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Abstract

The concept of a complex event schema per-
tains to the graph structure that represents real-
world knowledge of events and their multi-
dimensional relationships. However, previous
studies on event schema induction have been
hindered by challenges such as error propaga-
tion and data quality issues. To tackle these
challenges, we propose a knowledge-enriched
discrete diffusion model. Specifically, we dis-
till the abundant event scenario knowledge of
Large Language Models (LLMs) through an
object-oriented Python style prompt. We in-
corporate this knowledge into the training data,
enhancing its quality. Subsequently, we em-
ploy a discrete diffusion process to generate
all nodes and links simultaneously in a non-
auto-regressive manner to tackle the problem
of error propagation. Additionally, we de-
vise an entity relationship prediction module
to complete entity relationships between event
arguments. Experimental results demonstrate
that our approach achieves outstanding perfor-
mance across a range of evaluation metrics.1

1 Introduction

Event schema induction aims to summarize com-
mon patterns and structures from historical events.
Current studies mainly induce the atomic schema
for each independent event type and their argu-
ments separately (e.g. “Attack” event with the ar-
guments: “Attacker”, “Target”, “Instrument” and
“Place”), without considering the correlation be-
tween events (Chambers and Jurafsky, 2008; Cham-
bers, 2013; Nguyen et al., 2015). However, some
real-world events are usually very complex, con-
sisting of multiple events and their relations. For
example in Figure 1, Bombing is a complex event,
which involves some fine-grained events, such as
Assemble, Detonate and Injure. Therefore, some

1Code is available at https://github.com/
hypasd-art/KDM/
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two police officers arrived at the area. They and three other responding 
officers subsequently evacuated homes in the area and called in
reinforcements, while a sixth officer stayed on the street to redirect 
pedestrians. The vehicle exploded at 6:30am. Eight people were treated at 
hospitals for injuries and later discharged. At least three vehicles burned
after the bombing, at least 41 businesses were damaged, and one building 
located across the street, away from the site of the bombing, collapsed.
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Figure 1: An example of schema induction process for
complex event “Bombing”.

researchers attempt to study the complex event
schema induction task, which abstracts typical
structures for complex events from event data. Fig-
ure 1 illustrates an example of the complex event
schema induction process for the scenario of Bomb-
ing. Initially, an information extraction (IE) tool
(Du et al., 2022) is utilized to extract instance
graphs from raw texts. Subsequently, we induce
the event schema based on these extracted instance
graphs. The resulting event schema is represented
as a graph, where events are interconnected through
temporal links (e.g., Damage occurs after Deto-
nate) and their argument relations (e.g., the target
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of the Detonate event assumes the victim role in
the subsequent Injure event).

However, inducing complex event schema is non-
trivial. As shown in Figure 1, it necessitates the
model’s ability to summarize the events within in-
stance graphs and possess a profound understand-
ing of the multi-dimensional relationships between
these events. Recently, graph-based methods are
proposed for this task by utilizing graph generation
techniques (Li et al., 2021; Jin et al., 2022). For ex-
ample, Li et al. (2021) proposes an auto-regressive
generation method that generates the schema fol-
lowing event temporal order. Similarly, Jin et al.
(2022) leverages an auto-encoder to encode the
global skeleton information and decode the schema
graph event by event. Despite successful efforts,
these methods still face two critical challenges:

Knowledge Coverage of Instance Graphs: The
event schema induction task summarizes the in-
stance graphs to obtain the event schema. Thus,
the quality of the instance graphs is crucial for
the event schema induction. However, the instance
graphs are extracted via Information Extraction (IE)
tools (Rui et al., 2022), whose knowledge coverage
is very limited. For example, as the representative
IE tool, RESIN (Wen et al., 2021) is trained on
fixed datasets and can only extract predefined types
of entities and events. Besides, the extraction per-
formance of RESIN is also unsatisfactory, which
only achieves approximately 64% of F1-score for
event detection on the ACE dataset. It indicates
that the IE tool is difficult to extract complete in-
stance information, even for predefined event types.
Therefore, how to improve the knowledge coverage
of instance graphs is an important problem.

Error Propagation of Auto-regressive Decod-
ing: Previous graph-based approaches are based
on the auto-regressive generation manner (Li et al.,
2021; Jin et al., 2022), generating the entire event
schema graph node by node, which may lead to
error accumulation over time and therefore degrade
the generation performance. For example, in Fig-
ure 1, the model may mistakenly generate “Injure”
instead of “Detonate” leading to the omission of
subsequent events such as “Damage” and “Inves-
tigate” in the generated schema or resulting in in-
correct nodes being generated in the next. The
final generated event schema graph will consist of
dozens of nodes and edges at the minimum, as each
instance graph used for training contains an average
of 117 event nodes and 246 temporary links accord-

ing to our statistics on the Suicide-IED dataset (Li
et al., 2021). The need to generate so many nodes
and edges will inevitably exacerbate the problem
of error accumulation. Thus, it is essential to ad-
dress the error propagation problem during schema
graph generation.

