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Abstract

Metaphorical language, such as “spending time
together”, projects meaning from a source do-
main (here, money) to a target domain (time).
Thereby, it highlights certain aspects of the
target domain, such as the effort behind the
time investment. Highlighting aspects with
metaphors (while hiding others) bridges the
two domains and is the core of metaphorical
meaning construction. For metaphor interpre-
tation, linguistic theories stress that identify-
ing the highlighted aspects is important for
a better understanding of metaphors. How-
ever, metaphor research in NLP has not yet
dealt with the phenomenon of highlighting. In
this paper, we introduce the task of identify-
ing the main aspect highlighted in a metaphori-
cal sentence. Given the inherent interaction of
source domains and highlighted aspects, we
propose two multitask approaches - a joint
learning approach and a continual learning ap-
proach - based on a finetuned contrastive learn-
ing model to jointly predict highlighted aspects
and source domains. We further investigate
whether (predicted) information about a source
domain leads to better performance in predict-
ing the highlighted aspects, and vice versa. Our
experiments on an existing corpus suggest that,
with the corresponding information, the perfor-
mance to predict the other improves in terms
of model accuracy in predicting highlighted as-
pects and source domains notably compared to
the single-task baselines.

1 Introduction

A metaphor can be defined as a cross-domain con-
ceptual mapping from a source domain to a target
domain (Lakoff and Johnson, 2003). The abun-
dance in which metaphors occur in everyday lan-
guage (Gibbs, 1992; Ortony, 1993), such as “win-
ning someone’s heart” or “tax evasion”, presents a
need for metaphor interpretation and, to that end,
the computational decoding of metaphors. Much
like in other forms of figurative language, such
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Figure 1: Proposed multitask approaches to predicting
the source domain and highlighted aspect of a metaphor-
ical sentence: (a) A contrastive learning encoder is fine-
tuned continually, first for source domains and then for
highlighted aspects (or vice versa). (b) The encoder is
fine-tuned jointly on both in an alternating fashion.

as sarcasm, a central challenge with metaphors
is that the implicit intended meaning differs from
the meaning of the explicit metaphorical expres-
sion (Goatly, 1997; Allott and Textor, 2022). The
context provided by the neighboring words in the
sentence is an indicator of this implicit meaning
(Stern, 2000). However, for better comprehending
the meaning manifested by a metaphor in a given
context, further levels of understanding are needed;
for example, information about the source and tar-
get domain (Lakoff, 1987; Johnson and Pascual-
Leone, 1989; Robins and Mayer, 2000). Consider
the following metaphorical sentence:

“Excessive tax is killing American family business”

Here, the word “killing” is used as a metaphor,
since business as a concept cannot be killed by
tax in physical realms. The intended meaning is
manifested by establishing the mapping of two con-
ceptual domains, drawing the meaning from the
source domain (physical harm) and projecting the
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meaning into the target domain (taxation). In this
metaphorical context, the word killing is the literal
representative of the metaphorical meaning con-
struction. For simplicitly, we henceforth refer to
this word as the literal metaphor.

According to past research on metaphors (Lakoff
and Johnson, 2003; Wolf and Polzenhagen, 2003;
Andriessen, 2008; Maxwell, 2015), the core idea of
a metaphor is to highlight certain aspects of its tar-
get domain while hiding others; both aspects have
largely been disregarded so far in NLP. The more
apparent and deliberate of these is highlighting. In
the example above, a highlighted aspect may be
threat, since the tax poses a threat in terms of the
economic distress it can cause.

Our research builds on the distinction between
source and target domains in line with existing re-
search on computational metaphor interpretation
(Stowe et al., 2021). Beyond prior work, however,
we argue based on aforementioned linguistic theo-
ries that it is also important to have an understand-
ing of the aspects highlighted by a metaphor in a
given context for better metaphor interpretation. To
fill this gap, we provide the following contributions
in the paper at hand:

• We assess for the first time how and to what ex-
tent the aspects highlighted by a metaphor can
be predicted computationally. In particular,
we study the hypothesis that, by concurrently
considering source domain and highlighted
aspects and by effectively exchanging infor-
mation between them, we can enhance their
identification. In simpler terms, we investi-
gate whether a joint modeling of source do-
mains and highlighted aspects improves their
predictability.

• To implement our hypothesis, we develop two
multitask contrastive learning approaches to
the most highlighted aspect and the source do-
main in metaphorical sentences as illustrated
in Figure 1: one using continual learning,
the other using joint learning. We analyze
whether, in this setup, involving the informa-
tion of the highlighted aspects benefits the
prediction performance of the model on the
source domains, and vice versa.

