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Abstract

In this work, we study the language model
backbone replacement problem for personal-
ized downstream tasks in a non-stationary on-
device scenario. In real world, company may
periodically update the knowledge and archi-
tectures of backbones to keep the competitive
in the market, meanwhile, to accommodate the
users’ own preference, models are personalized
to fit users’ own distribution locally. Tradi-
tional full model tuning or transfer learning for
such replacements often incur considerable lo-
cal device training costs and necessitate exten-
sive backpropagation within deep transformer
layers. Addressing this issue, we propose a
novel, lightweight tuning method for person-
alized NLP classification tasks post-backbone
replacement. Our approach leverages a person-
alized matrix calculated from documents cor-
responding to users’ old and new backbones.
This matrix facilitates top-layer parameter tun-
ing, drastically reducing backpropagation com-
putation. To further mitigate training costs as-
sociated with matrix linear optimization, we
employ correlation clustering to curate a few ex-
amples from personalized cluster sets for indi-
viduals. Our method achieves over 1000 times
computation reduction in Flops for backpropa-
gation and brings the user-specific initialization
for personal matrix yielding significant perfor-
mance boost compared with popular transfer
learning methods.

1 Introduction

Current Natural Language Processing (NLP) mod-
els, including the ones developed for edge de-
vices (Vucetic et al., 2022), heavily rely on pre-
trained backbone models, such as BERT (Devlin
et al., 2018) and RoBERTa (Liu et al., 2019). Re-
cent studies show that it is important to personalize
models on edge devices because of the privacy con-
cerns and the distribution discrepancies between lo-
cal data and public training data (Yan et al., 2022).

*Corresponding author.

Due to the fast growing popularity of large lan-
guage models (LLMs), novel pre-trained models
are released almost every week. However, the com-
puting power of edge devices is limited. How can
edge devices benefit from the most recent advances
of pre-trained backbone models without incurring
regular and high training costs in local devices?
Fig. 1 illustrates when and how the replacement of
backbone models may occur. For example, at an
early stage, an on-device NLP model, consisting of
Glove embeddings (Goldberg and Levy, 2014) and
the task-specific layers, was fine-tuned using the
private data on a local device. Thus, the model may
well remember personal information and adapt it-
self well into the local distribution. When a new
pre-trained model is released, such as BERT , the
user is eager to use the new backbone model but
does not want to fine-tune the whole model again
on the on-device data after the replacement.

Parameter-efficient tuning (Zhuang et al., 2023)
and continual learning (De Lange et al., 2021) are
the closest research areas to address this problem.
The current parameter-efficient tuning techniques
need to update only a small proportion of model pa-
rameters during training, but they still need to run
expensive backpropagation throughout the whole
models. Continual learning algorithms focus on
mitigating catastrophic forgetting, while learning
new tasks, but they do not consider changing back-
bone models with low costs.

Therefore, we propose a novel task: efficient per-
sonalized model tuning after replacing backbone
models and provide the first solution, Fast Linear
Adaptation(FaLA), that avoids backpropagation
through the backbone models after replacement.
Herein, we keep the logits of the old model on the
private training data and apply forward propaga-
tion of the new backbone model to obtain hidden
representations for the task-specific layers. The
new hidden representations are used to learn a per-
sonal matrix that is regularized by the logits of the
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Figure 1: The replacement scenario and workflow of FaLA .

old model. The corresponding learning problem
becomes a simple linear regression problem that
is feasible for resource limited devices. In addi-
tion, we show that the tuning speed can be further
improved by applying correlation clustering (Saha
and Subramanian, 2019) and sample representa-
tive training examples from the clusters. Through
extensive experiments, we show that

• Our method significantly outperforms the
competitive baseline that only fine tunes the
parameters of task specific layers, in terms of
F1 on two tasks: News Recommendation (Wu
et al., 2022) and Hate Speech Detection (Kan-
clerz et al., 2022).

• Our method consumes only 5.45e+9 FLOPS
on News Recommendation , which is sev-
eral magnitudes lower than that of Adapter
(1.40e+12) (He et al., 2021) and LoRA
(1.35e+12) (Hu et al., 2021) using the same
backbone models.

2 Related Work

On-device Personalization Personalization refers
to the incorporation of individual characteristics
and user-dependent contextual information into
generally trained models. Contrary to the assump-
tion that globally trained models interpret texts with
the same meaning for everyone, personalization

techniques (Flek, 2020) offer personal-oriented pre-
dictions under user-specific contexts.