In this paper, we propose a novel method termed
as Knowledge-Enriched Diffusion Model (KDM)
to address aforementioned problems. Firstly, to im-
prove the knowledge coverage of instance graphs,
we devise a Instance Graph Expansion module. As
Large Language Models (LLMs) are trained on
vast corpora of texts (Touvron et al., 2023; Zhao
et al., 2023; Wang et al., 2023) and therefore pos-
sess extensive event and entity knowledge of the
real world, we leverage the LLMs (Chowdhery
et al., 2022; Ouyang et al., 2022) as the knowledge
databases to inject knowledge into instance graphs.
The module utilizes a Python style object-oriented
prompt to extract event knowledge from LLMs, and
adds the knowledge into the instance graphs. Sec-
ondly, to tackle error propagation of auto-regressive
decoding, we propose an Event Skeleton Gener-
ation module, which utilizes discrete diffusion
model to predict all nodes and links simultaneously
in non-auto-regressive manner but not generates
individually based on time series, which alleviate
the error propagation problem (Austin et al., 2021;
Yang et al., 2023; Vignac et al., 2022). Finally,
we devise an Entity Relation Prediction module,
which expands the event skeleton with correspond-
ing arguments and predicts their relations to get a
complete schema.

The contributions of our work include: (1) We
propose a Knowledge-Enriched discrete Diffusion
Model (KDM) for complex event schema induc-
tion task. To the best of our knowledge, we are
the first to simultaneously utilize LLMs and dif-
fusion models to accomplish the task. (2) To
improve knowledge coverage of instance graphs,
we propose an Instance Graph Expansion module,
which distillates the event knowledge in LLMs with
python code-style prompt. To solve the error prop-
agation problem, we design an event skeleton gen-
eration module, which predicts all nodes and links
simultaneously. (3) We conduct extensive experi-
ments on three widely used datasets. Experimental
result indicates that our proposed method outper-
forms state-of-the-art baselines.
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Figure 2: The discrete diffusion process. In forward process, the noise changes the types of nodes and edges.

2 Preliminaries and Problem Formulation

2.1 Preliminaries
Discrete diffusion model preserves the discrete
characteristics of each element in the training data
x0, it introduces noise to each element xr

0 ∈ x0

to into the uniform distribution and reverses them
by removing the noise (Austin et al., 2021). Fig-
ure 2 shows the process of graph-based discrete
diffusion.

The forward process. This process progres-
sively adds noise to x0 by transition probability
matrix Qt at t step.

q(xt|xt−1) = xt−1Qt (1)

where |Qt|ij = q(xt = j|xt−1 = i) indicates the
probability of transition from xt−1 = i to xt =
j. The forward process gradually converts each
xr
0 ∈ x0 to a uniform distribution when T is large

enough.
The reverse process. Reverse process pθ with

learnable parameters θ aims to convert the noise
distribution xT back to the original x0:

pθ(x0:T ) = pθ(xT )
T∏

t=1

pθ(xt−1|xt) (2)

pθ(xt−1|xt) =

∫
q(xt−1|xt,x0)dpθ(x0|xt) (3)

and according to Bayes formula as follows:

q(xt−1|xt,x0) =
q(xt|xt−1,x0)q(xt−1|x0)

q(xt|x0)
(4)

Therefore, the task becomes predicting pθ(x0|xt)
using a neural network.

2.2 Problem Formulation
In the instance graphs about a specific topic y
(e.g., Bombing), nodes represent events and en-
tities, while edges have three types: the temporal
link, the argument link and the entity relation link.
The instance graph is denoted as G = (N , E), We

define the distribution of graph as G = (N ,E),
where node set N is sampled from node feature
distribution N ∈ Rn×a and edge set E is sam-
pled from edge feature distribution E ∈ Rn×n×b.
Here, c(p) represents the one-hot vector (category
scalar) sampled based on probability distribution
p. At time t, the instance graph is defined as
Gt = (N t, E t) = (c(N t), c(Et)).

The objective of this task is to learn an event
schema Sy from a set of instance graphs Dy =
{G(1),G(2), . . . ,G(m)} that belong to the same
specific topic.

3 Our Approach

To solve the complex event schema induction task,
we propose a Knowledge-Enriched Discrete Diffu-
sion Model, as shown in Figure 3. Our method
mainly consists of three modules: (1) Instance
Graph Expansion, which expands the instance
graphs using the complex event knowledge ob-
tained from LLMs atomically. (2) Event Skeleton
Induction, which summarizes the event evolution
skeleton using a discrete diffusion model. (3) Entity
Relation Prediction, which decorates the arguments
to the event skeleton and then use a simple graph
transformer to predict the entity relations. We will
illustrate each component in detail.

3.1 Instance Graph Expansion

In this section, we will illustrate how to obtain
knowledge about event schemas from LLMs and
inject them into instance graphs. Complex event
schemas involve intricate graph structures, while
LLMs are good at processing unstructured lan-
guage tasks. To retain structured information of
instance graphs, we need LLMs to be able to han-
dle structured inputs and outputs. Considering the
powerful coding capabilities of LLMs, we treat
events as Python objects. In detail, events, enti-
ties, and their intricate relations can correspond
to classes, attributes, and instances in the object-
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Figure 3: The model structure. The data passes through Instance Graph Expansion module, Event Skeleton
Generation module, and Entity Relation Prediction module in sequence to obtain the final schema.

oriented paradigm, respectively. This module in-
cludes three aspects: event knowledge expansion,
temporal relation expansion, and entity relation ex-
pansion.

In event knowledge expansion, we select fre-
quently occurring event sequences from the train-
ing instance graphs and write them into Python
classes. Then we ask the LLM to enrich Python
code. In this way, we will obtain new classes which
represent new events that have a high correlation
with the scenario. We filter out new events that
occur less frequently than a hyperparameter K and
are not in the predefined event categories. In tempo-
ral relation expansion, we write the obtained events
as multiple-choice questions to establish their tem-
poral relation with existing event sequences. In
entity relation expansion, we obtain the argument
connection relation between the new and existing
events by encoding new events into Python code
and instantiating the class. By effectively lever-
aging the complex event knowledge contained in
LLMs, our approach enhances the event schema
generation process. The details and examples refer
to Appendix E.