Given the corpus of Gordon et al. (2015) with
metaphorical sentences annotated for highlighted
aspects and source domains, we evaluate different
variations of our approaches against a single-task

baseline for both labels. Our results indicate that,
in almost all cases, the continual learning approach
outperforms a single-task setup, indicating that the
combined information of source domains and high-
lighted aspects benefit the models to predict either
of them. Our analysis of the results suggests that
continual learning particularly learns to differenti-
ate between single source domains and a composite
source domains well.

2 Related Work

Highlighted and hidden aspects of metaphors con-
tribute to the implicit intention conveyed by the
metaphor in the given context. As we discuss in
the following, different past research has utilized
the source and the target domains in the compu-
tational analysis of metaphors. To the best of our
knowledge, however, no one has investigated how
aspects are highlighted by metaphors yet.

Shutova et al. (2013) defined an ideal metaphor
processing system for NLP applications to con-
sist of two components: metaphor detection
and metaphor interpretation. In line with their
work, Shutova et al. (2012) previously identified
metaphors to then model metaphor interpretation
as a paraphrasing task (Witteveen and Andrews,
2019). Similarly, Mao et al. (2018) used WordNet
(Miller, 1995) to explore the contextual domains
of metaphors to then successively identify and in-
terpret metaphors as a use case for machine trans-
lation. The authors also design the interpretation
step as a paraphrasing task.

The majority of computational research on
metaphors in natural language has focused on
metaphor identification so far, where the task is usu-
ally treated as a binary classification task: Given an
input word or sentence, decide whether the mean-
ing it represents is metaphorical or literal (Steen,
2010; Li et al., 2013). One of the pioneering works
approached the identification with unsupervised
spectral clustering techniques based on relevant
parts of speech, such as nouns and verbs (Shutova
et al., 2010). Using a seed phrase to learn sim-
ilar metaphors associated with particular source
domains, the authors adapt the conceptual map-
ping from one domain to the other. More recent
approaches include that of Li et al. (2023) which
employs FrameNet (Ruppenhofer et al., 2016) to
identify metaphors where a RoBERTa-based pre-
trained language model (Liu et al., 2019) is fine-
tuned to encode contextual cues of the concepts
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Figure 2: Learning to predict the source domain and
highlighted aspect for a given metaphorical sentence:
(a) In the original embedding space, the similarity of the
sentence to the correct domain and aspect may be not
be high enough. (b) In the learned space, their similarity
is increased, and it is decreased for others. We exploit
the intrinsic semantic similarity of source domain and
highlighted aspect through multitask learning.

in the data from FrameNet for enhanced model
performance. First they obtain a sentence repre-
sentation with one encoder. Next, they employ a
separate encoder to form FrameNet based represen-
tations of the concepts associated with the given
literal metaphor. Finally they combine them with
the sentence representations to obtain a joint repre-
sentation, which is passed through a softmax layer
for the final prediction. Unlike all these works,
our research targets the broader interpretation of
metaphors by exploiting components of metaphori-
cal meaning construction, like source domains and
highlighted aspects.

Based on the founding work of Lakoff and John-
son (2003) previous work in metaphor interpre-
tation has explored the source and target domains
with the usage of FrameNet (Stowe et al., 2021) and
in prediction of source domains (Sengupta et al.,
2022). In the latter, they have proposed to predict
source domains in given metaphorical sentences
using contrastive learning (Zhang et al., 2022). We
incorporate their contrastive learning idea in our
approach and evaluate it on the same metaphor cor-
pus (Gordon et al., 2015). However, not only is
our main goal to predict highlighted aspects, but
we also exploit the semantic connection between
source domains and highlighted aspects using mul-
titask learning.

3 Approach

In this section, we present how to predict both
source domains and highlighted aspects jointly

with multitask learning. We start from our con-
trastive learning approach from previous work that
we shortly summarize in the following subsec-
tion. Then, we propose two alternative multitask
schemes for the prediction on this basis: continual
learning and joint learning. A comparison of the
two variants is shown in Figure 1.

3.1 Contrastive Learning for Metaphor
Interpretation

As discussed in Section 2, Sengupta et al. (2022)
demonstrated that modeling similarities between
metaphorical sentences and their corresponding
source domain through contrastive learning boosts
the effectiveness of trained models on the source
domain prediction task. The core idea is to learn an
embedding space where the given input sentence
representation and the representation of the most
similar source domain is trained to be situated close
to each other and the less likely source domain to
be situated further apart.