As the data used for personalization often asso-
ciates with sensitive information like gender, age,
or user history behaviors, one compelling approach
is to conduct personalization locally especially un-
der the regulations like GDPR (Voigt and Von dem
Bussche, 2017). Wang (Wang et al., 2019) evalu-
ated on-device personalization under a federated
learning setting where personal data is preserved
on local devices. Their experiment on virtual key-
board next-word prediction for smartphones indi-
cated that a single user can benefit from personal-
ization. P-meta (Qu et al., 2022) proposed a mem-
ory and computation efficient method for model
adaptation by identifying a certain fraction of pa-
rameters that ensure rapid generalization and dy-
namically updating parameters to facilitate unseen
tasks. Zhang (Zhang et al., 2021) relaxed the con-
straint of model homogeneity and aggregated the
soft prediction of heterogeneous local devices us-
ing a knowledge group coefficient matrix to keep
the global model updated with personalized context.
However, these works did not extend to language
tasks, which heavily rely on pretrained representa-
tion from the backbone model, and all assume that
the personalized model is static in terms of model
architecture and globally learned knowledge. In
our work, we aim to investigate the preservation
of personal information with model replacement
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while minimizing the fine-tuning cost.

Personalized Neural News Recommendation
News Recommendation is essential to mitigate in-
formation overload for users (Wu et al., 2022). It
is widely employed in large news platforms like
Google and Microsoft. The system generally con-
sists of user modeling and news modeling. Using
learned representations of users and news, the sys-
tem predicts whether the news candidate will be
clicked or not. In most works, the click decision is
modeled by a similarity score between the encoded
user’s news history and the encoded news repre-
sentation (Wu et al., 2021). Welch (Welch et al.,
2022) used similar past user behaviors to learn a
dynamic representation for new users. Interactive
matching system (Qi et al., 2021) encoded user
behaviors in the similarity of semantics and knowl-
edge entities using a knowledge graph. We address
the more challenging and dynamic scenario where
the backbone is replaced and introduce user-level
non-independent and identically distributed data
into our work.

Personalized Hate Speech Detection
Hate Speech Detection is a highly subjective
tasks which leverages user-annotated data to
perform supervised learning. Each person can
have different considerations when labeling if a
document is hateful (Paun et al., 2018; Röttger
et al., 2022). Recent works identified the inherent
diversity of hate speech data (Kanclerz et al.,
2022) and empirically validated the user-specific
perception based on personalized embedding and
tailored classifiers. Since we focus on language-
based classification tasks that inherently have
user-specific distributions, we take personalized
hate speech classification as our target task.

Efficient Parameter Tuning In the context of
large language models, the training cost of fully
tuning a model to a new domain from scratch is
substantial. To preserve old knowledge and reduce
fine-tuning efforts, methods, such as Adapter (He
et al., 2021), Prefix-Tuning (Li and Liang, 2021)
and LoRA (Hu et al., 2021), need to train only a
small fraction of model parameters. These meth-
ods demonstrate improved performance in model
fine-tuning compared to simply fine-tuning the top
layer for downstream tasks, but they also encounter
certain drawbacks. They often suffer from insta-
bility since their parameters need to be randomly
initialized and require more training epochs to con-
verge (Chen et al., 2022). In addition, the gradient

computations of these methods during backprop-
agation are conditioned on the depth of the trans-
former blocks with adapters, yielding more float-
ing point operations per second (FLOPS ) when
training on hardware and also requiring memory
to store the gradient. To address these drawbacks,
our method only adds trainable parameters on the
top layer and reduces gradient flow within the last
prediction layer, which can significantly reduce the
training cost in personalized fine-tuning.

3 Methodology

An edge device model provider regularly devises
and trains new models on public or company-
owned data. When deploying new models to edge
devices, the goal is to minimize local tuning costs
to achieve superior performance than the previous
ones, while preserving privacy. In the following,
the models trained on the public data is referred
to as global models, while the models deployed to
local devices are called local models.

3.1 Tasks

We conduct our experiments on two highly per-
sonalized tasks, News Recommendation (NR) and
Hate Speech Detection (HS).

