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Abstract

Understanding the prevalence and dynamics
of justice partisanship and ideology in the US
Supreme Court is critical in studying jurisdic-
tion. Most research quantifies partisanship
based on voting behavior, and oral arguments
in the courtroom — the last essential proce-
dure before the final case outcome — have not
been well studied for this purpose. To address
this gap, we present a framework for analyzing
the language of justices in the courtroom for
partisan signals, and study how partisanship in
speech aligns with voting patterns. Our results
show that the affiliated party of justices can be
predicted reliably from their oral contributions.
We further show a strong correlation between
language partisanship and voting ideology.1

1 Introduction

The study of partisanship and ideology has been
an important topic in understanding the US legal
system (Jacobi and Sag, 2018; Devins and Baum,
2017; Bonica and Sen, 2021; Doerfler and Moyn,
2021). Most research has focused on justice voting
patterns (Bonica and Sen, 2021; Martin and Quinn,
2002, 2007; Epstein et al., 2007a; Bailey, 2013)
and behavior in court, e.g. the frequency of inter-
ruptions (Epstein et al., 2010) or questions (Epstein
and Weinshall, 2021). Despite their core role in
legal determination, the content in terms of whether
oral arguments portray partisan values has received
less attention (Bergam et al., 2022).

In political discourse in particular, word choice
is nuanced to convey specific messages (Lakoff,
2010; Jarvis, 2004; Robinson et al., 2017; Jensen
et al., 2012; Dutta et al., 2022). For instance, Re-
publicans tend to prefer the term baby over fetus to
emphasize their belief that human rights begin at
conception (Simon and Jerit, 2007), reflecting their

∗Now at Google DeepMind.
1The dataset and code are available from:

https://github.com/biaoyanf/SCOTUS-partisanship.
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Figure 1: The US Surpreme Court overall partisanship
between 1955 and 2019 as approximated by voting-
based measures (MQ scores; Martin and Quinn (2007))
and our language-based framework.

beliefs and partisanship (Gentzkow et al., 2019;
Demszky et al., 2019; Thomas et al., 2006; Bergam
et al., 2022; Vafa et al., 2020).

In this paper, we ask to what extent do oral ar-
guments reveal justice partisanship. We propose
a framework to analyze partisanship in justices’
oral arguments in the Supreme Court of the United
States (SCOTUS). We classify justices as Democrat
or Republican based on the political party of their
nominating president, following common practice
in the law literature (Devins and Baum, 2017; Yalof,
2001). We cast language-based partisanship pre-
diction as a classification task and show that our
models can reliably predict partisanship, suggest-
ing that justices project their affiliations in court
arguments.

We go on to derive language-based partisan-
ship scores from our models, and ask How does
language-based partisanship align with estab-
lished measures of voting-based ideology? We
show that our scores correlate well with established
voting-based measures (Figure 1). Equipped with
this layer of validation, we move on to more nu-
anced analyses of language-based partisanship: (a)
of the overall court, (b) of individual justices, and
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N

Cases 6,663
Justices 35
Turns 756,018
Average #words per turn 27.24
Instances 104,498

Republican 62,497 (59.8%)
Democratic 42,001 (40.2%)

Table 1: Core dataset statistics, where “Turns” are in-
dividual justice contributions (of arbitrary length) and
“Instances” are the individual data points presented to
the models, i.e., 510-token segments with a sliding 255
token window from all turns of one justice in one case.

(c) of landmark cases over time.

2 Methodology

Data We use a subset of the Super-SCOTUS
dataset (Fang et al., 2023b), which contains tran-
scripts of SCOTUS oral arguments from 1955–
2019 (Chang et al., 2020).2 We filter out cases
where hearings stretch over more than one year.
We additionally remove non-linguistic indicators,
e.g., [laughter], and mask all person names with a
BERT NER model3 (Devlin et al., 2019) in order
to focus our models on linguistic indicators rather
than mentions of individuals with potential party
affiliations.4

We concatenate all turns from an individual jus-
tice in a single court hearing, to derive multiple
instances with a maximum of 510 tokens and a
sliding window of 255 tokens. To retain only in-
formative instances, we further remove those that
have less than 50 tokens. We finally randomly
separate the resulting instances into 10 folds for
cross-validation. Partisanship and polarization are
dynamic phenomena, responding to shifts in topics
and political landscapes. We equip our models with
a notion of time by adding a special [year] tag to
each instance, flagging its year of origin.