For the work at hand, we extend their idea to
both source domains and highlighted aspects. In
particular, our hypothesis underlying the multitask
approaches presented below is that the mutual se-
mantic relations between source domains and high-
lighted aspects can be modeled in a the learned
embedding space for their joint prediction. We
illustrate this idea in Figure 2.

3.2 Continual Learning
Our first approach follows the idea of continual
learning, illustrated in Figure 1(a). Research has
shown that continual learning can be helpful in a va-
riety of downstream tasks with regard to the perfor-
mance improvement of machine learning models
(Ke et al., 2021).

Fundamentally, continual learning is a machine
learning technique where principally a model is
trained on different tasks in a sequential order (Had-
sell et al., 2020; Scialom et al., 2022b). This pro-
cess directly preserves the information obtained in
the first task and leverages that information in the
next task where the model is finetuned (Scialom
et al., 2022a).

We adapt this technique to train our models on
the task of predicting the source domains and high-
lighted aspects sequentially. In particular, given a
set of metaphorical sentences as input, we first fine-
tune a Sentence-BERT (Reimers and Gurevych,
2019) with DeBERTa (He et al., 2020) as the en-
coder to learn the most similar source domains.
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Metaphorical Source Highlighted
Dataset Sentences Domains Aspects

Training set 1000 120 61
Validation set 128 56 33
Test set 301 81 49

Full corpus 1429 138 78

Table 1: The distribution of metaphorical sentences
in our experimental setup along with the numbers of
source domains and highlighted aspects the sentences
refer to.

Next, we take the best-performing model from
this training phase on the validation set and con-
tinue fine-tuning it to predict the most similar high-
lighted aspects for the same set of sentences. Both
training phases employ contrastive learning (as
discussed in Section 3.1) by using the multiple-
negatives ranking loss (Henderson et al., 2017) like
Sengupta et al. (2022) where for a sentence repre-
sentation a and a given correct highlighted aspect
b for every positive pairs (ai, bi), for a negative
pair ai for every highlighted aspect bj , j ̸= i, if
m = |A| = |B| and S is the similarity score com-
puted from the sentence embeddings for the given
pairs, the loss is computed as:

L(a,b)

= − 1

m
·

m∑

i=1

logPapprox(bi|ai)

= − 1

m
·

m∑

i=1

(
S(ai, bi)− log

m∑

j=1

eS(ai,bj)
)

This loss function optimizes the embedding space
such that the representation of the correct aspect
highlighted and the representation of the sentence
are positioned closer to each other while distancing
the representation of the sentence from the incor-
rect concept representations as shown in figure 2.
Similarly, we employ the same technique the other
way round to first learn on highlighted aspects in
order to then predict source domains.

3.3 Joint Learning
Our second approach follows the idea of joint learn-
ing, as illustrated in Figure 1(b). The approach
employs a joint-learning technique where, at the
core, it is trained via contrastive learning optimized
with multiple-negatives ranking loss, as described
in the previous subsection.

We adapt the multitask training procedure of
the Sentence-BERT architecture of Reimers and

Sentence Metaphor Src. Domain

The sad news is with the ex-
ception of very few no firearm
organisation is doing anything
of the slightest value in fight-
ing gun control.

fighting Struggle, War

This is the historical context
of Obama’s election victory.

victory Competition,
Game, War

They attack ""rich people""
while enjoying all the spoils
of their luck, I have zero prob-
lems with earned wealth, but
these clowns literally lucked
out in life.

attack War

Table 2: Example sentences from the dataset having
one or more than one concepts grouped as the source
domain. The table is reused from Sengupta et al. (2022).

Gurevych (2019), where the training phase is opti-
mized in a round-robin way. For a given metaphor-
ical sentence, the loss is first computed for learning
the correct source domain representation. Next, it
is backpropagated to compute the loss for learning
the representation of the highlighted aspect.

Hence, the training happens in an alternating
fashion where information about the highlighted
aspects and source domains is mutually exploited
via a shared encoder with hard parameter sharing
(Ruder, 2017). For comparability to the continual
learning approach, we employ the same encoder to
form the representations in this case as well.

4 Data

For our experiments, we employ the corpus of Gor-
don et al. (2015), which is to our knowledge the
only metaphor corpus so far that is annotated for
both source domains and highlighted aspects. In
the following, we briefly summarize its characteris-
tics and the dataset splits we use.

4.1 Corpus

The corpus of Gordon et al. (2015) consists of
1771 metaphorical sentences collected from press
releases, news articles, weblog posts, online fo-
rum discussions, and social media. Each sentence
is annotated for several concepts including the
source domain, the target domain, and the literal
metaphor. For each given metaphorical sentence,
a highlighted aspect is annotated (referred to as
schema slot in the data). For example, threat is
an aspect highlighted by some sentences with the
source domain addiction.