News Recommendation Our general framework
is inspired by similarity matching (Wu et al.,
2021) which utilizes the language model as shared
backbone to encode news candidate and user his-
tory representations. For each user ui, history
behaviors are a set of news that they read de-
noted as L = [l1, l2, ...ln]. A candidate news
set, prepared to make predictions about user pref-
erence, is denoted as R = [r1, ..., rm], where
m is the number of news candidates spanned by
the user. A BERT based news encoder, along
with an attention-based aggregation method, is
then employed to generate representations for the
news. News candidate representation is encoded
as vc = NewsEncoder(lc) and user representa-
tion as u = UserEncoder(NewsEncoder(L)).
In first training phrase, the model is fine-tuned with
globally collected user information. Given a user
behavior list and a candidate news, we compute the
inner product of two representations, ŷ = uT vc, as
the prediction probability. We further incorporate
negative sampling into the model training to cal-
culate the posterior click probability for positive
samples (Okura et al., 2017).
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Hate Speech Detection We consider the clas-
sification of Hate Speech (HS) detection, where
we use aggregated comments denoted as R =
[r1, r2..., rm]. Each is a text sequence for a docu-
ment. The review representation is calculated using
vc = NewsEncoder(lc) (Kanclerz et al., 2022),
and this representation is passed through a clas-
sification layer to calculate the prediction score
ŷ = wT vc.

3.2 Task Formulation
Formally, given a text xi with xi ∈ X , we aim
to build a model to predict the classification label
yi ∈ Y , where Y denotes the label space. A model
is a composite function m(x) = f ◦ bt0(x), where
bt0(x) is referred to as the backbone model and
f(z) estimates labels of x based on the outputs
of bt0(·). At time t0, a global model gt0(x) =
fg ◦ bt0(x) is trained on a public labeled dataset
Dg = {(xi, yi)}Ni=1 and its distribution is de-
noted by pg(Y |X). The globally trained model
is deployed on a set of local devices. On each
of such local devices k, there is a local dataset
Dk = {(xj , yj)}Nk

j=1 and pk(Y |X) characterizes
the corresponding local distribution. On each de-
vice k, a local model mk(x) = fk ◦ bt0(x) is cre-
ated by fine tuning the global model on the local
dataset without tuning the parameters of bt0(·). Fur-
thermore, the distributions are different from each
other such that pk(Y |X) ̸= pj(Y |X) if k ̸= j, in-
cluding the distribution of the public dataset. As
a result, the optimal function fj(·) ̸= fk(·) if
j ̸= k. At time ti, there is a significant update
of the global model due to changes of the public
dataset or introduction of new techniques. There-
fore, the updated global model can use a totally
different architecture than previous models, as long
as the outputs of its backbone model are vector
sequences. When deploying the new global model
gti(x) = fg,ti ◦ bti(x) to local devices, we aim
to minimize the use of computing resources and
obtain a new model mk,ti(x) = fk,ti ◦ bti(x) with
optimal performance on each local device. Herein,
the parameters of the backbone model bti(·) are
frozen during deployment. Due to privacy con-
cerns, the local data on each local device is not
used to train global models collaboratively.

3.3 Personalized Model Tuning and Matrix
Replacement

At time ti, when a local device receives a new
global model, it replaces its current backbone

with the new one bti(·) and adaptively learns a
new fk,ti(·) by using the logits derived from the
previous model. The backbone model is usu-
ally referred to as the text encoder. The func-
tion fk,ti(·) essentially maps encoder outputs h
to task-specific labels. For news recommenda-
tion, fk,ti(h) = argmaxy log p(Y = y|h) with
y ∈ {0, 1}. Herein, h = (u,v), where u is the
user representation and v denotes the represen-
tation of the current news. For a given news c,
p(Y = y|h) = σ(zc) and zc = uTΛkvc, where
the diagonal matrix Λk captures user preference
from the local distribution. Then zc is referred to
as the logit of the news c. The rationale behind this
is that the model intends to recommend the news
similar to what a user read in the past. Hate speech
detection is also a binary classification problem.
The logit zc = wT

tiΛkhc, where hc denotes the
output from the backbone text encoder for a text c
and w is a weight vector shared between users to
characterize the importance of each feature. The di-
agonal matrix Λk encodes user-specific hate speech
patterns.

Instead of using all instances from a local dataset,
we build a fine-tuning dataset Df

k by sampling the
most representative examples from a local distribu-
tion by applying correlation clustering. The details
of correlation clustering are described in the fol-
lowing subsection.

