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Abstract

Learning logic rules for knowledge graph rea-
soning is essential as such rules provide inter-
pretable explanations for reasoning and can be
generalized to different domains. However, ex-
isting methods often face challenges such as
searching in a vast search space (e.g., enumera-
tion of relational paths or multiplication of high-
dimensional matrices) and inefficient optimiza-
tion (e.g., techniques based on reinforcement
learning or EM algorithm). To address these
limitations, this paper proposes a novel frame-
work called LATENTLOGIC to efficiently mine
logic rules by controllable generation in the la-
tent space. Specifically, to map the discrete re-
lational paths into the latent space, we leverage
a pre-trained VAE and employ a discriminator
to establish an energy-based distribution. Ad-
ditionally, we incorporate a sampler based on
ordinary differential equations, enabling the ef-
ficient generation of logic rules in our approach.
Extensive experiments on benchmark datasets
demonstrate the effectiveness and efficiency of
our proposed method.

1 Introduction

Knowledge graphs usually contain collections of
real-world facts encoded in triplets with entity and
relation information, and find broad applications in
across multiple domains (Lukovnikov et al., 2017;
Xiong et al., 2017a; Wang et al., 2018; Zhang et al.,
2019; Huang et al., 2019; Tang et al., 2023a,b).
Despite some knowledge graphs holding hundreds
of millions of triples, they still suffer from incom-
pleteness, whereby many valid triples are missing
since it is impractical to identify them all manu-
ally. Therefore, a fundamental and essential task
in knowledge graphs is to utilize existing facts to
predict the missing ones.

Recent studies have focused on learning logic
rules from knowledge graphs and utilizing these
learned rules to predict absent facts. An example

∗ Jianxin Li is the corresponding author.

of such a rule is ∀X,Y, Z nationality(X,Y )←
classmate(X,Z) ∧ nationality(Z, Y ), indicat-
ing that if Z is the classmate of X and has a nation-
ality of Y , then X is likely to have a nationality
of Y . This rule can be applied to deduce the na-
tionalities of new individuals. Compared to other
methods such as knowledge graph embedding ap-
proaches (Bordes et al., 2013; Sun et al., 2019; Li
et al., 2022), the rule-based method (Zhang et al.,
2020) is more interpretable and can be applied to
inductive scenarios (Teru and Hamilton, 2019).

Most rule-based methods involve enumerating
relational paths as candidate rules, followed by
assigning weights to each rule to indicate their
quality (Lao and Cohen, 2010; Richardson and
Domingos, 2006; Yang et al., 2017; Sadeghian
et al., 2019). When the scale of the knowledge
graph expands, these methods face the challenge of
exponentially growing search space. To overcome
this problem, RNNLogic (Qu et al., 2021) intro-
duces a rule generator and a reasoning predictor to
separate rule generation from rule weight learning.
However, the optimization process based on the
Expectation-Maximization (EM) algorithm tends
to have slow convergence, leading to extended train-
ing periods. Another line of research utilizes rein-
forcement learning (RL) to search for logic rules by
making sequential decisions (Xiong et al., 2017b;
Lin et al., 2018; Das et al., 2018; Lu et al., 2022).
Nevertheless, RL-based methods often encounter
challenges such as large action spaces and sparse
rewards during training. As a result, efficiently min-
ing high-quality logic rules for knowledge graph
reasoning remains a challenging task.

In this paper, we propose a novel framework
named LATENTLOGIC, which overcomes the
aforementioned challenges. Our approach bypasses
the enumeration of relational paths by employing
controllable sampling in latent space. Furthermore,
each component of LATENTLOGIC is trained in
an end-to-end fashion, avoiding the indirect and
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inefficient optimization procedure. Concretely,
we utilize a VAE-based autoencoder (Kingma and
Welling, 2014; Li et al., 2020) to map discrete re-
lational paths into a low-dimensional latent space.
We employ a discriminator to measure the semantic
coherence between the latent vector and the rule
head, thereby creating an energy-based distribution
in the latent space. To obtain latent vector sam-
ples that correspond to the desired rule head, we
employ a sampler based on ordinary differential
equations (Song et al., 2021; Nie et al., 2021). The
latent vectors are used to generate rule bodies for
the given rule head using the VAE generator.

Extensive experiments demonstrated the com-
putational efficiency of LATENTLOGIC in com-
parison to previous rule learning methods (Yang
et al., 2017; Sadeghian et al., 2019; Qu et al.,
2021), indicating that LATENTLOGIC exhibits en-
hanced scalability for mining logic rules on larger-
scale knowledge graphs. Furthermore, through
experiments on two commonly used benchmark
datasets, FB15k-237 (Toutanova and Chen, 2015)
and WN18RR (Dettmers et al., 2018), we observed
that LATENTLOGIC successfully generates high-
quality logic rules for knowledge graph reasoning
and evidently outperform the salient baseline meth-
ods.