4639



4.2 Datasets

We use the same dataset partitions as Sengupta et al.
(2022). To obtain a clean experimental setting, the
authors combined multiple source domains that
were assigned to the same sentence into a single
source domain (composite source domains) and
removed duplicate sentences in the data to finally
have 1429 instances. So for example, if a metaphor-
ical sentence had multiple source domains such
as competition, game, and war annotated, in their
work the combination competition+game+war was
treated as a single source domain, which was a dif-
ferent source domain from, for example, competi-
tion as hown in Table 2.

In the case of highlighted aspects, the only com-
bination present is enemy/side. For consistency in
the task design, we also treat it as a separate label.
So, with a 70-30 train-test split, for each of our
experiments, we have 1000 training samples, 128
validation samples, and 301 test samples.

Table 1 shows the data distribution in the final
corpus for our experiments. As shown in table 1
the experiment corpus has 1429 with 138 source
domains and 78 highlighted aspects respectively
- emphasizing the sparse label distribution for the
downstream tasks of predicting source domains
and highlighted aspects. This sparsity is intrinsic to
metaphorical language due to its strong diversity.

5 Experiments

This section describes setup of the experiments we
carried out on the data from Section 4 to study
the effectiveness of the two proposed multitask
learning approaches from Section 3. We present
our basic experimental setup, before we give details
on the single-task baseline that we compare to as
well as on the two approaches.1

Task Input A limitation of the approach of Sen-
gupta et al. (2022) is that it appends the literal
metaphor annotated in the corpus of Gordon et al.
(2015) to the input metaphorical sentence (with a
separator token <SEP> in between).

In a real-world setting this information may not
be available. In our experiments, we predict source
domains and highlighted aspects without the literal
metaphor as input. However, to see the effective-
ness of our approaches, we also report on the results

1The source code of our experiments can be found here:
https://github.com/webis-de/EMNLP-23

with the literal metaphor, with the corresponding
single-task baseline setups.

Baseline We compare our multitask approaches
to a single-task approach, namely we use the con-
trastive learning approach of Sengupta et al. (2022)
here, trained separately for each task.

In this setup, during training, the input sentence
is first provided to the encoder in order to obtain
the input sentence representation. Similarly, the
corresponding label (highlighted aspect or source
domain depending on the downstream task) is pro-
vided as an input to the same encoder to get the
label representations - and hence the corresponding
weights are shared.

After that via contrasting learning, the input sen-
tence representation is compared to all the incorrect
label representations with paired cosine distance
where the training procedure is optimized with mul-
tiple negatives ranking loss - which learns the em-
bedding space of the representations such that the
given input sentence and the correct label are situ-
ated in close proximity in the embedding space.

At inference, the model receives an input sen-
tence in the encoder and forms the representation
as stated before. Then it compares the sentence
representation with all the labels present in the cor-
pus for the corresponding downstream task, with
paired cosine distance, and ranks all the labels in
the order of their similarity. Finally, the top-ranked
(most similar) label is chosen to be the prediction.

For our experiments with the metaphor appended
to the input, we perform the training and inference
similarly with the literal metaphor appended to the
input sentence with a with a separator token <SEP>
in both the cases.

Contrastive Learning Within the contrastive
learning setting, we use DeBERTA (He et al.,
2020), an enhanced encoder built on top of
RoBERTa (Liu et al., 2019), which relies on a dis-
entangled attention mechanism and has shown suc-
cess in recent NLP research (Zhao et al., 2022). We
employ it as the encoder for sentence-transformers
in all evaluated model configurations.

Multitask Learning To optimize the models of
our multitask learning approaches, we performed a
hyperparameter search over batch sizes from {4, 8},
learning rates in {2 · 10−5, 3 · 10−5, 4 · 10−5, 5 ·
10−5}, and epochs in {4, 5, 6}.