During deployment, our key hypothesis is that
the logits are similar before and after replacing
the backbone model. Therefore, we save the log-
its ẑi of the model before replacement for all in-
stances in the fine-tuning dataset Df

k , in order to
compare them with the logits from the new model.
As Λk = diag(θ) is a diagonal matrix for both ap-
plications, we can reformulate the learning problem
after replacement as a linear regression problem by
setting zi = θTei for all instances in Df

k , where
ei = ui,ti ⊙ vi,ti for news recommendation and
ei = wi,ti ⊙ hi,ti for hate speech detection. Be-
cause the backbone model is frozen, we need to
make only one forward propagation for each in-
stance in Df

k to obtain the corresponding hidden
representations. As a result, the adaptation process
after replacement is a ridge regression problem be-
low.

J(θ) =
1

|Df
k |

∑

i

(zi − ẑi)
2 + λ∥θ∥22 (1)

The learned diagonal matrix should capture user-
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specific information for respective applications.

Correlation Clustering To further reduce the
number of document embeddings required to com-
pute the personal matrix, we employ correlation
clustering to cluster the documents read by the user.
In our assumption, each user maintains their own
list of documents and reading preferences, which
means the clusters gathered for each individual
can vary. By using correlation clustering, which
does not need to specify the number of clusters,
we obtain a varying number of clusters for each
user. To cope with limited computing resources for
a large document list, we choose the Kwikbucks
method (Silwal et al., 2023), a query-efficient clus-
tering method, as our clustering algorithm. It first
picks pivots from a uniformly sampled subset of
vertices from the graph and then gradually merges
the neighboring nodes based on strong and weak
signal pairwise relationships. In our constructed
graph, we follow two rules to label the positive
edge. Firstly, if the document pair have the same
label for the user, for example, the user clicked
on both of the documents or clicked on neither of
them, we add a positive edge to this document pair,
as shown in 2, where i and j are the indices of
documents inside the user’s document set.

E(di, dj) =

{
1, if Ydi == Ydj

−1, otherwise
(2)

Intuitively, a user who clicks on certain news may
be more likely to click on documents with similar
content. We also compute pairwise similarity of all
documents that the user has read and mark the top
k similar documents for a certain document with a
positive edge, as shown in 3.

E(di, dj) =

{
1, if Cos(di, dj) ∈ TopK(di, D)

−1, otherwise
(3)

Together with the above two conditions, we con-
struct a strong signal matrix with hard labels and
a cosine similarity label with all pairwise similari-
ties of the document set for each user, respectively.
Thus, each user holds a cluster set that specifically
belongs to them, denoted as CU1 . We then choose
examples from each cluster for linear optimization.

4 Experiment

4.1 Datasets
Our experiments utilizes two distinct datasets to
perform the tasks of News Recommendation and
Hate Speech Detection .

For News Recommendation , we conduct exper-
iments using the Mind dataset (Wu et al., 2020)
from Microsoft. This dataset consists of news
articles and a corresponding log that tracks user
behavior over a six-week period. Each log entry
includes the click history of individual users, times-
tamped to provide temporal context. To facilitate
personalization, we focus on the most active users
in the dataset, selecting five for our study. These
selected users have between 60 and 107 records
each, indicating substantial interaction with the
platform. We split the data for these users into train-
ing and testing subsets, with a 70:30 ratio. We use
the small-size training dataset as our global train-
ing set. For Hate Speech Detection , we leverage
the Wikipedia Detox Aggression dataset (Wulczyn
et al., 2017), which contains 116k texts labeled by
more than 4k annotators. The aggression score in
the original dataset ranges from -3 to 3. As our
focus is on the dynamic personal distribution of
the tasks, we follow the setting from (Kanclerz
et al., 2022) that emphasizes the significance of
performing penalization. We convert the aggres-
sion scores to a binary system: 0 for non-aggressive
content and 1 for aggressive content. Similar to our
approach in the News Recommendation task, we
identify the top five most active annotators, each
with review counts ranging from 1382 to 1475, to
create a personalized user set. All examples from
picked users are not included in the global training
datasets.

4.2 Experiment Settings
To simulate the training with updates between the
cloud and local models, we divide the training pro-
cess into three parts: Global Training, Personal
Training, and Backbone Replacement Training.