We obtain the reference party affiliation for each
justice as the party (Republican or Democrat) of
the President who nominated the justice, which
correlates strongly with the self-reported party of
the justice and has been shown to be associated
with the interest of the nomination party (Devins
and Baum, 2017; Shipan, 2008; Yalof, 2001). The
statistics of the resulting dataset are shown in Ta-
ble 1.

2https://convokit.cornell.edu/documentation/supreme.html
3https://huggingface.co/dslim/bert-base-NER
4See Appendix A for data construction details.

Model Train Dev Test

Random 0.50 ± 0.00 0.50 ± 0.00 0.50 ± 0.00
Majority 0.37 ± 0.00 0.37 ± 0.00 0.37 ± 0.00
BERT 0.87 ± 0.02 0.83 ± 0.01 0.83 ± 0.01
BERT (+year) 0.91 ± 0.01 0.85 ± 0.00 0.85 ± 0.01

Table 2: Macro-F1 scores for affiliated party pre-
diction for Random and Majority baselines (major-
ity=Republican, cf. Appendix B), as well as fined-
tuned BERT classifiers based on justice instances only
(BERT), or an additional year tag (BERT +year).

Model Train Dev Test

Random 0.49 0.47 0.50
Majority 0.40 0.42 0.34
BERT 0.88 ± 0.02 0.80 ± 0.01 0.70 ± 0.01

Table 3: Macro-F1 scores for affiliated party prediction
based on chronological data split. We show the averaged
results of BERT over three runs with different random
seeds.

Classification To understand to what extent their
language reveals a justice’s party affiliation (Demo-
crat vs. Republican), we formulate partisanship pre-
diction as a binary classification task, and fine-tune
the BERT-base model5 (Devlin et al., 2019) to pre-
dict the affiliated party of a justice from their oral
contributions in a single court hearing. For each
iteration of cross-validation, we fine-tune BERT
on the training fold for 30 epochs, with a batch
size of 16, and a dropout rate of 0.3, and select the
best model based on the Macro-F1 score on the
development fold.

3 Affiliated Party Prediction

We first evaluate our framework intrinsically, ask-
ing To what extent do oral arguments reveal jus-
tices’ party affiliation? by predicting justices’ affil-
iated party from their court contributions.

Table 2 shows affiliated party prediction perfor-
mance of our classifiers.6 The large boost for the
BERT models over random and majority baselines,
as well as the high overall performance, shows that
the wording of the oral arguments reveals justices’
party affiliation as a proxy for their partisanship.
Furthermore, models benefit from temporal tags
(+year), indicating that relevant linguistic signals
drift over time.

To further investigate the impact of temporal lan-

5https://huggingface.co/bert-base-cased
6Distributions of gold vs. predicted labels over one fold

are provided in Appendix B.
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LR SVM

BERT (off-the-shelf) 0.45 ± 0.01 0.43 ± 0.01
BERT (+ year) 0.29 ± 0.06 0.32 ± 0.06

Table 4: Speaker identification performance (Macro-F1)
of logistic regression (LR) and SVM classifiers, taking
as input off-the-shelf BERT embeddings or embeddings
from our best-performing party classification model.

guage shift (Hu et al., 2019; Ding et al., 2023) on
our oral partisanship prediction task, we train and
test our model with a chronological data split. We
split the data into non-overlapping temporal spans,
with the training covering all cases from 1955–
2000 (N = 5336), development set (2001–2009,
N = 671) and test set (2010–2019, N = 656).
The results in Table 3 show that, compared to the
random split (Table 2), BERT performs worse on
the development and test sets. In line with prior
work, this suggests that characteristics of partisan
language change over time. Incorporating language
drift into predictive models is a fertile area for fu-
ture work.

