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Abstract

Pre-trained sentence representations are crucial
for identifying significant sentences in unsu-
pervised document extractive summarization.
However, the traditional two-step paradigm of
pre-training and sentence-ranking, creates a
gap due to differing optimization objectives.
To address this issue, we argue that utilizing
pre-trained embeddings derived from a pro-
cess specifically designed to optimize cohen-
sive and distinctive sentence representations
helps rank significant sentences. To do so,
we propose a novel graph pre-training auto-
encoder to obtain sentence embeddings by ex-
plicitly modelling intra-sentential distinctive
features and inter-sentential cohesive features
through sentence-word bipartite graphs. These
pre-trained sentence representations are then
utilized in a graph-based ranking algorithm for
unsupervised summarization. Our method pro-
duces predominant performance for unsuper-
vised summarization frameworks by providing
summary-worthy sentence representations. It
surpasses heavy BERT- or RoBERTa-based sen-
tence representations in downstream tasks.

1 Introduction

Unsupervised document summarization involves
generating a shorter version of a document while
preserving its essential content (Nenkova and McK-
eown, 2011). It typically involves two steps: pre-
training to learn sentence representations and sen-
tence ranking using sentence embeddings to select
the most relevant sentences within a document.

Most research focuses on graph-based sen-
tence ranking methods, such as TextRank (Mihal-
cea and Tarau, 2004) and LexRank (Erkan and
Radev, 2004), to identify the significant sentence
by utilizing topological relations. Continual im-
provements have been demonstrated by several at-
tempts (Narayan et al., 2018; Zhou et al., 2018;
Wang et al., 2019; Xiao and Carenini, 2019; Wang
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Figure 1: The graph structure of bipartite sentence-word
graph. The sentences connect with unique nodes (mo-
nopolized by a single sentence node), and common
nodes (shared by multiple sentence nodes).

et al., 2020), modelling graph-based ranking meth-
ods through a global view of the document.

For unsupervised document summarization,
learning semantic sentence embeddings is crucial,
alongside the sentence ranking paradigm. Textual
pre-training models like skip-thought model (Kiros
et al., 2015), TF-IDF, and BERT (Devlin et al.,
2019) generate sentential embeddings, enabling
extractive systems to produce summaries that cap-
ture the document’s central meaning (Yasunaga
et al., 2017; Xu et al., 2019; Jia et al., 2020; Wang
et al., 2020). By combining sentence representa-
tions generated from pre-trained language models,
prominent performances have been achieved with
graph-based sentence ranking methods (Zheng and
Lapata, 2019; Liang et al., 2021; Liu et al., 2021).

Despite the effectiveness of graph-based rank-
ing methods that incorporate pre-trained sentential
embeddings, there are some underexplored issues.
Firstly, a significant gap exists between the two-
step paradigm of textual pre-training and sentence
graph-ranking, as the optimization objectives di-
verge in these two steps. The pre-trained frame-
work is primarily designed to represent sentences
with universal embeddings rather than summary-
worthy features. By relying solely on the universal
embeddings, the nuanced contextual information of
the document may be overlooked, resulting in sub-
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optimal summaries. Secondly, the existing graph
formulation (e.g., GCNs (Bruna et al., 2014)) only
encodes distinctive sentences but not necessarily
cohensive ones, which may limit the extraction of
summary-worthy sentences.

In summarization, cohensive sentences reveal
how much the summary represents a document,
and distinctive sentences involve how much com-
plementary information should be included in a
summary. To exemplify how these sentence fea-
tures come from words, we analyze a sentence-
word bipartite graph as depicted in Figure 1.

• The connections Sa−w1, Sb−w2, Sc−w4 capture
intra-sentential information, where the unique
word nodes w1 =Bejing,w2 = fan,w4 = shocked
contribute distinctive features to their respective
sentence nodes Sa, Sb, Sc.

• The connections Sa−w0, Sb−w0, Sb−w3, Sc−w3
capture inter-sentential information, where the
shared word nodes w0 = Argentina,w3 =Messi
contains cohensive features for their connected
sentence nodes Sa, Sb, Sc.

Clearly, a sentence’s unique features come from
its individual word nodes, while its cohensive fea-
tures come from shared word nodes with other sen-
tences. Based on this observation, we argue that
optimizing cohensive and distinctive sentence rep-
resentations during pre-training is ultimately ben-
eficial for ranking significant sentences in down-
stream extractive summarization. To achieve this,
we propose a novel graph pre-training paradigm
using a sentence-word bipartite graph with graph
convolutional auto-encoder (termed as Bi-GAE1)
to learn sentential representations.