To find the best checkpoint per experiment, we
ran each model on each combination over the hy-
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Highlighted Aspects Source Domains

Task Input Approach Acc@1 Acc@3 Acc@5 Acc@1 Acc@3 Acc@5

Metaphorical sentence Single-task baseline 0.524 0.767 0.831 0.488 0.718 0.797
without literal metaphor Joint learning (ours) 0.491 0.734 0.847 0.455 0.664 0.734

Continual learning (ours) 0.535 0.767 0.867 0.522 0.718 0.781

Metaphorical sentence Single-task baseline 0.581 0.837 0.904 0.522 0.748 0.837
with literal metaphor Joint learning (ours) 0.508 0.800 0.910 0.508 0.730 0.827

Continual learning (ours) 0.522 0.817 0.905 0.571 0.764 0.821

Table 3: Evaluation of our two multitask learning approaches in predicting highlighted aspects and source domains.
Without the ground-truth literal metaphor appended to the metaphorical sentence, continual learning outperforms
the single-task baseline in both tasks. With the metaphor appended to the input, the ground-truth information seems
to partly outweigh the impact of multitask learning. The best result per block in each column is marked bold.

perparameters for 20 iterations on the validation
set. We then evaluated the optimal configuration in
each case on the test set.2

Metrics Given that the contrastive learning ap-
proach creates a ranking, we evaluate all models in
terms of top-1, top-3 and top-5 accuracy.

Here, top-1 accuracy means that only the
highest-ranked output (that is, a highlighted aspect
or a source domain, respectively) is chosen to be
correct. In top-3 accuracy and top-5 accuracy, the
output is seen as correct, if it is within the first three
and first five ranks, respectively.

6 Results

The main results of our experiments are shown in
Table 3. Overall, our continual learning approach
largely outperforms both the single-task baseline
and the joint learning approach in predicting both
highlighted aspects and source domains. This sug-
gests that the information of one of the concepts
improves model performance on the other.

The limited performance of the joint learning
approach may speak for that learning on two tasks
concurrently confused the model in some cases
rather than helping it to learn both tasks better. The
following subsections discuss our results in detail.

6.1 Highlighted Aspects

We discuss the results separately for the two task
variations: given only the metaphorical sentence as
input, and additionally given the literal metaphor.

Without Literal Metaphor as Input Compared
to the single-task baseline, the application of con-
tinual learning improves the top-1 accuracy by 1.1

2Detailed hyperparameter configurations are provided in
the appendix.

points from (0.524 to 0.535). While the top-3 ac-
curacy is the same as the baseline, the top-5 accu-
racy surpasses it clearly (by 3.6 points), suggesting
better overall representational capture in continual
learning. A value of 86.7 means that it manages to
put the right highlighted aspects into the top-5 in
almost 7 out of 8 cases.

With Literal Metaphor as Input Given ground-
truth information on the literal metaphor, the im-
pact of multitask learning largely disappears (ex-
cept for top-5 accuracy, where joint learning is
strongest with 0.910). This suggests that the infor-
mation about the literal metaphor suffices to tackle
the task with the straightforward single-task model,
while the multitask setting might increase complex-
ity unnecessarily.

6.2 Source Domains

Again, we look at the two task variations one after
the other.

Without Literal Metaphor as Input In the case
of predicting source domains, the continual learn-
ing setup outperforms the single-task baseline with
an overall top-1 accuracy increment by 3.4 points
(0.522 vs. 0.488), while it does not seem to help in
the case of top-3 and top-5 accuracies.

With Literal Metaphor as Input Finetuning
our model to predict source domains in the set-
ting where literal metaphors are added to the input
improves the accuracy by 4.9 points, consistent to
the case without the metaphor added to the input.
The high gain over the single-task baseline indi-
cates that the direct relationship of the metaphor
with its source domain further benefits the learning
capabilities of the model.

4641



7 Analysis

To further investigate into our results we looked
into the predictions of the two tasks for every ex-
perimental setup. In order to do that, we obtained
the confusion matrices of the outcomes of our ex-
periments (provided in the Appendix) and observed
particularly which labels have an improvement re-
sulting from our continual learning approach.

We also looked into the cases where both single-
task baseline and continual learning fail to predict
the correct outcome, to have a better idea where
the approach can be improved further. We classify
our analysis in two parts:

Improvement Incorrect prediction by single-task
but correct prediction by continual learning

No Gain Incorrect prediction by both single-task
and continual learning

7.1 Predicting Highlighted Aspects

In the following, we consolidate our main findings
for highlighted aspects with selected examples.3

Improvement We primarily observed that the
continual learning approach performs better in de-
tecting the aspects of threat and threatened, among
others. For example, for the sentence “Taxation de-
stroys earnings and ability to save/invest...inflation
destroys monetary wealth already owned.”, the con-
tinual learning approach predicts the highlighted
aspect correctly to be threat, unlike destruction
potential predicted by the single-task baseline.

Continual learning improves performance on the
aspect barrier such as in the sentence “This would
remove a mountain of taxation from the shoulders
of labor.”, where it correctly predicts the aspect
highlighted to be a barrier instead of a scale.