A natural question is whether our model indeed
captures partisanship, or rather language idiosyn-
cracies of individual justices. To test this, we use
our trained models to predict speaker identities.
Specifically, we extract the final layer embedding
of the [CLS] token and train logistic regression
(LR) and support vector machine (SVM) models
for speaker prediction (i.e., a 35-way justice clas-
sification task). We compare against off-the-shelf
BERT-base-cased embeddings, with no fine-tuning.
We use instances with year tags as input, based
on the best-performing setup in Table 2.7 Our
fine-tuned model performs worse than off-the-shelf
BERT embeddings on the task of speaker predic-
tion (Table 4). As such, we conclude that our fine-
tuned model representations abstract away from in-
dividual speaker characteristics to representations
that indeed capture properties indicative of party
affiliation.

4 Justices’ language reflects their voting

We next ask How does language-based partisan-
ship align with established measures of voting-
based ideology? To do so, we derive a partisanship
score from our predicted party affiliation probabili-
ties. We then relate our language-based ideology

7Appendix C shows that patterns are consistent for inputs
without year tags.

scores to established measures of ideology obtained
from justices’ voting behavior (Martin and Quinn,
2002, 2007; Bonica and Sen, 2021). While par-
tisanship and ideology are not identical, a strong
correlation exists, particularly in the two-party sys-
tem of the United States (Baum and Devins, 2019;
Devins and Baum, 2017; Lupton et al., 2020).

Having shown that our BERT models capture
partisanship from court arguments (Section 3) and
with a grounded assumption that partisanship is
reflected in (reasonably) local linguistic choice
(Jarvis, 2004; Haddow and Klassen, 2006), we ob-
tain a language partisanship score of a justice by
averaging the predicted party probability for each
of the justices’ instances (Section 2). For example,
to obtain the oral partisanship score of a given jus-
tice in a given year, we average the predicted party
probability of all related instances from the given
justice in the given year. Similarly, the language
partisanship score for a case (year) is calculated
by averaging the predicted party probability of all
instances from all justices in that case (year), re-
spectively.

We use MQ scores8 (Martin and Quinn, 2002),
a widely used and validated measure of the ideol-
ogy of a court or individual justices, derived from
voting outcomes. MQ scores are estimated with
a dynamic Bayesian item response model (West
and Harrison, 2006), which infers the latent ‘ideal
point’ of a justice, i.e., their ideological standpoint
on a unidimensional scale (Liberal — Conserva-
tive) based on their observed voting behavior and
a prior encouraging a smooth change in ideology
over time.

Court-level partisanship Figure 1 compares the
overall SCOTUS ideology based on voting behav-
ior (MQ scores, orange) and language (blue) over
time, from 1955 to 2019. We observe a strong cor-
relation of both measures across time (Pearson’s
r = 0.611, p = 6.5e–8), indicating that partisan-
ship in oral arguments reflects the voting behavior
in court. Similar observations have been made for
more overtly-partisan domains such as political dis-
course and votes in the US Congress (Gentzkow
et al., 2019; Diermeier et al., 2012).

Justice-level partisanship We further investi-
gate language partisanship and voting ideology at
the individual justice level. Justices in recent years
have shown clearer alignment with party affilia-

8http://mqscores.lsa.umich.edu/measures.php
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Figure 2: Comparison of voting-based (MQ; dashed
lines) and language partisanship measures (LP; solid
lines) of individual justices over their tenure. Different
colors denote different justices. The bold-dashed line
indicates the neutral point.

tions in terms of their voting patterns (Devins and
Baum, 2017), and we ask whether this is reflected
in their language, too. We present a case study of
the eight most recently appointed justices in our
data set.9