2 Framework

Problem Definition First, we introduce some
definitions and notations. A knowledge graph
G = (V, T ,R) is usually defined by a triple set
T = {(h, r, t)} ⊆ V × R × V , where V de-
notes an entity set, and R represents a relation
set. In this paper, we aim to learn logic rules in
the conjunctive form ∀{Xi}li=0 : r(X0, Xl) ←
r1(X0, X1) ∧ · · · ∧ rl(Xl−1, Xl) from the given
knowledge graph. A logic rule, which can be ab-
breviated as r ← r1 ∧ · · · ∧ rl, consists of a rule
head, denoted as r, and a rule body (relational path),
represented as r1 ∧ · · · ∧ rl.

Framework Overview Our approach converts
rule learning problems to controllable generation
problems by developing a generative model, de-
noted as pθ(P|s), to generate rules given a specific
rule head s. Here, P represents the rule body, i.e.,
relational path, P = (r1, r2, . . . rl). The main
innovation behind our approach is that we substi-
tute the enumeration of the relational path with the
sampling of latent vectors, significantly reducing
training overhead. Additionally, to accomplish our

aim, we incorporate a relational path autoencoder
and a rule discriminator that operates in the latent
space. As shown in Fig. 1, we firstly utilize a VAE-
based Relational Path Autoencoder, which consists
of an encoder E and a decoder D, to compress re-
lational paths into a low-dimensional latent space.
To perform controllable generation of rule bodies,
we need to construct a joint distribution of latent
vectors and rule heads for sampling. Therefore,
we introduce a Rule Discriminator on the latent
space to form the joint distribution represented by
the energy-based model. This joint distribution
allows us to obtain latent vectors associated with
the desired rule head by using a sampler based on
an ordinary differential equation. Finally, we can
decode the latent vectors into rule bodies using the
VAE decoder, allowing us to generate rules given
certain rule heads.

2.1 Relational Path Autoencoder
Note that each rule body r1∧· · ·∧rl can be consid-
ered a sequence of relations [r1, . . . , rl]. Such se-
quences of relations can be effectively modeled by
sequence neural networks (Das et al., 2017; Kotnis
et al., 2021; Liu et al., 2022), and thus we introduce
RNN (Hochreiter and Schmidhuber, 1997) to pa-
rameterize the relational path autoencoder. Specifi-
cally, we map relational path P into latent vector
z using an RNN-based encoder q(z|P), and an
RNN-based decoder p(P|z, q) that maps z into
the relational path q is a unified query embedding
for all inputs. Our decoder does not use an au-
toregressive approach. Instead, it takes the unified
query embedding q and positional embedding as
input, simultaneously generating relational paths.
We optimize the encoder and decoder parameters
for each input relational path P with the objective:

LVAE(P) =− Eq(z|P)[log p(P|z, q)]
+ KL (q(z|P)||N (0, I)) ,

(1)

where KL(·||·) is the Kullack-Leibler divergence
that pushes q to be close to the prior N (0, I).

2.2 Rule Discriminator
Now we aim to model the joint distribution p(z, s),
where z denotes the latent vector of a relational
path and s represents a desired rule head. This
joint distribution can be represented as p(z, s) =
pprior(z)p(s|z), where pprior(z) is the prior distri-
bution, i.e., standard Gaussian distribution, and
p(s|z) is conditional distribution on s given z. In-
spired by Nie et al. (2021), we define p(s|z) as an
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Figure 1: Framework overview of LATENTLOGIC. We first train the rule discriminator and relational path
autoencoder. Then we generate logic rules by sampling on the latent space. The generated rules can be used to
answer queries over knowledge graphs.

energy-based model (EBM) (LeCun et al., 2006)
as follows:

p(s|z) ∝ e−Eθ(s|z),

Eθ(s|z) =− f(g(z))[s] + const,
(2)

where const = log
∑

s′ exp(f(g(z))[s
′]) is a nor-

malization term corresponding to all rule heads,
g(·) is the fixed VAE decoder that decodes z into
P , and f indicates a neural network that takes g(z)
and s as input and produces a score that measures
how well s is carried in z. The function f can
be any advanced model if it measures the consis-
tency between relational paths and the rule heads
(e.g., other rule mining models like neural logi-
cal programming). We adopt a simple network as
suggested by Das et al. (2017), which encodes the
relational path using the recurrent neural network,
computing the score using the similarity between
path representation and relation representation. For
each training sample (rh, (r0, . . . , ri)). Suppose ŷ
denotes the output logits of the rule discriminator;
the objective can be expressed as:

LDiscriminator = −
∑

S

|R|∑

r

yrh
r log ŷr, (3)

where S represents all the training samples and yrh

is a one-hot vector that only the rh-th position is 1.