These particular outcomes indicate that, with the
knowledge of the source domain in this case, the
continual learning procedure captures the broader
implicit meaning better while the prediction of the
single-task setup is possibly more influenced by
the word destroy.

No Gain Both the single-task baseline and con-
tinual learning have room for improvements for
the aspects of change and agent. For instance, for
the sentence “But some pro-gun legislation, includ-
ing the sweeping ‘guns everywhere bill that was

3Detailed outcomes of the experiments on the test set are
provided with the code provided.

Sentence Metaphor Single
Task

Continual
Learning

We cannot allow
Texas to go down
the big govern-
ment pathway.

pathway goal movement

Gun control ad-
vances in the Sen-
ate, Democrats
thank MSM for
propaganda April
11, 2013

advances agent movement

These Are the
People Our
Money Is Mur-
dering in Gaza
22 July 2014

murdering criminal victim

Table 4: Comparisons of outcomes on the test set with
the literal metaphor appended to the input sentence,
to predict highlighted aspects. These examples, show
instances where the single-task baseline predicts the
highlighted aspect correctly (denoted in bold font) but
the continual learning predicts them incorrectly.

signed into law earlier this year by Georgia’s Re-
publican Gov. Nathan Deal, has advanced in recent
months.”, both the approaches predict the high-
lighted aspect to be agent instead of change.

Furthermore, for the sentence “The reality is that
firearm safety has not meaningfully advanced in the
past century.”, while the true label was agent, the
single-task setup predicts change and the continual
learning predicts movement, indicating a confusion
regarding the three aspects.

7.2 Predicting Source Domains

Analogously to the previous subsection, we here
present our findings on source domains.

Improvement As stated in Section 4, we have
composite source domains present in the corpus
which are combinations of individual source do-
mains that are present across the data.

We observe that continual learning can differenti-
ate better between predicting single and composite
source domains. An example is the source domain
of struggle where for the sentence “How can local
governments and civil-society organizations effec-
tively fight poverty and promote social responsibil-
ity in countries as diverse as Canada, China and
Ghana?”, continual learning predicts the source do-
main of struggle correctly instead of struggle and
war by the single-task baseline.

This holds true for other single and their equiv-

4642



alent composite source domains where in the sen-
tence for example “My point was that governments
have killed more people - the OP did not say the
US government but the last time I looked the US
Govt was in fact a ‘government and ‘governments
have killed far more people then individuals not
engaged in the service of ‘government.” the single-
task incorrectly predicts crime and physical harm
while continual learning predicts the correct source
domain physical harm.

No Gain Overall, continual learning improves
considerably over the single-task approach in pre-
dicting the source domains. However both the ap-
proaches systematically confused among source
domains such as natural physical force and body
of water, as in the sentence sweep out the old, then
when the fresh rain of democracy came, a whole
new country would spring up, like mushrooms. or
among building or low location as in the sentence
“This rate is an individual’s tax floor.”.

In the latter, it might be even challenging for
humans to be certain, because the metaphor tax
floor does indicate that the meaning originates from
the concept such as low location.

7.3 Predicting Highlighted Aspects With
Literal Metaphor as Input

One possibly unexpected outcome were the top-
1 accuracy results for predicting the highlighted
aspects with the metaphor added to the input as
shown in table 3. Upon inspection, we found out
that the continual learning approach was biased
towards the aspect movement as shown in Table 4.

In the sentence “We cannot allow Texas to go
down the big government pathway”, with the literal
metaphor pathway appended to the input, the con-
tinual learning approach predicts the highlighted
aspect to be movement instead of goal which is
correctly predicted by the single-task baseline.

Similarly, in the sentence “Gun control advances
in the Senate, Democrats thank MSM for propa-
ganda April11, 2013”, the continual learning setup
predicts the highlighted aspect to be movement. It
is highly likely that with the addition of the lit-
eral metaphor to the input, the continual learning
approach fails to capture the broader meaning mani-
fested by the sentence. On the contrary, without the
addition of the literal metaphor to the input, in the
similar experimental setting, continual learning ap-
proach predicts all the aspects correctly, supporting
our aforementioned theory.

Highl. Aspects Source Domains

Approach Acc@1 Relaxed Acc@1 Relaxed

Single-task 0.524 0.548 0.488 0.714
Joint learning 0.491 0.498 0.455 0.724
Continual learning 0.535 0.555 0.522 0.728

Table 5: Evaluation of all approaches in the relaxed
setting, comparing the Accuracy@1 from Table 3 to the
relaxed accuracy. No literal metaphor given as input.