Figure 2 shows that Republican-
affiliated/conservative justices (Roberts, Saalito,
Gorsuch, Kavanaugh) are consistently separated
by the neutral (thick, dashed) line from the Demo-
crat/liberal justices (Ginsburg, Breyer, Kagan,
Sotomayor). This holds for both language-based
partisanship scores (solid lines) and MQ scores
(dashed lines). For Democratic justices, MQ scores
and language partisanship are aligned in tendency
over their tenure, with a minimum of Pearson’s
r = 0.6 across justices. We do not observe such
strong evidence in Republican justices, indicating
that conservative justices project their values
less directly in their speech. Language-based
partisanship estimates tend to be more extreme
than voting ideology. Notable examples are
Roberts (Republican) and Breyer (Democrat), who
is known to be a pragmatist whose decisions are
often guided by real-life consequences regardless
of party-lines,10 possibly explaining the disparity
between partisanship and MQ scores.

Epstein et al. (2007b) observed that, over their
tenure, justices drift away from their first-year pref-
erences, but with no certainty in what direction they
will move. To study if the same observation holds

9We excluded the most-recently appointed justice Clarence
Thomas due to data sparsity.The same comparison for all
justices is provided in Appendix D.

10https://www.oyez.org/justices/stephen_g_breyer
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Figure 3: Drift of justice partisanship comparing
their first year (small dot) and full tenure (large dot).
Blue dots correspond to Democrat- and red dots to
Republican-nominated justices. The error bars on large
dots indicate the standard deviation of justice partisan-
ship, i.e., MQ scores and language partisanship in corre-
sponding axes, across their full tenure.

for language partisanship, we compare in Figure 3
how our eight most recent justices’ voting ideology
and language partisanship have drifted between
their first year of tenure (small dots) vs. their entire
tenure to date (large dots). The error bars indicate
the standard deviation of partisanship scores (MQ
on the x- and language-based on the y-axis) over all
years of service. For most justices, the overall trend
exceeds the SD interval, suggesting that it goes be-
yond the typical year-to-year fluctuation. As before,
MQ and language scores align well (justices clus-
tering in the bottom left and top right quadrants).
Compared to their first year, Democrat-appointed
justices (blue) statistically significantly tend to be-
come more liberal in both MQ scores and language
partisanship over their tenure. The relative shift
in language partisanship for Republican-appointed
justices (red) is less pronounced, in terms of both
language and MQ scores.

Case-level partisanship In high-profile cases,
voting behaviors have more distinctively lined up
along party lines in the more recent years (Devins
and Baum, 2017). Correspondingly, we might ex-
pect the gap between the average language partisan-
ship in Democrat (blue) vs. Republican-affiliated
(red) justices to increase over time. We test this
by looking at 14 high-profile cases between 1962
and 2014 (Richard Wolf, 2015).11 As shown in Fig-

11Full details of the cases are provided in Appendix E.

4607

https://www.oyez.org/justices/stephen_g_breyer


G 
v. 

W
_1

96
2

NY
TC

 v.
 S

_1
96

3
M

 v.
 A

_1
96

5
L 

v. 
V_

19
66

US
 v.

 N
_1

97
3

RT
UC

 v.
 B

_1
97

9
B 

v. 
G_

20
00

L 
v. 

T_
20

02
DC

 v.
 H

_2
00

7
CU

 v.
 F

EC
_2

00
8

NF
IB

 v.
 S

_2
01

1
S 

v. 
H_

20
12

US
 v.

 W
_2

01
2

O 
v. 

H_
20

14

0.0

0.2

0.4

0.6

0.8

1.0

La
ng

ua
ge

 p
ar

tis
an

sh
ip

Conservative

Liberal

Republican
Democrat

Figure 4: Language Partisanship on important cases.
We average the language partisanship of justices that
were nominated by the same party, i.e. Republican (red)
or Democrat (blue). Dashed lines denote the estimated
linear regression for the corresponding party.

ure 4, language partisanship indeed becomes more
polarized. Particularly, the language of Democrats,
which in the 1960s occasionally crossed the neu-
tral line to the Conservative side, has become more
liberal over time. Additionally, the gap in language
partisanship between the two groups of justices
has increased, again confirming that justices’ final
voting behavior is reflected in their spoken court
arguments.