3.2 Event Skeleton Generation

In this section, we will introduce the forward and
reverse processes of discrete diffusion based on the
instance graphs through Instance Graph Expansion
module. We have adopted the diffusion framework
of Vignac et al.(2022) and made improvements
based on it. Here, we denote the distribution G at

time t as Gt.
The forward diffusion process. In this process,

we apply noise separately on each node and edge.
This is achieved by multiplying the node and edge
distributions with the transition probability matrix
Q. By doing so, we can obtain the graph Gt from
the previous graph Gt−1. Mathematically, this can
be expressed as:

q(Gt|Gt−1) = (Nt−1Q
N
t ,Et−1Q

E
t )

= (NQ̄N
t ,EQ̄E

t )
(5)

Where Q̄t = Q0Q1 · · · Qt. The transition
probability matrix Qt is defined as αtI + (1 −
αt)1(1)T /K, where 1 is a column vector of all
ones, and αt varies from 1 to 0 (Austin et al.,
2021). This formulation ensures that the distribu-
tion q(Gt|G0) consistent with uniform distribution
when time t becomes sufficiently large.

Next, we sample the node and edge types from
these probability distributions to obtain a discrete
graph:

Gt = c(q(Gt|Gt−1)) (6)

The reverse diffusion process. We aim to re-
move the noise from the graphs using a parameter-
ized reverse process pθ. Following the formulation
presented by Austin et al.(2021), we can express
the posterior pθ(Gt−1|Gt) as:

pθ(Gt−1|Gt) =

∫
q(Gt−1|Gt,G0)dpθ(G0|Gt) (7)

To predict the clean graph distribution Gt
p =

pθ(G0|Gt) at time t given the noisy input Gt, we
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train a graph transformer ϕθ that outputs the clean
graph representation:

Gt
p = (N t

p,E
t
p) = ϕθ(Gt) (8)

Our model ϕθ adopt transformer structure
(Vaswani et al., 2017). Previous graph transformer
model (Ying et al., 2021) is not appropriate for
encoding directed graphs based on time series, be-
cause the relative position information between
nodes is lost during the noise adding process. For
instance, the self-attention mechanism module in
the transformer cannot differentiate two “transport”
events that occur in different time periods. To ad-
dress this issue, we encode the depth information
of event nodes as a fixed-feature embedding ndep

into the model. Before inputting the graph into
the transformer, we add the depth feature to the
corresponding node feature.

The depth fixed-feature embedding is encoded
as follows:

ndep =

{
sin(wk · nd), i = 2k

cos(wk · nd), i = 2k + 1
(9)

where wk = 1/100002k/nd and nd is the average
depth of node n, i is the index of the depth embed-
ding.

Inspired by Vignac et al.(2022), our transformer
model comprises several layers, each of which con-
sists of a self-attention module and a feed-forward
network. For layer l, the self-attention module
takes as input time features t, node features N t

l ,
edge features Et

l , and updates their representation
as follows:

Attl = Et
lWa +Et

lWm ⊙N t
l WQ(N

t
l WK)T (10)

N t
l+1 = MLP (tWtn +AttlN

t
l WV ) (11)

Et
l+1 = MLP (tWte +Attl) (12)

where ⊙ denotes the pairwise multiplication. Wa,
Wm, Wtn, Wte, WQ,WK ,WV are trainable pa-
rameters.

To optimize our model, we use the cross-entropy
loss LCE weighted by λ:

LCE(G
t
p,G) =

∑

G∈D
CE(N t

p,N) + λCE(Et
p,E) (13)

Once we obtain the clean graph distribution Gt
p,

we can infer the node distribution pθ(nt−1|nt) and
edge distribution pθ(et−1|et) using the equations:

pθ(nt−1|nt) =

Kn∑

n0=1

q(nt−1|nt, n0)pθ(n0|nt)

pθ(et−1|et) =

Ke∑

e0=1

q(et−1|et, e0)pθ(e0|et)

(14)

where Kn is the node type number, and Ke is edge
type number. Before the next reverse process, we
will get the discrete graph Gt−1 from its distribution
by probability sampling.

Our model obtains the final event schema G
through T-step reversing process in non-AR man-
ner. For further algorithm and derivation details,
please refer to Appendix C.

Conditional Generation. Previous approaches
(Li et al., 2020, 2021; Jin et al., 2022) need to
train separate models for each scenario to ensure
accurate generation. However, in order to generate
event schemas for various scenarios using a single
model and improve the model’s generalization ca-
pabilities, we also propose the conditional diffusion
model named as KDMall as a supplement.

We incorporate the category information y of the
instance graphs as an additional attribute to control
the training process of the model (Ho and Salimans,
2022; Dhariwal and Nichol, 2021). This allows us
to influence the category of the generated schema.
The formulation is as follows:

pθ(Gt−1|Gt,y) =

∫
q(Gt−1|Gt,G0)pθ(G0|Gt,y)

(15)

Therefore, we only need to encode the category
information y into the neural network. We sim-
ply concatenate it into temporal features, enabling
the conditional diffusion model to generate event
schemas of different categories:

Gt
p = (N t

p,E
t
p) = ϕθ(Gt,y) (16)

3.3 Entity Relation Prediction

In this module, we have developed a simple ar-
chitecture that combines a graph transformer for
obtaining node representations with an MLP layer
for relation prediction. This module takes the event
skeleton, expanded with event argument roles, as
input and generates the complete event schema by
predicting the relations between entities.