Global Training Phase: In this phase, we use
GloVe with 300 dimensions, BERT base size with
768 dimensions, and RoBERTa base model with
768 dimensions to initialize our backbones respec-
tively. For each backbone model, we train models
with globally collected examples and perform eval-
uations on personalized data. This establishes the
baseline for individual users with different back-
bones. During training, we set the learning rate to
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1e-5 and randomly pick 4 news articles as nega-
tive samples for News Recommendation . For hate
speech, we use the same settings as above.

Personal Training Phase: In the personal train-
ing phase, we further train the personal model for
individual users and test it with the corresponding
test set. We use a personalized GloVe backbone
as our old fine-tuned backbone, which is ready
for backbone replacement. Additionally, we con-
duct full parameter model tuning for BERT and
RoBERTa as a baseline, and perform FaLA for
each user. To emphasize the significance of per-
sonalization, we repeatedly test all users across
all personalized models to observe performance
changes. As we are only concerned about the per-
formance of penalization with replacement, we do
not split personal data over more time intervals,
which could be studied further.

Backbone Replacement Training: For the per-
sonalized model, we replace the outdated back-
bone with a new one. We switch the personal-
ized backbone to a globally trained new backbone,
specifically, from GloVe to BERT and GloVe to
RoBERTa . We insert the personalized computed
diagonal matrix into the top layer of the new global
model for the corresponding users. Then, we carry
out the same procedure as in personal training but
only tune the parameters within the personal ma-
trix.

4.3 Baseline

We consider five baselines to perform personalized
model tuning for each user, as depicted in Table 2.

Global Model (Global): It directly applies the
new global backbone model to local devices.

Full parameter tuning (Full): It fine-tunes all
parameters of the new global model locally.

Top layer fine tuning (Top): This method fine-
tunes only the parameters of the task-specific lay-
ers, which is widely used for most on-device mod-
els (Xu et al., 2018).

Adapter : Adapter (He et al., 2021) used inside
the BERT model is popular in transfer learning for
language models to reduce the training parameters
inside the backbone.

LoRA : LoRA (Hu et al., 2021) constructs low
rank decomposition for BERT ’s high dimensional
weights inside the language model, claiming the
state-of-the-art performance for model fine tuning.

4.4 Evaluation Metrics

4.4.1 Model Effectiveness

We compare the performance of state-of-the-
art News Recommendation systems (Wu et al.,
2021, 2019) with our proposed method on per-
sonalized users. Following previous work on
News Recommendation metrics (An et al., 2019;
Wu et al., 2019), we use AUC as an evaluation met-
ric. For Hate Speech Detection , we use accuracy
and F-1 score (Kanclerz et al., 2022) as our metrics
to illustrate the effectiveness of the personalized
classification model.

4.4.2 Model Efficiency

To evaluate computational efficiency, we record
the FLOPS (Floating Point Operations Per Sec-
ond) for each personal training setting. FLOPS is
a measure of scientific computation capability of a
device. Language models containing a large num-
ber of parameters use FLOPS as an indicator of
their computation cost. A model that achieves sim-
ilar performance with fewer FLOPS is generally
considered more efficient. We employ the Tensor-
Flow profiler (Abadi et al., 2015) to record forward
and backward computation of a training batch on
an NVIDIA 3090 to illustrate the computational
differences among the tested methods.

4.5 Implementation Details

Overall, our experiments are carried out on an
NVIDIA 3090 24G GPU over multiple rounds.
We use hyperparameters suggested from previous
work to establish the baseline. In addition, we
mainly tuned three hyperparameters during the
training process: model learning rate η, λ for L2
regularization, top k similarity examples used to
construct a strong signal relation group, and reg-
ularization selection for linear optimization. As
these three parameters have a significant impact
on the downstream task, we use a grid search to
obtain the optimal values for these terms while
keeping the other hyperparameters constant. For
News Recommendation , we use the top 10 similar
examples, a 1e-3 learning rate for linear optimiza-
tion and 1e-5 for backbone tuning, and set λ to 1e-1.
For Hate Speech Detection , we use 1e-3 for linear
optimization, 1e-4 for backbone tuning, and set the
L2 regularization term to 1e-4. For the impact of
different selections, we further discuss this in 5.
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Table 1: Measured FLOPS of one training batch for
News Recommendation

BERT RoBERTa

Adapter Method Forward Backward Forward Backward
base 1.3563e+12 2.7100e+12 2.7127e+12 5.4200e+12