5 Discussion

Partisanship as affiliation along the liberal–
conservative political spectrum is a fundamental
axis in the political discourse. Automatically iden-
tifying partisan language through NLP techniques
enables large-scale analysis of political and public
discourse and a better understanding of divisions
and polarization. While prior work has mostly
focused on explicitly partisan text, e.g., congress
speeches (Jensen et al., 2012) or news outlets
(Dutta et al., 2022), we study supreme court lan-
guage, which, by definition, should be politically
neutral, and ask does the language of justices in
court reveal their party affiliation? We proposed
an analysis framework showing that BERT-based
classifiers can reliably predict the affiliated party
of justices based on linguistic signals in their SCO-
TUS arguments.

In line with research which has shown a cor-
relation between conversational content and final
voting in political discourse (Lupton et al., 2020;
Vafa et al., 2020; Bonica and Sen, 2021; Bergam
et al., 2022), we further asked to what extent lan-

guage partisanship aligns with voting ideology. We
derived language-based partisanship scores from
our validated models and compared them with MQ
scores, an established ideology measure derived
from voting patterns. We showed a strong corre-
lation between language partisanship and voting
ideology at the overall court, individual justice, and
important case level over time (Section 4), indicat-
ing that the oral arguments of justices do encode
their political leanings. Moreover, our work re-
veals nuanced differences in linguistic and voting
behaviors, e.g., their respective tendency shift over
justices’ tenure (Figure 3), which further demon-
strates the importance of studying SCOTUS from
various perspectives.

More broadly, we test the extent to which lan-
guage representations from large language mod-
els capture nuanced socio-cultural phenomena, by
comparing predictions against corresponding be-
havioral data sets. Here we focus on partisanship,
building on related approaches for stance (Bergam
et al., 2022) and counterfactual approaches to in-
vestigate the effect of social speaker attributes like
gender and seniority on language use in the court-
room (Fang et al., 2023a).

Our proposed framework enriches the partisan-
ship and ideology analysis with an additional di-
mension to voting behavior, the spoken text, where
we show a strong correlation between voting and
spoken language. We hope that this could further
spur analyses from other dimensions, such as parti-
sanship of advocates (Patton and Smith, 2017), and
amicus curiae (Sim et al., 2016), and take impor-
tant parts of the legal process, e.g., further opinion-
writing (Clark, 2009), into consideration.

Limitations

Our work focuses on the Supreme Court of the
United States, due to a wealth of available re-
sources and prior research to ground or results.
Future work should extend our framework to
other political corpora, e.g., congressional records
(Gentzkow et al., 2019) and the federal circuit,12

as well as languages and their associated politi-
cal/legal systems.

We did not exhaustively search for the best lan-
guage representation, and other language models,
e.g. RoBERTa (Liu et al., 2019), XLNet (Yang
et al., 2019), or BART (Lewis et al., 2020) may

12https://cafc.uscourts.gov/home/oral-argument/listen-to-
oral-arguments/
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lead to improved performance. Also, experiments
with additional domain-specific language models,
e.g., LEGAL-BERT (Chalkidis et al., 2020), and
prompt engineering (Trautmann et al., 2022) may
achieve a further increase in performance.

The temporal drift of language itself (e.g. dif-
ferent talking styles in court over time), as well as
focus of topics (e.g. digital security only emerged
in the past few decades), could be confounders in
our partisanship analysis. Although we mitigate
their impact by randomly splitting instances per
year across folds, we acknowledge that these con-
founders are worthy of further exploration. Our use
case suggests itself as a testbed for causal model-
ing approaches that control for confounders explic-
itly (Feder et al., 2022).

We acknowledge that it’s hard to obtain reliable
features, i.e., important words that impact predic-
tion results, out of large language models. Our
analysis framework could be further enhanced by
inspecting the highly-associated words for the par-
ties.

Ethics Statement

Our models predict party affiliation and explicitly
not voting outcomes. We neither attempt nor are
able to do voting prediction based on our analy-
sis framework, noting the severe ethical concerns
it would raise (including, but not limited to, as-
sociating individuals with predicted professional
behavior of potentially low quality, that may reflect
detrimentally on their reputation).

