.94 -1.35 -4.12
“result” 1.97 -3.29 -2.69 -1.78 -3.7

“explanation” 1.81 -6.33 -1.73 -2.76 -7.24
“proportion” 1.68 -5.64 -4.69 2.37 -2.16

“produce” 1.4 4.54 -2.98 -14.36 -3.7

ARCT

“not” 3.74 -2.54 7.45 -0.97 -11.96
NEGATION 2.85 3.49 10.04 6.28 -8.23

“n’t” 2.52 10.3 5.89 9.49 4.84
“always” 2.25 -4.66 38.21 -4.35 -8.26

“doe” 2.06 -0.73 -3.69 -1.15 -7.22

ARCT_adv OVERLAP 1.96e-10 1.65 -0.25 2.73 0.57
∑

(|.|) (Model weakness) 469.8 361.4 227.7 216.2

Table 2: Datasets, their top 5 cues and 4 models biases ∆ on them.

is amplified in Figure 3 for FastText and ESIM.
With the “no” cue, they prefer to predict “Contra-
diction” even more than the ground truth in the
training data. In contrast, BERT and RoBERTA
moderately follow the training data. While the cue
“no” is effective at influencing the models, the cue
“above” is not as successful. Figure 3 shows that the
distribution of predicted results for ESIM in ARCT
is entirely opposite to the training data, explaining
the ∆ = −8.43 in Table 2 and demonstrating that
models may not exploit a cue even if it is present
in the data. Similarly, “speaking” in BERT and
RoBERTA can also explain their low ∆ values,
which are not shown in Table 2.

The example of the cue “threw” presents an out-

lier for BERT, as the distribution test result is in-
consistent with the accuracy test: the accuracy de-
viation is very high for BERT, but its prediction
distribution is flat. We have not encountered many
such contradictory cases. However, when they do
occur, as in this example, we give BERT the benefit
of the doubt that it might not have exploited the
cue “threw”.

5 Case Study

Recently, ChatGPT, a large language model (LLM)
released by OpenAI, has garnered significant inter-
est from the NLP community. ChatGPT, a GPT-
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Prompt 1

Analyze the logical relationship between the 

following  

premise: ‘{premise}’ and the hypothesis: 

‘{hypothesis}’.  

Determine whether the hypothesis is an 

entailment, contradiction, or neutral with 

respect to the premise. 

Prompt 2

Please identify whether the premise entails, 

contradicts, or is neutral with respect to the 

hypothesis. The answer should be exactly 

“entailment,” “contradiction,” or “neutral.” 

premise: ‘{premise}’  

hypothesis: ‘{hypothesis}’ 

Prompt 2 + CoT

Prompt 1 + CoT

Analyze the logical relationship between the 

following  

premise: ‘{premise}’ and the hypothesis: 

‘{hypothesis}’.  

Determine whether the hypothesis is an 

entailment, contradiction, or neutral with 

respect to the premise. 
Let’s think step by step.

Please identify whether the premise entails, 

contradicts, or is neutral with respect to the 

hypothesis. The answer should be exactly 

“entailment,” “contradiction,” or “neutral.” 

premise: ‘{premise}’  

hypothesis: ‘{hypothesis}’ 
Let’s think step by step.

Figure 4: Prompts.

x 3 series model, is trained through Reinforcement
Learning from Human Feedback (RLHF) (Chris-
tiano et al., 2017) similarly to InstructGPT (Ouyang
et al., 2022). In this section, we investigate if zero-
shot ChatGPT is influenced by bias features, using
a case study focused on the word “no” in the MNLI
dataset. We aim to compare the effectiveness of
different prompts and select the best one for miti-
gating bias based on a single bias feature.

5.1 Dataset

We selected test instances from the MNLI dataset to
study the influence of the word “no” on ChatGPT’s
performance. The original test set has Contradic-
tion: 3240, Entailment: 3463, and Neutral: 3129
instances. Instances containing “no” are distributed
as follows: Contradiction:229, Entailment: 38, and
Neutral: 46.

For the accuracy test, we used all 313 instances
with “no” and an equal number of instances without
“no”, randomly chosen from the remaining test set.
This ensures a balanced evaluation of ChatGPT’s
performance.

For the distribution test, we selected 38 instances
per label containing “no”, resulting in a total of 114
instances.

5.2 Prompts

We have four prompts in Figure 4: The first prompt
is proposed by ChatGPT itself. We ask, “What is
the best prompt for the MNLI task according to
you?”. ChatGPT returns prompt 1 for us. The sec-

3Currently, x is either 3.5 or 4, and in the subsequent
experimental process, the ChatGPT we use is based on GPT-
3.5.

ond prompt is inspired by previous work (Qin et al.,
2023). The third and fourth prompts are created by
adding “Let’s think step by step” (Kojima et al.) to
prompt 1 and prompt 2 with the “chain of thought”
(CoT) thinking, respectively. This modification
has been shown to significantly improve the perfor-
mance of InstructGPT on reasoning tasks (Ouyang
et al., 2022).

5.3 ICQ Results

Prompt Acc (“no”) Acc (w/o “no”) ∆Acc

P1 74.34 77.32 -2.98
P2 75.42 74.18 1.24

P1 + CoT 78.35 77.28 1.07
P2 + CoT 76.67 76.40 0.27

Table 3: Accuracy test results (%). P1=Prompt 1,
P2=Prompt 2.