Adapter 1.3941e+12 1.4000e+12 2.7882e+12 2.8000e+12
LoRA 1.3613e+12 1.3500e+12 2.7226e+12 2.6900e+12
Ours 1.3563e+12 5.4500e+09 2.7127e+12 1.0900e+10

Figure 2: Performance difference for individuals

4.6 Experiment Results

4.6.1 Measured FLOPS

As presented in Table 1, the computational ef-
ficiency of the forward pass per batch does not
show considerable escalation, owing to the rela-
tive insignificance of the added parameters com-
pared to the full parameter size tuning of the base
models. For backpropagation, full parameter tun-
ing yields almost 2 times the FLOPS compared
to forward computation. Considering the Adapter
and LoRA methods, the computational cost nearly
mirrors that of the forward pass. This can be at-
tributed to the backpropagation of the gradient into
the transformer blocks equipped with adapter mod-
ules. Since our method is only applied to the top
layer and involves only one layer gradient com-
putation, this leads to a striking improvement in
computational efficiency during backpropagation
training, making our approach over 100 times more
efficient than both the Adapter and LoRA methods.
This underlines the superiority of our method in
terms of computational efficiency.

4.6.2 General Performance

Personal Training The experiments compar-
ing globally trained models to personalized mod-
els demonstrate the effectiveness of employ-

ing personalized training. For the 5 most fre-
quent users from News Recommendation and
Hate Speech Detection , we recorded their average
performance and standard deviation in terms of
AUC for News Recommendation , Accuracy and F-
1 for Hate Speech Detection . We firstly observed
the impact of personalization in our old backbone
GloVe as shown in table 3, the personalization
improves the performance of GloVe based models
when encountering new users, indicating the per-
sonal preference learned by the system. As shown
in Table 2, fully parameter-fine-tuned models con-
sistently outperform the globally trained models.
Moreover, for each personalized model, we tested it
across the data of all users to show the performance
differences for the tuned model using a heat map
as shown in Figure 2. Each row in the heat maps
represents the performance difference of all users
tested by one users’ personalized model. The distin-
guished prediction for each user further illustrates
the inherent distribution difference, enhancing the
necessity of performing personalization.

Personalized Tuning For personalized fine tun-
ing, as Table 2 depicts, if we only tune the task
specific layers without additional parameters added
in, the user domain adaption ability is poor for
all metrics. Adapter failed to adapt to user do-
main with limited examples. From the table 2, it
is evident that our proposed method outperforms
the other techniques in terms of AUC and F-1
score. Notably, the performance improvement is
not marginal but significant, reinforcing the effi-
cacy of our approach. Specifically, compared to
the Adapter , our method shows an improvement
of approximately 6.46%,7.81%, and against the
LoRA , the enhancement is about 2.8%,2.26% for
BERT andRoBERTa in News Recommendation re-
spectively. In Hate Speech Detection , FaLA con-
sistently outperforms all baselines at least over 6%
in F-1 for both backbones. These significant im-
provements underscore the superiority of our ap-
proach.

5 Ablation Study

To further explore and validate our methods, we
conduct ablation study focusing on diverse factors
throughout our personalized matrix computation
process.
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Table 2: Overall Performance

Tasks Model Metrics Global Full Adapter LoRA Top FaLA

NR BERT AUC 57.45 ± 3.05 63.07 ± 10.25 61.01 ± 13.11 64.67 ± 11.27 61.39 ± 12.83 67.47 ± 13.65
NR RoBERTa AUC 60.11 ± 1.27 60.50 ± 11.99 57.81 ± 9.25 60.98 ± 17.28 63.38 ± 12.50 65.64 ± 5.26

HS BERT ACC 43.97 ± 23.14 87.02 ± 3.62 66.57 ± 16.12 86.61 ± 5.03 64.85 ± 15.15 85.98 ± 5.67
HS BERT F1 25.70 ± 8.82 44.00 ± 11.69 18.20 ± 8.82 41.55 ± 18.46 22.94 ± 10.98 50.94 ± 6.49
HS RoBERTa ACC 24.84 ± 27.26 87.74 ± 4.81 57.88 ± 31.48 87.54 ± 4.30 54.06 ± 33.30 86.17 ± 6.83
HS RoBERTa F1 17.97 ± 10.21 40.83 ± 21.21 16.88 ± 15.77 39.21 ± 23.51 10.40 ± 9.10 48.42 ± 11.23

Table 3: Performance of Global and Personalized GloVe

Task Metric Global Personal

NR AUC 45.42 ± 8.11 53.14 ± 7.29
HS ACC 49.41 ± 33.52 83.86 ± 6.90
HS F-1 32.11 ± 22.46 37.52 ± 20.21

5.1 Validating Personalized Matrix Tuning

In our design, we added personalized matrix when
updating the model, we would like to answer two
main questions: Is the initialization of a personal-
ized matrix essential? If so, how does the quality
of our clustering compare to conventional cluster
method? To derive results, we considered the fol-
lowing scenarios:

• Random Initialization The matrix param-
eters are initialized randomly to examine
whether the matrix inserted into the top layer
is effective.