2.3 Rule Generation

Model Training We train both the relational path
autoencoder and the rule discriminator on the given
knowledge graph G. For the relational path auto-
encoder, we adopt a random walk (Spitzer, 1975)-
based procedure to efficiently sample relational

paths to obtain training data. Each subsequent node
is generated using the following distribution:

p(xi|xi−1) =





1

|N (xi−1)|
, (xi, ·, xi−1) ∈ T ,

0, otherwise,
(4)

where N (xi) denotes all the neighborhoods of en-
tity xi. Then we optimize the auto-encoder by
minimizing the Eq. 1. For the rule discriminator,
we employ a similar sampling strategy. Each time
we sample the next entity xi, we include relation
rh, which directly connects xo and xi, to create a
training sample (rh, (r0, . . . , ri)). Suppose ŷ de-
notes the output logits of the rule discriminator, the
objective can be expressed as follows:

LDiscriminator = −
∑

S

|R|∑

r

yrh
r log ŷr, (5)

where S represents all the training samples and yrh

is a one-hot vector that only the rh-th position is 1.

Latent Vector Sampling Given the joint distri-
bution p(z, s), we would like to draw samples z
conditioned on the target rule head s, which are
then fed to the VAE decoder to obtain the desired
rule bodies. According to Song et al. (2021), sam-
pling from an EBM can be achieved by solving a
specific ordinary differential equation (ODE). In
our work, the ODE in the latent space can be ex-
pressed as: dz = 1

2β(t)Eθ(s|g(z))dt, with neg-
ative time increments from T to 0. To generate
latent vectors based on the given rule head s, we
first draw z(T ) from N (0, I), and then apply a
neural ODE solver1 (Chen et al., 2018, 2021) to

1https://github.com/rtqichen/torchdiffeq
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Methods
FB15k-237 WN18RR

MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

TransE 0.294 - - 46.5 0.226 - - 50.1
DistMult 0.241 15.5 26.3 41.9 0.430 39.0 44.0 49.0
TuckER 0.358 26.6 39.4 54.4 0.470 44.3 48.2 52.6
RotatE 0.338 24.1 37.5 53.3 0.476 42.8 49.2 57.1

PathRank† 0.087 7.4 0.2 11.2 0.189 17.1 20.0 22.5
NeuralLP† 0.237 17.3 25.9 36.1 0.381 36.8 38.6 40.8
DRUM† 0.238 17.4 26.1 36.4 0.382 36.9 38.8 41.0

RNNLogic† 0.288 20.8 31.5 44.5 0.455 41.4 47.5 53.1
RLogic‡ 0.312 20.3 - 50.1 0.473 44.3 - 53.7

LATENTLOGIC 0.320 21.2 32.9 51.4 0.481 45.2 49.7 55.3

Table 1: Knowledge graph reasoning performance on FB15k-237 and WN18RR. The model with † means the results
are from Qu et al. (2021), and ‡ means the results are copied from Cheng et al. (2022). For RNNLogic, we choose
the variant w/o emb. for a fair comparison.

obtain z = z(0).

Rule Generation We draw n samples
{zi(T )}ni=0 fromN (0, I) for each rule head s and
obtain n latent vectors {zi(0)}ni=0. Then, we feed
{zi(0)}ni=0 to pretrained VAE decoder to generate
corresponding rule bodies. Finally, we calculate
the confidence scores of the generated rules using
the aforementioned rule discriminator.

3 Experimental Setup

Datasets We conduct experiments on two widely
used knowledge graph reasoning benchmark
datasets: FB15k-237 (Toutanova and Chen, 2015)
and WN18RR (Dettmers et al., 2018). WN18RR
comprises of 40,943 entities and 11 relations,
with 86k/3k/3k instances set aside for train-
ing/validation/testing correspondingly. FB15k-
237 comprises 14,541 entities and 237 relations
and has 272k/17k/20k instances reserved for train-
ing/validation/testing, respectively.

4 Experimental Results

Baselines We compared LATENTLOGIC with
two taxonomies of methods, including: Knowledge
graph embedding methods: TransE (Bordes et al.,
2013), DistMult (Yang et al., 2015), TuckER (Bal-
azevic et al., 2019), and RotatE (Sun et al., 2019).
Rule-based methods: PathRank (Lee et al., 2013),
NeuralLP (Yang et al., 2017), DRUM (Sadeghian
et al., 2019), RNNLogic (Qu et al., 2021), and
RLogic (Cheng et al., 2022).