While previous models have primarily focused
on entity types in the classification process, neglect-
ing the significance of events and event roles, we
address this limitation by artificially aggregating
them together. We initialize the node features us-
ing BERT model (Devlin et al., 2018). Specifically,
for each event or entity node ni, BERT (ni) rep-
resents its type embedding encoded by BERT. For
entity nodes, ne

i indicates the event node that entity
node ni belongs to, and nr

i is a fixed embedding
representing the role played by entity node ni in
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event ne
i , The encoding formula of embeddings nr

i

is the same as that of equation 9.

ni = concat(BERT (ni), BERT (ne
i )) (17)

Our transformer encoder is the same as the
model used for Event Skeleton Generation, except
that it lacks the time feature. The graph transformer
outputs n̂i corresponding to the input ni, which is
then passed to the MLP predictor.

The predicted relation type rij of entity node ni

and nj is then computed as:

rij = MLP ([n̂i + nr
i , n̂j + nr

j ]) (18)

It is worth noting that the classification problem
is highly unbalanced. To address this issue, we set
different weights for different categories of the loss
function, defined as:

L =
∑

entity i,j

H(r̂ij)CE(r̂ij , rij) (19)

where r̂ij denotes the true relation between entity
i and j and H(·) is a scalar function that assigns
balanced weights to different relationships, with
each relationship corresponding to a specific value.

4 Experiments

4.1 Datasets
We conduct experiments using the IED Schema
Learning Corpus released by Li et al.(2021). The
dataset utilizes the DARPA KAIROS ontology. The
corpus specifically focuses on three sub-types of
complex events related to Improvised Explosive
Devices (IEDs): General-IED, Mass-Car-Bombing-
IED, and Suicide-IED.

However, the test data in the corpus has data
quality issues since it is also extracted through IE
tools. To address this, we manually modify the test
data, generating golden test event schemas based
on the modified data. Additionally, to ensure the
objective evaluation of our model’s effectiveness,
we record the test results using the original, unmod-
ified data, which are provided in Appendix 7.

4.2 Baselines
In this work, we compare the proposed event
schema induction model with two baselines:

Frequency-Based Sampling (FBS) model
which constructs the event schema according to
frequency distributions of temporal links in the
training data. At each timestamp, FBS samples a
pair of event types according to their frequency and

adds the sampled edge into the schema graph. The
procedure is repeated until FBS detects a cycle in
the schema graph after adding a new edge.

Double Graph Auto-encoders Model (Double-
GAE) (Jin et al., 2022), the state-of-the-art schema
induction model which designs a variational di-
rected acyclic graph auto-encoder to extract the
event skeleton. Then it uses another GCN based
auto-encoder to reconstruct entity-entity relations.

Large Language Model (LLM) have strong un-
derstanding and generation abilities, We ask the
large language model (ChatGPT) to directly gener-
ate the event schema and use it as the baseline.

4.3 Evaluation Metrics
To evaluate the quality of the generated schema,
we compare the schema with test instance graphs
in terms of the following metrics to see how well
the schema match real world instance graphs, the
following evaluation metrics are employed:

(1) Event type match. we calculate the F1 score
between the event types present in the schema
graph and test instance graphs.

(2) Event sequence match. A good schema is
able to track events through a timeline. we calculate
the F1 score between the event sequences of length
2 or 3 present in the schema graph and the test
instance graphs.

(3) Node/edge type distribution. we compare the
Kullback-Leibler (KL) divergence of the node and
edge type distributions between the schema graph
and each test instance graph.

(4) Event Argument Connection Match (CM).
Complex event graph schema includes entities and
their relations, representing how events are con-
nected through arguments. Because there is a se-
rious long tail issue with the data, we calculate
the macro F1-score for every pair of relationships
between entities.

4.4 Overall Results
As shown in Table 1, the result demonstrates the ef-
fectiveness of KDM in capturing important events
and their relationships. Specifically, our approach
outperforms the baseline methods in terms of event
sequence matching, particularly for longer path
lengths (l=3).

These improvements can be attributed to the
discrete diffusion process employed in our model.
This process allows our model to simultaneously
predict the categories of all nodes and edges, mak-
ing it well-suited for graph generation. Addition-
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Model Event type Event sequence match KL divergence CMDataset Match(F1) l=2 l=3 Node-type Edge-type

General-IED

FBS 0.614 0.199 0.064 2.98 6.13 -
DoubleGAE 0.627 0.266 0.093 2.43 5.57 0.046

LLM 0.520 0.176 0.041 2.72 5.84 -
KDM (ours) 0.704 0.380 0.181 2.32 4.53 0.185

Car-IED

FBS 0.650 0.198 0.065 1.86 5.85 -
DoubleGAE 0.654 0.285 0.107 2.12 5.71 0.044

LLM 0.515 0.150 0.031 2.70 6.34 -
KDM (ours) 0.701 0.395 0.207 1.91 4.16 0.176

Suicide-IED

FBS 0.626 0.210 0.061 2.11 5.59 -
DoubleGAE 0.624 0.272 0.096 2.19 5.33 0.046

LLM 0.493 0.174 0.053 2.75 5.65 -
KDM (ours) 0.713 0.462 0.268 1.91 3.45 0.176

Table 1: Schema matching score (%) is calculated by checking the intersection of the induced schemas and the
manually checked test schemas.