Another interesting example is where the con-
tinual learning approach predicts the highlighted
aspect to be victim instead of criminal, as shown
in Table 4. While theoretically, it can be argued
that both of these aspects are highlighted by the
metaphorical usage of murdering in the sentence,
in the realm of the dataset, the single-task baseline
predicts correctly. Given the direct relationship of
a source domain to the metaphor, these outcomes
intuitively make sense, because of the information
regarding source domains already present in this
case. However, further experiments are required to
understand them better.

7.4 Relaxed Top-1 Accuracy
Our fine-grained analysis on the test data revealed
that continual learning particularly improves in dis-
tinguishing single and composite source domains.
However, they also showed that the single-task
baseline, in most cases, predicted at least one of the
concepts in a composite source domain correctly.

To further investigate the performance of our ap-
proach we evaluate our approaches to the baseline
with a relaxed top-1 accuracy as shown in Table
5. Unlike our main evaluations, in this setting we
consider a prediction to be correct if one of the
n-combinations in the true label is correct. So if
the correct composite source domain for a given
metaphorical sentence was a combination of source
domain A and source domain B, we consider it to be
a correct prediction if the model predicts only the
concept A as the source domain of this sentence.

This intuitively also makes sense, given these
concepts are combined based on their semantic
similarity (Gordon et al., 2015) which means that
each of the concepts in a composite source domain
is semantically equivalent to the composite source
domain. For example, in the sentence “Across the
globe, free markets and trade have helped defeat
poverty, and taught men and women the habits of
liberty", the metaphor defeat is a meaning manifes-
tation of the composite source domain Competition,
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Game, and War. In this case, we consider it to be a
correct prediction if the model predicts War to be
the source domain.

In the relaxed accuracy setting, continual learn-
ing improves top-1 accuracies for highlighted as-
pects and source domains. Joint learning is more
effective than the baseline for source domains, sug-
gesting that semantic similarity is captured well
when considering highlighted aspects, despite the
complexity of composite source domains.

Overall, our analysis not only suggests that con-
trastive learning can also be applied to predict high-
lighted aspects, but also indicates the performance
of continual learning in these two downstream task
settings in the consistent performance improvement
across the experiments.

8 Conclusion

The conceptual mapping from source to target do-
main in metaphorical meaning manifestation in-
volves the highlighting of certain aspects of the
target domain. In this study, we have examined the
impact of source domain information on predicting
highlighted aspects, and vice versa.

To accomplish this, we have proposed two multi-
task learning approaches within a contrastive learn-
ing setting: one utilizing continual learning, the
other joint learning. We have evaluated the per-
formance of our approaches in comparison to ac-
cording single-task baselines for predicting either
source domains or highlighted aspects.

We have found that continual learning enhances
model performance for highlighted aspects and
source domains, suggesting mutual improvement.
Our fine-grained qualitative analysis further con-
firms the effectiveness of our approaches across
various experimental setups. Moreover, in a more
informal yet potentially more applicable assess-
ment, our method outperforms the performance of
the single-task baseline, demonstrating beneficial
outcomes through joint learning.

We conclude that the aspects highlighted by
metaphors can be predicted well in the majority
of cases—and even more so a small set of can-
didate aspects (as suggested by our top-5 accu-
racy results). We see this as a substantial step to-
wards more comprehensive computational interpre-
tation of metaphors. Following Lakoff and Johnson
(2003), metaphors do not only highlight certain as-
pects of a target domain, they also hide others at the
same time. Future work should thus pay more atten-

tion to what is not put emphasis on by a metaphor,
which will naturally bring up additional challenges
regarding the interpretation of metaphors.
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Limitations

Firstly, one of the major limitations of our work is
the nature of our downstream tasks, where from a
theoretical standpoint, the number of highlighted
aspects for a particular metaphor in a given context
are unbounded - which means one cannot say with
certainty, if a certain concept is the one and only
correct aspect for a given metaphorical sentence
While we have tackled this problem by treating the
data as is and by incorporating a real-world set-
ting for our experimental setup, it is also a limited
real-world setting that we employ since we take
the aspects annotated in the dataset to be the only
possible aspects for the metaphorical sentences.

Secondly, while our analysis reveals that our pro-
posed continual learning approach improves model
performance, without any level of explainibility
it is difficult to say exactly to what degree the in-
formation from one task does help in the model
performance of the other.

Finally, to test the generalizability of our ap-
proach it is important to test our models on similar
datasets. However, to the best of our knowledge,
this is the only dataset which fits our task design.