• Full Rank Example Optimization The ma-
trix is trained in full rank with a multitude of
examples gathered from the users’ log, equiv-
alent to the dimension of the matrix.

• K-Means We implement k-means in our ex-
ample selection process as it is a fast and pop-
ular clustering method.

• Our method with K examples To justify
the performance with K-means, we compiled
samples from the top k clusters using FaLA ,
and tuned the model with the same quantity
of examples as K-means.

• FaLA The baseline performance for FaLA .

As per the results shown in Table 4, we observed
that directly applying the matrix to the top layer
does not sufficiently impact training in most cases.
The method’s performance is the least effective as it

increases the training loss and demands extra train-
ing effort for both tasks. Our empirical findings
show that the optimal K for K-means for BERT
based both tasks is 50 and 10 for RoBERTa based
tasks. Surprisingly, for BERT based models, FaLA
with K examples showcased the best performance,
surpassing the FaLA for News Recommendation .
With the collected cluster number from FaLA be-
ing less than 50, we randomly sampled the 50−K
examples from the remaining examples to construct
the training examples for linear optimization. This
resulted in a superior personal initialization. For
the RoBERTa based model, which limited 10 exam-
ples for training, our method exhibited competitive
results for our method in 10 examples compared
to K-means. And FaLA demonstrated comparable
performance in all cases with respect to the full
rank matrix initialization.

5.2 Evaluation of Adaptation Objectives

Choices of Linear Objectives We explored the
influence of diverse linear objective functions on
the system’s performance. Each combination of ob-
jectives denotes a unique learning approach, which
can significantly impact the results. The prediction
of our system is logits that can be further converted
to probabilities using the sigmoid function. As
indicated in Table 5, we individually eliminated
each objective function to observe the subsequent
performance changes. The objectives evaluated
included Mean Square Error(MSE) and Cross En-
tropy(CE) both with and without L2 regularization.
We found that combining these two terms led to
no noticeable performance difference, suggesting
that this objective combination may not be crucial
to our model’s performance. However, when we
solely applied MSE to optimization, it resulted in
the best performance for both tasks, underscoring
the effectiveness of logits mapping for clustered
examples.
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Table 4: Matrix Initialization Methods

Task Model Metric Random Initial Full Rank K-Means FaLA-K FaLA

NR BERT AUC 57.45% 67.48% 66.29% 69.16% 67.47%
NR RoBERTa AUC 60.11% 62.76% 59.66% 61.94% 65.64 %

HS BERT ACC 82.71% 82.26% 84.35% 85.95% 85.98%
HS BERT F1 42.43 % 48.11% 41.30% 42.93% 50.18 %
HS RoBERTa ACC 84.24% 79.14% 84.86% 85.94% 86.17 %
HS RoBERTa F1 46.25% 51.55% 43.42% 46.85% 48.42%

Table 5: Selection of Objective Term

TASK Model Lambda CE L2 MSE L2 MSE L2 CE

NR BERT 0.0001 62.37% 67.47% 65.16%
NR BERT 0.001 67.74% 65.34% 63.31%
NR BERT 0.01 67.26% 62.91% 64.35%
NR BERT 0.1 67.31% 69.05% 65.27%
NR BERT 0 68.28% 68.65% 64.61%

HS BERT 0.0001 84.14% 86.33% 83.58%
HS BERT 0.001 84.57% 83.54% 84.08%
HS BERT 0.01 85.59% 81.62% 81.34%
HS BERT 0.1 82.09% 85.41% 82.84%
HS BERT 0 84.60% 84.64% 84.90%