Model Event type Event sequence match
Dataset Match(F1) l=2 l=3

General-IED
KDM 0.704 0.380 0.181
KDMall 0.723 0.413 0.202

Car-IED
KDM 0.701 0.395 0.207
KDMall 0.703 0.389 0.198

Suicide-IED
KDM 0.714 0.462 0.268
KDMall 0.714 0.450 0.251

Table 2: Schema matching score (%) by checking the in-
tersection of induced schemas and manual checked test
schemas. KDMall is the conditional diffusion model
trained on three IED datasets.

ally, the Transformer architecture leveraged in our
model effectively utilizes global features through
the self-attention mechanism, resulting in improved
prediction accuracy.

Furthermore, our model shows remarkable im-
provements in the Connection Match evaluation, in-
dicating the effectiveness of our graph transformer
model than GCN graph auto-encoder in Double-
GAE.

4.5 Conditional Generation Results

Building upon the aforementioned diffusion model,
in order to improve the possibility of the model’s
generalization ability, we present an extension in
the form of a conditional diffusion model as a sup-
plement. This model enables the generation of
event schemas for various scenarios using a single
model.

As shown in Table 2, when comparing KD-
Mall with our model trained on a specific-dataset,

we find that KDMall shows improved general-
ization capabilities and better understanding of
event relationships, particularly in the “General-
IED” scenario. Additionally, in other datasets, KD-
Mall demonstrates comparable results to the model
trained on a single dataset, indicating the potential
of our conditional generation process. The incorpo-
ration of diverse training data enables the model to
learn common patterns and associations across dif-
ferent scenarios, leading to improved performance
and broader applicability (Sastry et al., 2023; Kim
et al., 2022).

4.6 Ablation Experiment

To demonstrate the effectiveness of our approach,
we conduct ablation studies on the “Suicide-IED”
dataset. (1) IGE Module Ablation Experiment:
To prove the effectiveness of our approach, we
conduct experiments as shown in Table 3. JSON
is a prevalent format for representing structured
data. We encode the data in JSON format and
instruct the LLMs to perform expansion, while
maintaining the rest of the process consistent with
the Python prompt approach. As shown in the Ta-
ble, the results obtained through the use of Python
prompts are noticeably better than those achieved
with JSON prompts. And after filtering, the event
types generated by the Python prompt are signifi-
cantly more numerous than those generated by the
JSON prompt. This observation underscores the
effectiveness of the Python prompt approach. (2)
Diffusion Model Ablation Experiment: In Ta-
ble 4, comparing our KDM model with a variant
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Model Event type Event sequence match(F1) KL divergence ENMatch(F1) l=2 l=3 Node-type Edge-type

without IGE 0.672 0.411 0.216 1.96 3.67 -
IGE with JSON prompt 0.685 0.418 0.221 1.94 3.89 2
IGE with Python prompt 0.713 0.462 0.268 1.91 3.45 9

Table 3: Results of different prompts for the IGE Module on Suicide-IED dataset. EN is the number of effective
events generated by the LLM after filtering, which are used for Instance Graph Expansion.

Model Event type Event sequence match(F1) KL divergence
Match(F1) l=2 l=3 Node-type Edge-type

KDM 0.713 0.462 0.268 1.91 3.45
w/o depth 0.709 0.429 0.209 1.92 3.83
w/o IGE 0.672 0.411 0.216 1.96 3.67

Table 4: The diffusion model ablation experiment on Suicide-IED dataset. “w/o depth” denoted as trained the model
without depth features in graph transformer; “w/o IGE” denoted as trained the model on the dataset without Instance
Graph Expansion module.

that removes the Instance Graph Expansion mod-
ule, Our model achieves a 4.1% increase in node
matching accuracy, proving the effectiveness of
Instance Graph Expansion module. Additionally,
by incorporating depth information, we observe
a notable 5.9% improvement in sequence match-
ing. These results demonstrate that the inclusion
of depth information enhances our model’s ability
to capture the structural characteristics of graph,
proving the effectiveness of adding depth features.
(3) Entity Predictor Ablation Experiment: In
Figure 4, Compared to not setting weight hyperpa-
rameters, our model achieves a significant 5.57%
improvement in the macro F1 index, demonstrat-
ing that our weight scalar function significantly
addresses the long-tail data problem. Moreover,
when comparing the results of “w/o RE” and “w/o
IGE”, the improvements highlight the effective-
ness of adding role and event features and Instance
Graph Expansion module.

4.7 Case Study

In Figure 5, we observe that our Instance Graph
Expansion module successfully generates a schema
that encompasses a broader range of events and ex-
hibits more comprehensive temporal relationships
within complex events. This outcome support the
effectiveness of leveraging object-oriented coding
to distill knowledge from LLMs. Additionally, we
provide a case study showcasing the diffusion pro-
cess on the “Suicide-IED” dataset in Figure 6 in
Appendix.

17.67
16.53

12.10

16.01

MACRO F1

KDM KDM w/o RE

KDM w/o Weight KDM w/o IGE

Figure 4: The entity predictor ablation experiment. “w/o
RE” denoted as trained without fixed role embedding
features and event embedding features; “w/o weight” de-
noted as trained without hyperparameter weight; “w/o
IGE” denoted as trained without Instance Graph Expan-
sion module.
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Figure 5: Case Study on event schema skeleton
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5 Related Work

Event Schema Event schema induction is a com-
prehensive graphical pattern composed of temporal
and multi hop argument relationships (Li et al.,
2020; Jin et al., 2022). It is actually a combina-
tion of atomic schema induction (Chambers, 2013;
Yuan et al., 2018; Du and Ji, 2022; Wang et al.,
2021) and script learning (Rudinger et al., 2015;
Granroth-Wilding and Clark, 2016; Weber et al.,
2018). Clearly, the event schema induction has
broad application significance. For example, the
event schema facilitates analysis and prediction of
future events, aiding in the development of reac-
tion plans for relevant scenarios (Li et al., 2021;
Dror et al., 2023; Pan et al., 2021). Event schemas
can be used as guidance information in informa-
tion extraction, which helps people understand the
internal logic of events (Wen et al., 2021).