Ethical Statement

To the best of our knowledge, we understand that
there are no ethical concerns with our paper. We
use relatively transparent approaches a publicly
available dataset.4. To the best of our knowledge, it
is unlikely that a potential harm is posed by either
the data or our methods.
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9 Appendix

9.1 Hyperparameter Configurations

9.2 Single-Task Setup

Highlighted Aspects Without the literal
metaphor added to the input, we find the best-
performing checkpoint to result from a batch size
of 8, a learning rate of 5 ·10−5, and 5 epochs. With
the literal metaphor, 4 epochs are better while the
others are hyperparameters identical.

Source Domains Without metaphor added to the
input, we find the optimized parameters for the
best performing checkpoint to be a learning rate of
5 · 10−5, batch size of 8, and epochs of 6. With the
metaphor added to the input we find the optimized
parameters for the best performing checkpoint to
be a learning rate of 3 · 10−5, batch size of 8, a
epochs of 5.

9.3 Continual-Learning
Highlighted Aspects Without metaphor added
to the input, in the continual learning approach,
based on our hyperparameter search we find the op-
timized parameters for the best performing check-
point to be a learning rate of 5 · 10−5, batch size
of 8, and epochs of 6. With the metaphor added to
the input we find the optimized parameters for the
best performing checkpoint to be a learning rate of
5 · 10−5, batch size of 8, a epochs of 4.

Source Domains Without metaphor added to the
input, we find the optimized parameters for the
best performing checkpoint to be a learning rate of
4 · 10−5, batch size of 8, and an epoch of 5. The
encoder for the second phase of training is the best
performing model from the single-setup of predict-
ing source domains and hence it’s optimized with
the hyperparameters as mentioned above in section
9.2. With the metaphor added to the input we find
the optimized parameters for the best performing
checkpoint to be a learning rate of 4 · 10−5, batch
size of 8, a epochs of 5.

9.4 Joint-Learning
Highlighted Aspects In the joint learning setup,
we find the optimized parameters for the best per-
forming checkpoint to be a learning rate of 5 ·10−5,
batch size of 8, and epochs of 6. For the model
to identify each of the tasks individually, we add
a special token of <hghl> for every sentence for
the highlighted aspects and <scm> for the source
domains. At inference, we test the best performing
model on the test set. With the metaphor added to
the input we find the optimized parameters for the
best performing checkpoint to be a learning rate of
5 · 10−5, batch size of 8, a epochs of 6.

Source Domains The procedure to fine-tune for
this task is the same as mentioned as above, while
the only difference being at the inference time,
where the instead of highlighted aspects we pre-
dict source domains. Without metaphor added to
the input, we find the optimized parameters for the
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best performing checkpoint to be a learning rate of
5 · 10−5, batch size of 8, and epochs of 6. With the
metaphor added to the input we find the optimized
parameters for the best performing checkpoint to
be a learning rate of 5 · 10−5, batch size of 8, a
epochs of 5.

9.5 Confusion Matrices
Next pages show the confusion matrices for each
of the outcomes of the model performances on the
test set.
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Figure 3: Confusion matrix of test outcomes of the single-task baseline to predict highlighted aspects. No literal
metaphor provided in the input.
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Figure 4: Confusion matrix of test outcomes of the joint learning approach to predict highlighted aspects. No literal
metaphor provided in the input.
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Figure 5: Confusion matrix of test outcomes of the continual learning approach to predict highlighted aspects. No
literal metaphor provided in the input.
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Figure 6: Confusion matrix of test outcomes of the single-task baseline to predict source domains. No literal
metaphor provided in the input.
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Figure 7: Confusion matrix of test outcomes of the joint learning approach to predict source domains. No literal
metaphor provided in the input.

4652



Figure 8: Confusion matrix of test outcomes of the continual learning approach to predict source domains. No
literal metaphor provided in the input.
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Figure 9: Confusion matrix of test outcomes of the single-task baseline to predict highlighted aspects. Literal
metaphor provided in the input.
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Figure 10: Confusion matrix of test outcomes of the joint learning approach to predict highlighted aspects. Literal
metaphor provided in the input.
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Figure 11: Confusion matrix of test outcomes of the continual learning approach to predict highlighted aspects.
Literal metaphor provided in the input.
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Figure 12: Confusion matrix of test outcomes of the single-task baseline to predict source domains. Literal metaphor
provided in the input.
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Figure 13: Confusion matrix of test outcomes of the joint learning approach to predict source domains. Literal
metaphor provided in the input.
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Figure 14: Confusion matrix of test outcomes of the continual learning approach to predict source domains. Literal
metaphor provided in the input.

4659