Evaluation Metrics We adopt forward chain-
ing (Salvat and Mugnier, 1996) for inferring miss-

ing facts from logical rules. For every test triplet
(h, r, t), two queries are created: (h, r, ?) and
(?, r, t), using t and h as answers, respectively. To
maintain consistency with previous studies, Mean
Rank (MR), Mean Reciprocal Rank (MRR), and
hit@k are selected as evaluation metrics under the
filtered setting (Sun et al., 2019). Furthermore, to
mitigate the effects of random sampling, we evalu-
ate the model performance on five different random
seeds, and report the average performance.

Overall Performance As shown in Tab. 1, we
present the experimental results on the FB15k-
237 and WN18RR datasets. Firstly, we compare
LATENTLOGIC with rule-based methods and ob-
serve that LATENTLOGIC outperforms the statis-
tical learning method PathRank, neural differen-
tiable methods NeuralLP and DRUM, as well as
recent methods RNNLogic and RLogic. In particu-
lar, we obtain 2.56% and 2.59% relative increase
in MRR and Hits@10 on FB15k-237 against the
state-of-the-art rule-based method RLogic (Cheng
et al., 2022). Similarly, LATENTLOGIC achieves
1.69% and 2.98% increase in MRR and Hits@10
on the WN18RR dataset against RLogic. Then,
we also compare LATENTLOGIC against salient
knowledge graph embedding-based methods and
find that LATENTLOGIC yields comparable per-
formance to embedding-based methods, espe-
cially on WN18RR, where it outperforms selected
embedding-based baselines.

Quality of Learned Rules We assess the quality
of the logic rules learned from different models in
this part. Following the settings of Qu et al. (2021),

4581



film_language(x, y)← film_actor(x, z) ∧ person_languages(z, y)
film_language(x, y)← film_prequel(x, z) ∧ film_language(z, y)

film_country(x, y)← film_produced_by(x, z) ∧ person_nationality(z, y)
film_country(x, y)← film_produced_by(x, z1) ∧ people_lived_location(z1, z2) ∧ location_country(z2, y)

person_nationality(x, y)← place_of_birth(x, z) ∧ location_country(z, y)
person_nationalit(x, y)← organization_founder(x, z) ∧ organization_country(z, y)

Table 2: Case study on the FB15k-237 dataset.

we generate n logic rules with the highest quality
score for each query relation and then use them
for training a predictor for knowledge graph rea-
soning. As mentioned before, the quality of each
rule learned by LATENTLOGIC can be calculated
using the rule discriminator. Results for different
n values are reported in Fig. 2. Our observations
suggest that LATENTLOGIC outperforms the com-
pared methods remarkably. Moreover, even with
a limited number of rules considered per relation,
LATENTLOGIC still achieves competitive results.
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Figure 2: MRR performance w.r.t. n rules on WN18RR
and FB15k-237 datasets. LATENTLOGIC achieves
prominent results even with only 10 rules.

Case Study To demonstrate that LATENTLOGIC

is capable of generating helpful and varied rules
for knowledge graph reasoning, we present some
of the logic rules that LATENTLOGIC produced on
the FB15k-237 dataset in Tab. 2. It can be observed
that the logic rules generated by LATENTLOGIC

are semantically meaningful and diverse.

5 Related Work

Over the past years, learning logical rules over
knowledge graphs has been an active research area.
Most traditional methods enumerate relational
paths between query entities and answer entities
as candidate logic rules, and further learn a scalar
weight for each rule to assess the quality. Some rep-
resentative works include Markov Logic Network
(MLN) (Kok and Domingos, 2005; Richardson and
Domingos, 2006), path ranking (Lao and Cohen,
2010; Lao et al., 2011) and probabilistic personal-
ized page rank (ProPPR) algorithms (Wang et al.,

2013, 2014a,b). Then some methods extend the
idea by simultaneously learning logic rules and
the weights in a differentiable way. For exam-
ple, some works (Rocktäschel and Riedel, 2017;
Yang et al., 2017; Sadeghian et al., 2019) try to
use neural logic programming to model rule-based
reasoning and to learn high-quality logical rules.
Another kind of rule-learning method is based on
reinforcement learning. The basic idea is to train
a path-finding agent, which is used to search for
reasoning paths over knowledge graphs to answer
queries, and then extract logic rules from reasoning
paths. Some representative works include Deep-
Path (Xiong et al., 2017b), MINERVA (Das et al.,
2018), M-Walk (Shen et al., 2018) and R5 (Lu
et al., 2022). Recently, RNNLogic (Qu et al., 2021)
solves this problem by training a generator and a
predictor alternately. RLgoic (Cheng et al., 2022)
learns rules in a recursive manner.