In detail, we pre-train the bipartite graph by pre-
dicting the word-sentence edge centrality score in
self-supervision. Intuitively, more unique nodes
imply smaller edge weights, as they are not shared
with other nodes. Conversely, when there are
more shared nodes, their edge weights tend to be
greater. We present a novel method for bipartite
graph encoding, involving the concatenation of
an inter-sentential GCNinter and an intra-sentential
GCNintra. These two GCNs allocate two encoding
channels for aggregating inter-sentential cohesive
features and intra-sentential distinctive features dur-
ing pre-training. Ultimately, the pre-trained sen-

1Code and data available at: https://github.com/
OpenSUM/BiGAE.

tence node representations are utilized for down-
stream extractive summarization.

Our pre-trained sentence representations obtain
superior performance in both single document sum-
marization on the CNN/DailyMail dataset (Her-
mann et al., 2015) and multiple document sum-
marization on the Multi-News dataset (Sandhaus,
2008) within salient extractive summarization
frameworks. i) To our knowledge, we are the first
to introduce the bipartite word-sentence graph pre-
training method and pioneer bipartite graph pre-
trained sentence representations in unsupervised
extractive summarization. ii) Our pre-trained sen-
tence representation excels in downstream tasks us-
ing the same summarization backbones, surpassing
heavy BERT- or RoBERTa-based representations
and highlighting its superior performance.

2 Background & Related Work

2.1 Sentence Ranking Summarization
Traditional extractive summarization methods are
mostly unsupervised (Yin and Pei, 2015; Nallap-
ati et al., 2017; Zheng and Lapata, 2019; Zhong
et al., 2019; Mao et al., 2022). Among them, graph-
based sentential ranking methods are widely used.
Two popular algorithms for single-document sum-
marization are unsupervised LexRank (Erkan and
Radev, 2004) and TextRank (Mihalcea and Tarau,
2004), estimating the centrality score of each sen-
tence node among the textual context nodes.

In contrast to LexRank and TextRank construct-
ing an undirected sentence graph, the model of
PacSum (Zheng and Lapata, 2019) builds a directed
graph. Its sentence centrality is computed by ag-
gregating its incoming and outgoing edge weights:

Centrality(si)= λ1

∑

j<i

ei, j + λ2

∑

j>i

ei, j, (1)

where hyper-parameters λ1, λ2 are different
weights for forwardand backward-looking directed
edges and λ1 + λ2 = 1. ei, j is the weights of
the edges ei, j ∈ E and is computed using word
co-occurrence statistics, such as the similarity
score. Building upon the achievements of Pac-
Sum(Zheng and Lapata, 2019), recent models such
as FAR (Liang et al., 2021) and DASG (Liu et al.,
2021) have aimed to improve extractive summa-
rization by integrating centrality algorithms. These
models primarily focus on seeking central sen-
tences based on semantic facets (Liang et al., 2021)
or sentence positions (Liu et al., 2021).
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2.2 Sentential Pre-training

PLM’s pre-training, such as BERT and GPT, is cru-
cial for identifying meaningful sentences in down-
stream summarization tasks. The previously men-
tioned graph-based summarization methods, such
as PacSum(Zheng and Lapata, 2019), FAR(Liang
et al., 2021), and DASG (Liu et al., 2021) uti-
lize pre-trained BERT representations for sentence
ranking. STAS (Xu et al., 2020) takes a different
approach by pre-training a Transformer-based LM
to estimate sentence importance. However, STAS
is not plug-and-play and requires a separate pre-
training model for each downstream task.

Despite the success of the aforementioned unsu-
pervised extractive summarization methods, it still
maintains a gap between the PLMs’ pre-training
and the downstream sentence ranking methods. Ad-
ditionally, low-quality representations can result in
incomplete or less informative summaries, nega-
tively affecting their quality. Pre-training models
typically produce generic semantic representations
instead of generating summary-worthy representa-
tions, which can result in suboptimal performance
in unsupervised summarization tasks.