Diffusion models Diffusion model (Sohl-
Dickstein et al., 2015; Ho et al., 2020) has
achieved impressive results on image, text and
audio generation (Rombach et al., 2022; Shen
et al., 2023; Li et al., 2022; Gong et al., 2022;
Kong et al., 2020; Yuan et al., 2022). Recently,
Vignac et al. (2022) have shown great potential in
graph generation field. Previous graph diffusion
models embedded graphs in a continuous space
by adding Gaussian noise to the nodes and edges
feature (Niu et al., 2020; Jo et al., 2022). However,
this approach destroys the graph’s sparsity and
makes it hard to capture the node connections
(Vignac et al., 2022). Discrete diffusion model
(Austin et al., 2021; Yang et al., 2023; Vignac
et al., 2022; Johnson et al., 2021) overcomes this
problem by utilizing Markov process that can
occur independently on each node or edge.

6 Conclusion

In this work, we identify the limitations of previ-
ous works and proposed a Knowledge-enriched dis-
crete diffusion model. To enhance the quality and
coherence of the generated schemas, we harness
the potential and rich knowledge present in LLMs
by utilizing them for Instance Graph Expansion.
Our model leverages a discrete diffusion process
to learn and generate event skeletons, while incor-
porating an entity relationship predictor to predict
the relationships between event arguments. Addi-
tionally, we propose a conditional diffusion model
with the purpose of generating schemas for mul-

tiple diverse topics. We achieved the best results
among multiple different evaluation indicators.

Limitations

We only consider the temporal relationship be-
tween events here and do not consider the hier-
archical structure of the event schema, which may
result in not perfect event schemas generated by us.

Due to the limited availability of datasets, our
conditional diffusion model KDMall has only un-
dergone unified training and testing on three highly
related explosive events, requiring more categories
and quantities of data for the comprehensive ability
testing of the model.

Ethics Statement

We use a discrete diffusion model to generate event
skeletons and design an entity relationship predic-
tor. At the same time, we have fully explored the
potential rich knowledge in LLM for knowledge ex-
pansion. Our work has improved the effectiveness
of event schema induction, helping people better
summarize the logic and ontology knowledge of
events, making contributions to this field.
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A Data Preprocessing

In the data preprocessing stage. Firstly, for each
complex event, we constructed an instance graph
by merging coreferential events or entities. Isolated
events were excluded from the instance graphs dur-
ing the graph construction process.

Specifically, we followed the cleaning strat-
egy outlined in Jin et al. (2022). We deleted
links with the same start and end types, as well
as event-event links such as (DIE, INJURE),
(ARRESTJAILDETAIN, ATTACK), (ENDPO-
SITION, STARTPOSITION), (DEFEAT, EX-
CHANGEBUYSELL), (SENTENCE, DIE), (END-
POSITION, SENTENCE), and (THREATENCO-
ERCE, RELEASEPAROLE) from the instance
graphs. The maximum number of graph nodes
m is set to 50.

B Training And Evaluation Details

In our event skeleton induction process, we utilize
a 12-layer Transformer model. Additionally, we
employ a 3-layer Transformer as our entity relation
predictor. To balance the trade-off between nodes
and edges, we set λ to 3. The learning rate is set to
1e-4, and the number of diffusion training epochs
is set to 2500. The scalar function H(r̂ij) is set to
0.1 if rij indicates “No-Relation”, otherwise the
function is set to 0.9. We conduct evaluations using
500 randomly generated event schemas for each
performance metric. The node number is sampled
from a range of 25 to 35. We choose the model
checkpoint from the last epoch for evaluation.

In the Instance Graph Expansion process, we
select the top 10 frequently occurring event se-
quences from the training data as inputs for Chat-
GPT. Each event sequence is input to ChatGPT 10
times to obtain the final result. Furthermore, we
use a hyperparameter K of 3 to filter out events
generated by ChatGPT that occur less frequently.

In the Entity Relation Prediction module, each
event has a predetermined set of argument roles.
For example, the “Injure” event may have the ar-
gument role “Victim” limited to entity types “PER”
and “AML”. We count the occurrences of entity
categories for each role in all instance graphs. The
entity category with the highest occurrence in the
corresponding role is then inserted into the event
skeleton.

To modify the test data, we made the following
modifications: 1. Merge the same path: For all
subsequent nodes of each event node, merge event
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nodes with the same type, starting from the START
node and merging in the order of the BFS algorithm.
2. Supplementary event nodes: Based on human
judgment, randomly add possible missing events
that may occur in the schema.

C Conditional Discrete Diffusion Model

Transition probability matrix in forward pro-
cess. In discrete diffusion model, a transition
probability matrix Q is defined to corrupt data for
each step. Here Qt = αtI + (1 − αt)1(1)T /K,
where 1 is a column vector of all ones, αt varies
from 1 to 0 making sure the node and edge fea-
ture sampled from is a uniform distribution at time
T (Hoogeboom et al., 2021; Yang et al., 2023).
βt = (1− αt)/K and the transition matrix can be
represent as:

Qt =




αt + βt βt . . . βt

βt αt + βt . . . βt

· · . . . ·
· · . . . ·
βt βt . . . αt + βt




we can calculate q(xt|x0) according to follow-
ing formula:

x0Q̄t = ᾱtx0 + β̄t. (20)

as t is enough large, αt is close to 0, the graph
distribution Gt is confirm to uniform distribution.