Figure 5: Distribution test results.

We evaluated the model’s accuracy using differ-
ent prompts on instances with and without the word
“no.” The results are shown in Table 3. P1 demon-
strates a negative ∆ Acc, indicating difficulty in
generalizing when “no” is present. P2 exhibits a
positive ∆ Acc, suggesting better generalization.
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Adding “CoT” to both prompts reduces bias risk.
P1 + CoT shows the most significant improvement
in Acc (“no”), but P2 + CoT has the smallest abso-
lute ∆ Acc, indicating the least sensitivity to “no”
and the lowest bias risk among the tested prompts.

Besides, we analyzed the model’s prediction dis-
tribution Figure 5 for the different prompts on the
stress test set containing the word “no” with bal-
anced label distribution. Distribution test results
reveal imbalances in P1 and P2 prediction distribu-
tions, with P1 and P2 leaning towards predicting
contradictions. Adding “CoT” mitigates these im-
balances, leading to more balanced distributions.
P2 + CoT presents the most balanced distribution
among the labels, supporting its lowest bias risk.

In conclusion, our case study, particularly when
focusing on the feature “no”, indicates that zero-
shot ChatGPT can be influenced by bias features.
The choice of prompt significantly affects its per-
formance. When assessing the feature “no”, P2 +
CoT showed the lowest bias risk across both tests.
The “CoT” strategy appears effective in reducing
bias risk for this specific feature. However, it’s
important to note that our findings, particularly re-
garding the feature “no”, suggest that ChatGPT’s
self-recommended prompt (P1) might not always
be optimal. This underscores the importance of
human intervention and ongoing exploration to op-
timize performance and minimize bias risks. Future
studies and conclusions would benefit from a more
nuanced and feature-specific analysis.

6 Related Work

Our work is related to three research directions:
spurious features analysis, bias calculation, and
dataset filtering.

Spurious features analysis has been increas-
ingly studied recently. Much work (Sharma et al.,
2018; Srinivasan et al., 2018; Zellers et al., 2018)
has observed that some NLP models can surpris-
ingly get good results on natural language under-
standing questions in MCQ form without even
looking at the stems of the questions. Such tests
are called “hypothesis-only” tests in some works.
Further, some research (Sanchez et al., 2018) dis-
covered that these models suffer from insensitivity
to certain small but semantically significant alter-
ations in the hypotheses, leading to speculations
that the hypothesis-only performance is due to sim-
ple statistical correlations between words in the
hypothesis and the labels. Spurious features can be

classified into lexicalized and unlexicalized (Bow-
man et al., 2015): lexicalized features mainly con-
tain indicators of n-gram tokens and cross-ngram
tokens, while unlexicalized features involve word
overlap, sentence length, and BLEU score between
the premise and the hypothesis. (Naik et al.,
2018) refined the lexicalized classification to Nega-
tion, Numerical Reasoning, Spelling Error. (Mc-
Coy et al., 2019) refined the word overlap features
to Lexical overlap, Subsequence, and Constituent
which also considers the syntactical structure over-
lap. (Sanchez et al., 2018) provided unseen tokens
an extra lexicalized feature.

Bias calculation is concerned with methods to
quantify the severity of the cues. Some work (Clark
et al., 2019; He et al., 2019; Yaghoobzadeh et al.,
2019) attempted to encode the cue feature implic-
itly by hypothesis-only training or by extracting
features associated with a certain label from the
embeddings. Other methods compute the bias by
statistical metrics. For example, (Yu et al., 2020)
used the probability of seeing a word conditioned
on a specific label to rank the words by their bias-
ness. LMI (Schuster et al., 2019) was also used to
evaluate cues and re-weight in some models. How-
ever, these works did not give the reason to use
these metrics, one way or the other. Separately,
(Ribeiro et al., 2020) gave a test data augmentation
method, without assessing the degree of bias.

Dataset filtering is one way of achieving higher
quality in datasets by reducing artifacts. In fact,
datasets such as SWAG and RECLOR evalu-
ated in this paper were produced using variants
of this filter approach which iteratively perturb
the data instances until a target model can no
longer fit the resulting dataset well. Some meth-
ods (Yaghoobzadeh et al., 2019), instead of pre-
processing the data by removing biases, leave out
samples with biases in the middle of training ac-
cording to the decision made between epoch to
epoch. (Bras et al., 2020) investigated model-based
reduction of dataset cues and designed an algo-
rithm using iterative training. Any model can be
used in this framework. Although such an approach
is more general and more efficient than human an-
notating, it heavily depends on the models. Unfor-
tunately, different models may catch different cues.
Thus, such methods may not be complete.
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7 Conclusion

Our lightweight framework, ICQ, identifies biases
and cues in multiple-choice NLU datasets, illumi-
nating model behaviors from a statistical perspec-
tive. Extensive experimentation on diverse tasks
validates ICQ’s efficiency in revealing dataset and
model biases. Using a case study on ChatGPT, we
explore its cues, offering practical guidance. ICQ
advances our understanding and optimization of
large language models, promoting the creation of
robust, unbiased AI systems.
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