3 Methodology

In what follows, we describe our pre-training
model Bi-GAE (as shorthand for Bipartite Graph
Pre-training with Graph Convolutional Auto-
Encoders ) used for unsupervised extractive sum-
marization. We will introduce bipartite graph en-
coding and the pre-training procedure using our
Bi-GAE. Ultimately, we will utilize the pre-trained
sentence representations for the downstream unsu-
pervised summarization.

3.1 Document as a Bipartite Graph

Formally, We denote the constructed bipartite word-
sentence graph G = {V,A,E,X}, where V =
Vw ∪ Vs. Here, Vw denotes |Vw| = n unique
words of the document and Vs corresponds to
the |Vs| = m sentences in the document. A ={
e11, ..., ei, j, ..., enm

}
defines the adjacency relation-

ships among nodes, and ei, j ∈ {0, 1}n×m indicates
the edge weight from source node i to target node
j. X ∈ R(n+m)×d, is termed as a matrix containing
the representation of all nodes. The node repre-
sentations will be iteratively updated by aggregat-
ing summary-worthy features (intra-sentential and
inter-sentential messages) between word and sen-
tence nodes via the bipartite graph autoencoder.

3.2 Bipartite Graph Pre-training
We reform the original VGAE (Kipf and Welling,
2016) pre-training framework by optimizing edge
weight prediction in bipartite graphs. The pre-
training optimizer learns to fit the matrices between
the input weighted adjacency matrix and the re-
constructed adjacency matrix in a typical way of
self-supervised learning. By integrating an intra-
sentential GCNintra and an inter-sentential GCNinter

in the VGAE (Kipf and Welling, 2016) self-
supervised framework, our pre-training method en-
ables effective aggregation of intra-sentential and
inter-sentential information, allowing for the rep-
resentation of high-level summary-worthy features
in the bipartite graph pre-training.
Bipartite Graph Initializers. Let Xw ∈ R(n)×dw

and Xs ∈ R(m)×ds represent the input feature ma-
trix of the word and sentence nodes respectively,
where dw and ds are the dimension of word em-
bedding vector and sentence representation vector
respectively. We first use convolutional neural net-
works (CNN) (LeCun et al., 1998) with different
kernel sizes to capture the local n-gram feature for
each sentence S C

i and then use the bidirectional
long short-term memory (BiLSTM) (Hochreiter
and Schmidhuber, 1997) layer to get the sentence-
level feature S L

i . The concatenation of the CNN
local feature and the BiLSTM global feature is
used as the sentence node initialized feature XS i =

[S C
i ; S L

i ]. The initialized representations are used
as inputs to the graph autoencoder module.
Bipartite Graph Encoder. To model summary-
worthy representations, we encode the bipartite
graph by a concatenation of an intra-sentential
GCNintra and an inter-sentential GCNinter, in which
two GCNs assign two encoding channels for ag-
gregating intra-sentential distinctive features and
inter-sentential cohesive features. The GCNintra

(H0 = X,Aweight,Θ), can be seen as a form of
message passing to aggregate intra-sentential dis-
tinctive features. The first GCNintra layer generates
a lower-dimensional feature matrix. Its node-wise
formulation is given by:

hintra
j = Θ⊤

∑

i∈N(u)∪{ j}

1√
d̃id̃ j

ei, jhintra
i , (2)

where ei, j ∈ Aweight denotes the edge weight
from source node i to target node j. Here we
use the betweenness centrality 2 as the edge

2https://networkx.org/documentation/latest/
reference/algorithms/centrality.html
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Figure 2: Overall architecture of our pre-training model Bi-GAE. We construct a sentence-word bipartite graph to
optimize both distinctive intra-sentential and cohensive inter-sentential nodes, by predicting the word-sentence edge
centrality scores using a self-supervised graph autoencoder.

weights. The betweenness centrality of an edge
is the sum of fractions of the shortest paths
passing through it. The first GCNintra layer
makes features of neighbour nodes with fewer as-
sociation relationships aggregated and enlarged
and outputs a lower-dimensional feature matrix
H. Then, the second GCNintra layer generates
µintra = GCNµ

(
Hintra,Aweight

)
and log(σintra)2 =

GCNσ
(
Hintra,Aweight

)
.

The GCNinter (H0 = X,Aweight,Θ) can be seen
as a form of message passing to aggregate inter-
sentential cohensive features:

hinter
j = Θ⊤

∑

i∈N(u)∪{ j}

√
d̃i√
d̃ j

ei, jhinter
i . (3)

The graph convolution operator GCNinter will ag-
gregate neighbour node features with more associa-
tion relationships aggregated and enlarged. Analo-
gously, we can obtain µinter and log(σinter)2, which
are parameterized by the two-layer GCNinter.