Hyperparamemter Sensitivity We also engaged
in a sensitivity analysis of the system’s perfor-
mance in relation to hyperparameters, particularly
focusing on the L2 regularization term. This
term is pivotal in controlling the model’s com-
plexity and preventing overfitting. Given that
our method necessitates only a handful of ex-
amples to optimize high-dimensional parameters,
we intended to calibrate the weight decay fac-
tor to avert overfitting during the learning pro-
cess. We observed a noticeable trend whereby an
incremental increase in the L2 term from lower
to higher values corresponded with an enhance-
ment in the model’s accuracy for Cross Entropy
(CE) when evaluated individually. Meanwhile, the
Mean Square Error (MSE) displayed optimal per-
formance when the regularization strength is set
to 0.1 for News Recommendation and 0.0001 for
Hate Speech Detection . This underscores the sig-
nificance of carefully selecting this hyperparameter
to ensure both stability and accuracy in our model’s
predictions.

6 Conclusion

In this paper, we introduce FaLA , the fast linear
adaptation method for backbone model replace-
ment. We consider a novel and realistic dynamic

training scenario that the service providers want
to minimize the computational cost of updating
the backbone of the on-device models deployed to
their client devices while preserving privacy of the
local data. Specifically, we reformulate the com-
plex model replacement problem as a simple Ridge
regression problem. Our approach notably outper-
forms established baseline techniques in terms of
both accuracy and computational efficiency. This
work identifies new research problems regarding
backbone replacement. For future work, we may
move beyond classification tasks to broader appli-
cations with diverse backbones.

Limitations

The limitations of our work are three-fold:
Firstly, our experiments are primarily conducted

on a subset of datasets. The performance, effi-
ciency, and efficacy of parameter tuning may vary
across different types of datasets. In our experi-
ments, replaced backbone models are BERT and
RoBERTa . More comprehensive experiments with
more backbones may make the empirical results
more solid.

Secondly, hyperparameter search is still time-
consuming for each user. More efficient methods
may be applied to reduce computational cost.

Thirdly, in our experiments, we apply one for-
ward pass to each user example and store the corre-
sponding representations in disk to build clusters.
This is regarded as a way of trading off the storage
cost with the computational time. Further reduction
of the storage cost remains an open question.

To sum up, our work investigates a practical
scenario regarding efficient model deployment for
edge devices. The aforementioned limitations still
pose potential areas for future research.
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A Appendix

A.1 User Clsuter States
We record the number of optimal k similarity for
all models and tasks shown in table 7. From the
table, we can see that for News Recommendation
task with small value of topk to construct the graph,
there is fewer postitive edge constucted therefore re-
sulting more clusters. For Hate Speech Detection ,
the optimal value is relatively high, the number of
cluster center is less.

A.2 Heat Map for Hate Speech Detection
We present the heat map of hate speech detection
to show the performance of trained user-specific
classifiers. As depicted in Figure 3, each classifier
act in a distinguished manner demonstrating the
existence of user specific distributions.

A.3 Training without Global Data
We also explored the setting with directly fine tun-
ing the model with user’s data respectively. As
illustrated in Table 6, solely relying on fine-tuning
without global training led to models that were
inadequately personalized and exhibited consider-
able performance variation. For instance, while our
method achieved an AUC of 65.64% for news rec-
ommendation, the result for a model that was only
fine-tuned stood at 52.44%. This significant perfor-
mance discrepancy was consistent across various
settings.

The rationale behind this discrepancy is that task-
specific global training embeds a broader knowl-
edge base regarding the tasks into the model. Sub-
sequent personalized training can then adjust this
generalized knowledge to cater to individual user
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Table 6: Fine Tuned Model with GloVe

Task Metric BERT RoBERTa BERT -FaLA RoBERTa -FaLA

NR AUC 55.86%± 4.05% 52.44% ± 12.48% 67.47%±13.65% 65.64%±5.26%
HS F-1 40.93% ± 12.41% 42.51%± 24.76% 50.94%±6.49% 48.42%± 11.23%

Table 7: User Clusters

TASK MODEL Topk Similarity User 1 User 2 User 3 User 4 User 5

NR BERT 10 42 100 112 429 90
NR RoBERTa 10 42 100 68 418 104
HS BERT 250 15 8 24 26 8
HS RoBERTa 250 21 12 19 20 20

Figure 3: Performance difference for individuals in Hate
Speech Detection

distributions. However, in the absence of a substan-
tial dataset for a specific user, accurately model-
ing such a user-specific distribution becomes im-
mensely challenging. This is compounded by the
fact that local devices have constraints in terms of
data storage capacity and require periodic updates.
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