6 Conclusion

Learning logic rules for knowledge graph reasoning
is crucial, as they offer interpretable explanations
for the process of reasoning. We propose a novel
framework for learning logic rules in latent space.
Concretely, we introduce a relational path autoen-
coder to map paths into latent space and a rule
discriminator to access the consistency between
rule bodies and rule heads. With the sampler based
on ODE, LATENTLOGIC can generate logic rules
efficiently. Experimental results showed that LA-
TENTLOGIC outperforms strong baseline methods
and is efficient for training.
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Limitations

In this paper, we introduce a generative framework
for rule mining on knowledge graphs. We believe
this approach still has much room for improvement:
1) We have not used the more complicated model
architecture of the rule discriminator. 2) The pro-
posed sampling strategy may lead to some same
relational paths or out-of-domain relational paths.
For future work, finding a way to incorporate a
more advanced rule discriminator and prevent gen-
erating invalid relational paths is worth exploring.
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7 Appendix

7.1 Dataset Statistics

In this part, we provide a brief introduction and
statistics of FB15k-237 and WN18RR, which are
used in this paper.

• FB15k-237 is one of the most commonly used
benchmark knowledge graph datasets, which
is an online collection of structured data har-
vested from many sources, including individ-
ual, user-submitted wiki contributions.

• WN18RR is recognized as a widely adopted
benchmark knowledge graph dataset. Its pur-
pose is to generate a user-friendly dictionary
and thesaurus and facilitate automatic text
analysis. The entities in the dataset represent
word senses, while relationships define the
lexical relations between these senses.

Dataset # Data # Relation # Entity
FB15k-237 310,116 237 14,541
WN18RR 93,003 11 40,943

Table 3: Dataset statistics.

7.2 Implementation Details

We implement LATENTLOGIC over Pytorch2. We
use the Adam optimizer to train both the rela-
tional path autoencoder and the rule discrimina-
tor. A grid search is performed to determine the
best hyperparameters based on the performance on
the validation sets. We employ the dopri5 neural
ODE solver, with (10−3, 10−3) tolerances, and set
T = 1, βmin = 0.1, and βmax = 20. The maximum
length of relational paths is set to 3 in FB15k-237
and 2 in WN18RR. All experiments are executed
on a single Nvidia Tesla V100 GPU.

7.3 Details of Forward Chain

We provide the details of how to use forward chain
to infer missing facts given learned logic rules.
Specifically, Given a query (h, r, t), let A be the
set of candidate answers that can be discovered by
any learned rule using forward chaining. For each
candidate answer a ∈ A, the score of triple (h, r, a)
can be calculated as

∑
rule

∑
path ϕ(rule), where

ϕ is the confidence score of logic rule. Then we
can rank candidate answers by the scores.

2https://pytorch.org/

Methods FB15k-237↓ (mins) WN18RR↓ (mins)

NerualLP 395 122.3
DRUM 373.8 118.7

RNNLogic 331.6 100.3

LATENTLOGIC 24.6 12.4

Table 4: Training time running on a single NVIDIA
Tesla V100 GPU.

7.4 Supplementary Experiment
Evaluation of Training Efficiency To showcase
the efficiency of LATENTLOGIC, we compare the
training time of different models in Tab. 4. For a
fair comparison, we utilize a single GPU (Tesla
V100) to train each model and implement the hy-
perparameters recommended by the original papers.
Our observations are as follows: (i) LATENTLOGIC

outperforms the baselines in efficiency while still
achieving competitive performance. (ii) NeuralLP
and DRUM do not perform well due to their in-
volvement in large matrix multiplication. (iii)
RNNLogic is also less efficient because of the EM-
based optimization procedure.

Sensitivity of Randomness Since our approach
relies on random sampling techniques, we would
like to conduct experiments to examine the sensitiv-
ity of LATENTLOGIC to randomness. In Tab.5, we
report the mean and standard deviations of the re-
sults under different random seeds. We can notice
that the randomness sampling has minimal impact
on the performance of LATENTLOGIC.

FB15k-237 WN18RR
MRR H@1 H@10 MRR H@1 H@10

µ 0.320 21.2 51.4 0.481 45.2 55.3
σ 0.013 0.118 0.247 0.009 0.211 0.187

Table 5: result w.r.t. randomness.
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