Then we can generate the latent variable Z as
output of bipartite graph encoder by sampling from
GCNinter and GCNintra and then concatenating sam-
pled two latent variables Zinter and Zintra:

q(Zinter ||Zintra) =
N∏

i=1

q(zinter
i )

N∏

i=1

q(zintra
i ), (4)

where q(zinter
i ) and q(zintra

i ) are from two GCNs, sat-
isfying independent distribution conditions. Here,

q(zinter
i ) = N

(
zinter

i |µinter
i , diag((σinter

i )2)
)
, (5)

q(zintra
i ) = N

(
zintra

i |µintra
i , diag((σintra

i )2)
)
. (6)

Generative Decoder. Our generative decoder is
given by an inner product between latent variables
Z. The output of our decoder is a reconstructed
adjacency matrix Â, which is defined as follows:

p(Â|Z) =
N∏

i=1

N∏

j=1

p(Ai, j|ziz j), (7)

where p(Ai, j|ziz j) = σ(z⊤i z j), and Ai, j are the ele-
ments of Â. σ(·) is the logistic sigmoid function.
Edge Weights Prediction as the Pre-training Ob-
jective. We use edge weight reconstruction as the
training objective to optimize our pre-trained Bi-
GAE. Specifically, the pre-training optimizer learns
to fit the matrices between the input weighted ad-
jacency matrix Aweight and the reconstructed adja-
cency matrix Âweight.

L = MSE(p(Âweight|Z),Aweight))−KL(q(Z)||p(Z),
(8)

The loss function of the bipartite graph pre-training
has two parts. The first part is MSE loss which mea-
sures how well the pre-training model reconstructs
the structure of the bipartite graph. KL works as a
regularizer in original VGAE, and p(Z) = N(0, 1)
is a Gaussian prior.

4 EXPERIMENTS

During the graph pre-training, the Bi-GAE is opti-
mized by the prediction of edge weights in a self-
supervised manner. Subsequently, we utilize the
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pre-trained sentence representations of Bi-GAE to
replace those used in state-of-the-art unsupervised
summarization backbones. This allows us to as-
sess the effectiveness of the pre-trained sentence
representation in downstream tasks.

4.1 Downstream Tasks and Datasets
We evaluate our approach on two summarization
datasets: the CNN/DailyMail (Hermann et al.,
2015) dataset and the Multi-news (Fabbri et al.,
2019) dataset. The CNN/DailyMail comprises ar-
ticles from CNN and Daily Mail news websites,
summarized by their associated highlights. We
follow the standard splits and preprocessing steps
used in baselines (See et al., 2017; Liu and La-
pata, 2019; Zheng and Lapata, 2019; Xu et al.,
2020; Liang et al., 2021), and the resulting dataset
contains 287,226 articles for training, 13,368 for
validation, and 11,490 for the test. The Multi-
news is a large-scale multi-document summariza-
tion (MDS) dataset and comes from a diverse set
of news sources. It contains 44,972 articles for
training, 5,622 for validation, and 5,622 for testing.
Referring to prior works (Fabbri et al., 2019; Liu
et al., 2021), we create sentence discourse graphs
for each document and cluster them, with each
cluster yielding a summary sentence.

4.2 Pre-training Datasets
We construct a bipartite graph with word and sen-
tence nodes, determining edge weights through
graph centrality. The centrality-based weights de-
noted as Aweight serve as inputs for the Bi-GAE
model. During pre-training, we use MSE loss to
measure the average squared difference between
the predicted edge values Âweight and the true val-
ues input Aweight, as it indicates more minor errors
between the predicted and true values. We conve-
niently utilize training datasets without their sum-
marization labels as the corpus to pre-train sentence
representations by our Bi-GAE.

4.3 Backbones of Summarization Approaches
There are several simple unsupervised sum-
marization extraction frameworks, including
TextRank (Mihalcea and Tarau, 2004) and
LexRank (Erkan and Radev, 2004), as well as more
robust graph-based ranking methods such as Pac-
Sum (Zheng and Lapata, 2019), FAR (Liang et al.,
2021), DASG (Liu et al., 2021). Graph-based rank-
ing methods take sentence representations as in-
put, using the algorithm of graph-based sentence

centrality ranking for sentence selection. We now
introduce extractive summarization backbones.