Our analysis framework aims to understand how
oral court arguments reveal the affiliated party of
justices in the Supreme Court of the US. Although
our study covers the analysis of individual justices,
we make no presumptions of the values or beliefs
of justices beyond what is in the public domain, nor
do we target individual justices. All our analyses
aggregate predictions over several cases per justice
and we do not aim to predict or overly rely on indi-
vidual votes or contributions of individuals. This
research aids in understanding the US legal system,
and we strongly advise against over-interpretation
of the results in terms of behaviors of individual
justices.

Our case study focuses on a subset of historical
oral arguments from SCOTUS. Although it covers
most publicly-available cases, this does not reflect
the full history of SCOTUS, nor represent the cur-
rent state of the court.

It has been shown that pretrained language mod-
els are biased (Delobelle et al., 2022; Nadeem et al.,
2021). Although our evaluation validates our re-
sults against external sources, we acknowledge a
possible impact of biases in language representa-
tions (e.g., resulting from a prevalence of liberal or
conservative sources in the pre-training corpora).
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B Distribution of Gold and Predicted
Affiliated Party

Figures 5 shows the label distribution of gold vs.
predicted for affiliated party prediction over one
randomly-selected fold.

C Detailed Experiment on Justice
Identification Prediction

Table 5 provides a detailed experiment on justice
identification prediction with and without year tags
on instances.
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Figure 5: Label distribution of gold vs. predicted for affiliated party prediction in our data set (as exemplified by one
representative test fold).

LR SVM

Instances - year

BERT (Vanilla) 0.44 ± 0.01 0.43 ± 0.01
BERT (Fine-tuned) 0.32 ± 0.10 0.35 ± 0.10

Instances + year

BERT (Vanilla) 0.45 ± 0.01 0.43 ± 0.01
BERT (Fine-tuned) 0.29 ± 0.06 0.32 ± 0.06

Table 5: Macro-F1 scores for justice identity prediction
over instances with year tags on 10-fold cross-validation.
LR and SVM were trained on the training fold and
performances were reported on the test folds.

D Comparison of Voting-based and
Language-based Partisanship at
Individual Justice Level

Figure 6 shows the comparison of voting-based
(MQ scores; Martin and Quinn (2007) and lan-
guage partisanship measures of all individual jus-
tices over their tenure.

Figure 7 shows the Comparison of all justice
partisanship in their first year and over their tenure.

E High Profile SCOTUS Cases

Table 6 lists the details of the high-profile SCOTUS
cases analyzed in Section 4, Figure 4.
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Figure 6: Comparison of voting-based (MQ scores (Martin and Quinn, 2007) (orange lines) and language partisanship
measures (blue lines) of individual justices over their tenure. The dashed line notes the standard derivation of
language-based partisanship measures.
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Year Title Issue Area Abbreviated Label

1962 Gideon v. Wainwright Criminal Procedure G v. W_1962
1963 New York Times Company v. Sullivan First Amendment NYTC v. S_1963
1965 Miranda v. Arizona Criminal Procedure M v. A_1965
1966 Loving v. Virginia Civil Rights L v. V_1966
1973 United States v. Nixon Criminal Procedure US v. N_1973
1979 Regents of the University of California v. Bakke Civil Rights RTUC v. B_1979
2000 Bush v. Gore Civil Rights B v. G_2000
2002 Lawrence v. Texas Privacy L v. T_2002
2007 District of Columbia v. Heller Criminal Procedure DC v. H_2007
2008 Citizens United v. Federal Election Commission First Amendment CU v. FEC_2008
2011 National Federation of Independent Business v. Sebelius Federalism NFIB v. S_2011
2012 Shelby County v. Holder Civil Rights S v. H_2012
2012 United States v. Windsor Due Process US v. W_2012
2014 Obergefell v. Hodges Due Process O v. H_2014

Table 6: List of high-profile cases in SCOTUS (Richard Wolf, 2015).
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