Reverse discrete diffusion process, we convert
the noise GT into G, whose joint probability hav-
ing a Markovian structure follows (Vignac et al.,
2022):

log pθ(G0:T ) = log p(GT )
T∑

t=1

log pθ(Gt−1|Gt)

where pθ is the process of the reverse with learnable
parameters θ. and for each discrete elements x in
graph G0:T posterior probability is :

pθ(xt−1|xt) =
∑

x

q(xt−1|xt, x)p(x)

=
∑

x0

q(xt−1|xt, x0)pθ(x0|xt)

The posterior q(xt−1|xt, x0) can be derived accord-
ing to Bayes formula as follows (Austin et al.,

2021):

q(xt−1|xt, x0) =
q(xt|xt−1, x0)q(xt−1|x0)

q(xt|x0)

=
xt(Qt)

T ⊙ x0Q̄t−1

x0Q̄t(xt)
T

To train the discrete diffusion process, we mini-
mize the negative logarithmic likelihood of the pre-
dicted distribution of the model using variational
lower bound (VLB), We use G0 here to represent
G:

L = −Eq(G0)[logpθ(G0)]

≤ LV LB

= −Eq(G0:G)[log pθ(G0)]

= Eq(G0:T )[DKL(q(GT |G0) ∥ pθ(GT ))︸ ︷︷ ︸
LT

+
T∑

t=2

DKL(q(Gt−1|Gt,G0) ∥ pθ(Gt−1|Gt))︸ ︷︷ ︸
Lt−1

− log pθ(G0|G1)︸ ︷︷ ︸
L0

]

= Eq(G0:T )[DKL(q(GT |G0) ∥ pθ(GT |Gn,Gd))︸ ︷︷ ︸
LT

+ log pθ(Gn,Gd)

+
T∑

t=2

DKL(q(Gt−1|Gt,G0) ∥ pθ(Gt−1|Gt))︸ ︷︷ ︸
Lt−1

− log pθ(G0|G1)︸ ︷︷ ︸
L0

]

Please note that Gt is sampled from the node
number distribution Gn and the corresponding
depth distribution Gd. Therefore, the proba-
bility pθ(GT ) can be expressed as pθ(GT ) =
pθ(GT |Gn,Gd)pθ(Gn,Gd).

The terms LT and Lt−1 represent the Kullback-
Leibler (KL) divergences between graph categori-
cal distributions, while L0 represent the predicted
probabilities of the graph G0 based on the noisy
graph G1. The algorithms 1 and 2 is the training
and generating algorithms about KDM.

D Supplement Experiment

As presented in Table 5, we evaluate our model
on the original testing data used by (Jin et al.,
2022) and observe consistent outperformance of
our model compared to the baselines specially in
sequence match. This result highlights the strong
capability of our discrete diffusion model in gener-
ating high-quality event schemas. Interestingly, we
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(a) t=500

(b) t=250

(c) t=0

Figure 6: Case Study on diffusion process. During
the reverse process, t gradually changes from 500 to 0,
and the corresponding schema for t at different times
corresponds to the above.

note that models without knowledge expansion ex-
hibited better performance in this evaluation. This
finding also suggests that the original test data may
not effectively measure the quality of the generated
schemas.

Algorithm 1: Training KDM
1 for G in D do
2 sample t from Uniform(T);
3 sample Gt from distribution

(NQ̄N
t ,EQ̄E

t );
4 estimate distribution Gt

p = ϕθ(Gt);
5 calculate loss LCE(G

t
p,G);

6 update network ϕθ

7 end

Algorithm 2: Sampling from KDM
1 sample GT from Uniform distribution;
2 for t = T to 1 do
3 convert Gt to distribution Gt;
4 Gt

p = ϕθ(Gt);
5 estimate distribution pθ(Gt−1|Gt);
6 sample Gt−1 from distribution;
7 end

E Instance Graph Expansion Details

The process of the Instance Graph Expansion is
shown in Figure 7, we also present our event knowl-
edge expansion prompt in Figure 8, temporal re-
lation expansion prompt in Figure 10 and entity
relation expansion prompt in Figure 9.
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Model Event type Event sequence match(F1) KL divergence
Dataset Match(F1) l=2 l=3 Node-type Edge-type

General-IED

FBS 0.617 0.149 0.064 1.88 4.32
DoubleGAE 0.697 0.273 0.128 1.66 4.96
KDM 0.663 0.318 0.132 3.01 5.08
KDM w/o IGE 0.698 0.327 0.138 2.52 4.87

Car-IED

FBS 0.542 0.126 0.038 4.12 6.37
DoubleGAE 0.674 0.259 0.081 2.14 5.42
KDM 0.702 0.371 0.180 2.07 4.47
KDM w/o IGE 0.757 0.411 0.185 1.42 4.24

Suicide-IED

FBS 0.642 0.164 0.048 2.39 6.36
DoubleGAE 0.709 0.290 0.095 1.76 5.91
KDM 0.688 0.415 0.217 2.13 3.75
KDM w/o IGE 0.738 0.467 0.268 1.61 3.50

Table 5: Schema matching score (%) by checking the intersection of induced schemas and test schemas. both the
training and testing instances are not through Knowledge Expansion. The baseline’s results are provided by previous
work.