• TextRank and LexRank utilize PageRank to cal-
culate node centrality based on a Markov chain
model recursively.

• PacSum (Zheng and Lapata, 2019) constructs
graphs with directed edges. The rationale be-
hind this approach is that the centrality of two
nodes is influenced by their relative position in
the document, as illustrated by Equation 15.

• DASG (Liu et al., 2021) selects sentences for
summarization based on the similarities and rela-
tive distances among neighbouring sentences. It
incorporates a graph edge weighting scheme to
Equation 15, using a coefficient that maps a pair
of sentence indices to a value calculated by their
relative distance.

• FAR (Liang et al., 2021) modifies Equation 15 by
applying a facet-aware centrality-based ranking
model to filter out insignificant sentences. FAR
also incorporates a similarity constraint between
candidate summary representation and document
representation to ensure the selected sentences
are semantically related to the entire text, thereby
facilitating summarization.

The main distinction among the extractive frame-
works mentioned above lies in their centrality al-
gorithms. A comprehensive comparison of these
algorithms can be found in Appendix 8.

4.4 Compared Sentence Embeddings
We evaluate three sentence representations for com-
puting sentence centrality. The first compared sen-
tence embedding employs a TF-IDF-based ap-
proach, where each vector dimension is calcu-
lated based on the term frequency (TF) of the
word in the sentence and the inverse document
frequency (IDF) of the word across the entire cor-
pus of documents. The second representation is
based on the Skip-thought model (Kiros et al.,
2015), an encoder-decoder model trained on sur-
rounding sentences using a sentence-level distribu-
tional hypothesis (Kiros et al., 2015). We utilize the
publicly available skip-thought model3 to obtain
sentence representations. The third approach relies
on BERT (Devlin et al., 2019) or RoBERTa (Liu
et al., 2019) to generate sentence embeddings.

3https://github.com/ryankiros/skip-thoughts
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Table 1: ROUGE F1 performance of the single docu-
ment extractive summarization on the CNN/DailyMail.
♭ is reported in Xu et al. (2020), † is reported in Zheng
and Lapata (2019) and ‡ is reported in Liang et al.
(2021). ∗ means our careful re-implementation due to
the absence of publicly accessible source code for these
methods or the experiment was missing from the pub-
lished paper. The best results are in-bold.

Method LM ROUGE-1 ROUGE-2 ROUGE-L
Oracle 54.70 30.40 50.80
Lead-3 40.49 17.66 36.75

TextRank

STVec† 31.40 10.20 28.60
TF-IDF† 33.20 11.80 29.60
BERT† 30.80 9.60 27.40
Bi-GAE 36.60 14.58 32.91

LexRank

STVec∗ 31.91 10.33 28.36
TF-IDF‡ 34.68 12.82 31.12
BERT∗ 27.50 7.38 24.63
Bi-GAE 39.73 16.81 36.02

PacSum

STVec 38.60 16.10 35.30
TF-IDF 39.20 16.30 35.30
BERT 40.70 17.80 36.90
BERT♭ 40.69 17.82 36.91

RoBERTa♭ 40.74 17.82 36.96
Bi-GAE 41.29 18.22 37.49

FAR
BERT∗ 40.83 17.85 36.91

RoBERTa∗ 40.87 17.42 36.31
Bi-GAE 41.26 18.14 37.40

DASG
BERT∗ 40.89 17.68 37.10

RoBERTa∗ 40.90 17.76 37.12
Bi-GAE 41.37 18.25 37.56

4.5 Implementation Details and Metrics
In pre-training the Bi-GAE, we choose the best
model and hyper-parameters based on their perfor-
mance on the validation set. Appendix 8.2 provides
detailed information on the hyper-parameters used
during the Bi-GAE pre-training procedure. For fine-
tuning the unsupervised extractive summarization
frameworks, there are a few hyper-parameters to
be tuned for computing centrality scores. The main
hyper-parameters for the extractive summarization
frameworks are listed in Appendix 8.3. We have
kept the remaining hyper-parameters in the back-
bones of summarization frameworks unchanged.

5 Results and Analysis

5.1 Single-Document Experiments
Our results on the CNN/Daily Mail are summa-
rized in Table 1. The Oracle upper bound extracts
gold standard summaries by greedily selecting sen-

Table 2: ROUGE F1 performance of the multi-document
extractive summarization on the Multi-News. ◦ is re-
ported in Fabbri et al. (2019), † is reported in Li et al.
(2020) and ‡ is reported in Wang et al. (2020). ∗ means
our careful implementation due to the absence of pub-
licly accessible source code for these methods or the
experiment was missing from the published paper. The
best results are in-bold.

Method LM ROUGE-1 ROUGE-2 ROUGE-L
Oracle 52.32 22.32 47.93
First-3 40.21 12.13 37.13

TextRank

TF-IDF◦ 38.44 13.10 13.50
BERT‡ 41.95 13.86 38.07
BERT∗ 42.56 13.69 38.47
Bi-GAE 43.20 14.76 38.95

LexRank

TF-IDF◦ 38.27 12.70 13.20
TF-IDF† 41.01 12.69 18.00
BERT‡ 41.77 13.81 37.87
BERT∗ 40.97 12.93 37.21
Bi-GAE 42.91 14.28 38.83

PacSum
BERT 43.27 14.16 38.25

RoBERTa∗ 41.33 13.33 37.59
Bi-GAE 43.53 14.42 39.26

DASG
BERT 42.60 13.22 16.15

RoBERTa∗ 41.73 13.33 37.59
Bi-GAE 43.39 14.27 39.22

FAR
BERT∗ 43.40 14.35 36.26

RoBERTa∗ 43.08 14.07 39.00
Bi-GAE 43.58 14.58 39.30

tences that optimize the mean of ROUGE-1 and
ROUGE-2 scores. The results indicate the fol-
lowing: (i) Our pre-trained sentence representa-
tion, which incorporates TextRank and LexRank
extractive frameworks, yields prominent improve-
ments in ROUGE-1/2/L performances. (ii) Our
model acquires intra-sentential distinctive and inter-
sentential cohensive features of sentences via pre-
training on sentence-word bipartite graphs, aiding
graph-based ranking for unsupervised summariza-
tion. (iii) Our pre-trained sentence representation
outperforms all other robust sentence representa-
tion methods across all summarization frameworks.

In contrast, sentence representations initialized
with BERT or RoBERTa perform poorly in Tex-
tRank and LexRank frameworks. This could be
attributed to the collapse of BERT-derived sentence
representations, resulting in high similarity scores
for all sentences and thus failing to leverage the po-
tential centrality in TextRank and LexRank. How-
ever, our methods surpass BERT and RoBERTa in

4934



Table 3: ROUGE F1 performance of the extractive
summarization. Pre-trained encoder in our Bi-GAE is
equipped with one kind of GCNs (GCNinter or GCNintra).
FAR and DASG are two extractive frameworks, respec-
tively, and are tested in the CNN/DailyMail dataset.
The pre-training corpora used also is the downstream
CNN/DailyMail dataset without summarization labels.

Method LM ROUGE-1 ROUGE-2 ROUGE-L

Bi-GAE
w. GCNinter 41.18 18.18 37.37
w. GCNintra 41.20 18.19 37.40

Bi-GAE
w. GCNinter 41.27 18.15 37.46
w. GCNintra 41.26 18.13 37.44

the FAR and DASG summarization frameworks,
showcasing the effectiveness of sentence represen-
tations pre-trained by our graph auto-encoders.

5.2 Multi-Document Experiments

Table 2 shows the comparison of Multi-news sum-
marization. Given that all frameworks employ-
ing our pre-trained representations outperform the
First-3 baseline, our approach effectively mitigates
position bias (Dong et al., 2021). This bias often re-
sults in incomplete summaries that neglect essential
information located in the middle of the document.
The results demonstrate two key findings: (i) Our
method adeptly captures essential summary-worthy
sentences, thereby consolidating the process of sen-
tence clustering and, in turn, improving extractive
accuracy. (ii) The embedded, intra-sentential dis-
tinctive features and inter-sentential cohensive fea-
tures are crucial in ranking significant sentences
across multiple documents.