ChatGPT

class Attack(event):
def __init__(self, attacker, target, instrument, 

place):
self.attacker = attacker
self.target = target
self.instrument = instrument
self.place = place

class DetonateExplode(event):
……

class Injure(event):
……

some python demo to model a bombing event 
scenario we know is above, please enrich the demo 
with new 'named entity' and 'event' python class. 
you should not repeat the python demo above!

(Attack, DetonateExplode, Injure)

class Rescue(event):
def __init__(self, rescuer, victim, location):

self.rescuer = rescuer
self.victim = victim
self.location = locationclass 

class Evacuation(event):
def __init__(self, location, method):

self.location = location
self.method = method

In a complex bombing event scenario, 
'Attack', 'DetonateExplode', 'Injure' 
happened in time order, what is the 
most relative choice to class 
'evacuation' in this scenario:
A:Attack
B:DetonateExplode
C:Injure
then choose what is the most possible 
relation between your choice and 
'evacuation' in a bombing event
scenario:
A:temporal; 'evacuation' happened 
first
B:temporal; 'evacuation' happened 
after
C:attribute

class Attack(event):
……

class DetonateExplode(event):
……

class Injure(event):
……

class evacuation(event):
……

some python demo to model a bombing event 
scenario we know is above, please enrich the 
demo by instantiating the class to explain the 
relation between class 
Attack,DetonateExplode,Injure and evacuation, 
you should only generate demo to instantiate the 
above class.

Attack

DetonateExplode

Injure

Evacuation

DetonateExplode

Injure

Evacuation
Attack

Filter 

target
attacker

attacker

targetlocation
method

instrument

target
Injurer

event knowledge expansion temporal relationship expansion entity relationship expansion

Figure 7: This figure illustrates the Instance Graph Expansion process. The event knowledge expansion process
write selected event sequences into Python code and complete them by ChatGPT to generate new events; The
temporal relationship expansion process utilize choice question to link new event to sequence; The entity relationship
expansion process instantize the event class to get argument relations.
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Input:
class Attack(event):

def __init__(self, attacker, target, instrument, place):
self.attacker = attacker
self.target = target
self.instrument = instrument
self.place = place

class DetonateExplode(event):
def __init__(self, attacker, target, instrument, explosive_device, place):

self.attacker = attacker
self.target = target
self.instrument = instrument
self.explosive_device = explosive_device
self.place = place

class Injure(event):
def __init__(self, victim, injurer, instrument):

self.victim = victim
self.injurer = injurer
self.instrument = instrument

some python demo to model a bombing event scenario we know is above, please enrich the demo with new 'named 
entity' and 'event' python class. you should not repeat the python demo above!you should not repeat the python demo 
above!you should not repeat the python demo above!

Answer:
class Bombing(event):

def __init__(self, attacker, target, instrument, place, casualties):
self.attacker = attacker
self.target = target
self.instrument = instrument
self.place = place
self.casualties = casualties

class Evacuation(event):
def __init__(self, location, evacuees, reason):

self.location = location
self.evacuees = evacuees
self.reason = reason

class Investigation(event):
def __init__(self, location, investigators, start_date):

self.location = location
self.investigators = investigators
self.start_date = start_date

Figure 8: Instance of event knowledge expansion process

Input:
In a complex bombing event scenario, 'Attack', 'DetonateExplode', 'Injure' happened in time order, what is the most 
relative choice to class 'evacuation' in this scenario, please choose your answer from:
A:Attack
B:DetonateExplode
C:Injure

then choose what is the most possible relation between your choice and 'evacuation' in a bombing event scenario, please 
choose your answer from:
A:temporal; 'evacuation' happened first
B:temporal; 'evacuation' happened after
C:attribute
(attention you can only answer the above two questions only with A or B or C)

Answer:
B: DetonateExplode
B: Temporal; ‘evacuation' happened after

Figure 9: Instance of temporal relation expansion process
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Input:
class Attack(event):

def __init__(self, attacker, target, instrument, place):
self.attacker = attacker
self.target = target
self.instrument = instrument
self.place = place

class DetonateExplode(event):
def __init__(self, attacker, target, instrument, explosive_device, place):

self.attacker = attacker
self.target = target
self.instrument = instrument
self.place = place

class Injure(event):
def __init__(self, victim, injurer, instrument):

self.victim = victim
self.injurer = injurer
self.instrument = instrument

class Evacuation(event):
def __init__(self, location, method):

self.location = location
self.method = method

some python demo to model a bombing event scenario we know is above, please enrich the demo by instantiating the 
class to explain the relation between class Attack,DetonateExplode,Injure and Bombing, you should only generate demo 
to instantiate the above class.
one demo example is below:
# Instantiate Transport event
transport_event = Transport(Vehicle =“car”, Origin =“park”, Destination ="Building)
# Instantiate DetonateExplode event
detonate_explode_event = DetonateExplode(attacker="John", target="Building", instrument="Explosive", 
explosive_device="C4", place="City Center")
# Instantiate Investigate event
investigate_event = Investigate(location="City Center", investigator="Detective Smith")

Answer:
# Instantiate Attack event
attack_event = Attack(attacker="John", target="Building", instrument="Explosive", place="City Center")
# Instantiate DetonateExplode event
detonate_explode_event = DetonateExplode(attacker="John", target="Building", instrument="Explosive", 
explosive_device="C4", place="City Center")
# Instantiate Injure event
injure_event = Injure(victim="Jane", injurer="John", instrument="Explosive")
# Instantiate Evacuation event
evacuation_event = Evacuation(location="City Center", method="Emergency evacuation")

Figure 10: Instance of entity relation expansion process
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