5.3 Component-wise Analysis

To comprehend how modelling intra-sentential fea-
tures and inter-sentential features contribute to
sentence-word bipartite graphs, we conducted an
ablation study on the CNN/DailyMail dataset. As
shown in Table 3, we can observe that the Bi-GAE
model equipped solely with GCNinter or solely with
GCNintra performs well. When combined with
both, Bi-GAE yields the best results across all met-
rics. This highlights the importance of incorpo-
rating intra-sentential and inter-sentential features
for effective summarization. Combining the two
GCNs leads to complementary effects, enhancing
the model’s overall performance. On the contrary,
using only GCNinter or GCNintra individually re-
sults in poor performance, as it fails to capture
either the semantically cohensive or the distinctive

Table 4: ROUGE F1 performance of Bi-GAE on the
downstream CNN/DailyMail summarization and Bi-
GAE is pre-trained on the Multi-news dataset.

Method ROUGE-1 ROUGE-2 ROUGE-L
TextRank 36.69 ↑ 0.09 14.91 ↑ 0.33 33.19 ↑ 0.28

LexRank 40.13 ↑ 0.40 17.16 ↑ 0.35 36.41 ↑ 0.39

PacSum 41.12 ↓ 0.17 18.09 ↓ 0.13 37.34 ↓ 0.15

FAR 41.17 ↓ 0.03 18.18 ↑ 0.01 37.41 ↑ 0.02

DASG 41.27 ↓ 0.10 18.16 ↓ 0.07 37.50 ↓ 0.06

Table 5: ROUGE F1 performance on the downstream
Multi-news extractive summarization, in which the
model is pre-trained on the CNN/DailyMail dataset.

Method ROUGE-1 ROUGE-2 ROUGE-L
TextRank 43.27 ↑ 0.07 14.76 ↑ 0.00 39.02 ↑ 0.07

LexRank 42.87 ↓ 0.04 14.28 ↑ 0.00 38.81 ↓ 0.02

PacSum 43.46 ↓ 0.07 14.52 ↑ 0.10 39.26 ↑ 0.00

DASG 43.27 ↓ 0.12 14.43 ↑ 0.16 39.15 ↓ 0.07

FAR 43.54 ↓ 0.04 14.61 ↑ 0.03 39.30 ↑ 0.00

content of the document.

5.4 Effects of Pre-training Datasets

To evaluate the impact of different pre-training
datasets, we test summarization frameworks using
two types of representations pre-trained on distinct
corpora. In Table 4 and Table 5, we can observe
pre-training on the Multi-news dataset showed min-
imal performance degradation or limited changes in
CNN/DailyMail summarization, and vice versa —
the similarity between the two news corpora leads
to consistent results in downstream tasks.

5.5 Density Estimation of Summarization

There are three measures - density, coverage, and
compression - introduced by Grusky et al. (2018)
and Fabbri et al. (2019) to assess the extractive
nature of an extractive summarization dataset. In
this paper, we adopt these measures to evaluate
the quality of extracted summaries, as illustrated in
Figure 3. The coverage (x-axis) measure assesses
the degree to which a summary is derived from the
original text. The density (y-axis) measures the
extent to which a summary can be described as a
series of extractions. Compression c, on the other
hand, refers to the word ratio between two texts
- Text A and Text B. Higher compression pose a
challenge as it necessitates capturing the essential
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Figure 3: Density and coverage distributions of extractive compression scores on CNN/DailyMail (subfigures (a),
(b), (c), (d)) and Multi-News (subfigures (e), (f), (g), (h)) datasets. Each box represents a normalized bivariate
density plot, showing the extractive fragment coverage on the x-axis and density on the y-axis. The top left corner
of each plot shows the number n of text and the median compression ratio c between text A and text B. The
comp(A, B) denotes the comparison elements are the text A used for comparing, and the text B used as the reference.
comp(Or,Mu): the Oracle and the manual summary. comp(Be,Mu): the extracted summary of BERT-based DASG
and the manual summary. comp(Bi,Mu): the extracted summary of our Bi-GAE based DASG and the manual
summary. comp(Bi,Or): the extracted summary of our Bi-GAE based DASG and the Oracle.

aspects of the reference text with precision. For de-
tailed mathematical definitions of these evaluation
measures, please refer to Appendix 8.6.

We utilize three measures that quantify the level
of text overlap between (i) the Oracle summary and
the manual summary (subfigures (a) and (e)), (ii)
the summary extracted by the BERT-based DASG
and the manual summary (subfigure (b) and (f)),
(iii) the summary extracted by our Bi-GAE based
DASG and the manual summary (subfigure (c) and
(g)), and (iv) the summary extracted by our Bi-GAE
based DASG and the Oracle (subfigure (d) and (h)).
These measures are plotted using kernel density
estimation in Figure 3. Among them, subfigure
(a) displays the comparison between the Oracle
summary compared to the manual summary, which
serves as the upper bound for the density and cov-
erage distributions of extractive compression score
in extractive summarization. Subfigure (e) shows
this score in the multi-news dataset.

Comparing the extractive summary of our Bi-
GAE based DASG (DASG integrated by the sen-
tence representation of our Bi-GAE) and the ex-
tractive Oracle summary in subfigures (a), (b),
and (c), we have observed variability in copied
word percentages for diverse sentence extraction
in CNN/DailyMail. A lower score on the x-axis

suggests a greater inclination of the model to ex-
tract fragments (novel words) that differ from stan-
dard sentences. Our model also outperforms the
BERT-based DASG in compression score (0.6522)
to compare subfigures (b) and (c). Regarding the y-
axis (fragment density) in subfigure (d), our model
shows variability in the average length of copied
sequences to the Oracle summary, suggesting vary-
ing styles of word sequence arrangement. These
advantages persist in the multi-news dataset.

6 Conclusion

In this paper, we introduce a pre-training process
that optimizes summary-worthy representations
for extractive summarization. Our approach em-
ploys graph pre-training autoencoders to learn intra-
sentential and inter-sentential features on sentence-
word bipartite graphs, resulting in pre-trained em-
beddings useful for extractive summarization. Our
model is easily incorporated into existing unsu-
pervised summarization models and outperforms
salient BERT-based and RoBERTa-based summa-
rization methods with predominant ROUGE-1/2/L
score gains. Future work involves exploring the po-
tential of our pre-trained sentential representations
for other unsupervised extractive summarization
tasks and text-mining applications.
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7 Limitations

We emphasize the importance of pre-trained sen-
tence representations in learning meaningful rep-
resentations for summarization. In our approach,
we pre-train the sentence-word bipartite graph by
predicting the edge betweenness score in a self-
supervised manner. Exploring alternative centrality
scores (such as TF-IDF score or current-flow be-
tweenness for edges) as optimization objectives for
MSE loss would be a viable option.

Additionally, we seek to validate the effective-
ness of the sentence representations learned from
Bi-GAE in other unsupervised summarization back-
bones and tasks.
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8 Appendix

8.1 Details about Centrality Algorithms

The key idea of graph-based ranking is to calculate
the centrality score of each sentence (or vertex)
described in section 2.1. In this section, we give the
differences in centrality algorithms among several
salient summarization backbone models.

The PacSum (Zheng and Lapata, 2019) method
enhances the centrality of two nodes in sentence
graphs, considering how their relative positions in
a document influence their importance.

Centrality(si)= λ1

∑

j<i

ei, j + λ2

∑

j>i

ei, j, (9)

where hyper-parameters λ1, λ2 are different
weights for forward and backward-looking directed
edges and λ1 + λ2 = 1. ei, j is the normalized simi-
larity score.

The FAR (Liang et al., 2021) approach enhances
the centrality of two nodes with distance constraints
in sentence graphs by considering how their relative
positions in a document influence their importance.

Centrality(si)=λ1

∑

j<i

Max((ei, j − ϵ), 0)

+ λ2

∑

j>i

Max((ei, j − ϵ), 0),
(10)

where ϵ = β ·
(
max(ei, j) − min(ei, j)

)
. For s1, the

threshold ϵ can be seen as a diameter, s1 is the
centre. β is a hyper-parameter to control the scale
of diameter.

The DASG (Liu et al., 2021) method enhances
the centrality of two nodes in sentence graphs by
taking into account their relative position and se-
mantic facets within a document.

Centrality(si)=λ+⌊ j−i
m +1

⌋
∑

j<i

ei, j

+ λ−⌊ i− j
m +1

⌋
∑

j>i

ei, j,
(11)

where λ+1 , ..., λ
+
k and λ−1 , ..., λ

−
k are fixed hyper-

parameters and k is set to be 3 empirically.

8.2 Hyper-parameters in Bi-GAE pre-training

We mainly use PyTorch Geometric, PYG 4 to im-
plement Bi-GAE. More specifically, we limit the

4https://github.com/pyg-team/pytorch_
geometric

vocabulary to 50,000 and initialize tokens with 300-
dimensional GloVe 840B embeddings5. We filter
stop words and punctuations when creating word
nodes and truncate the input document to a maxi-
mum length of 50 sentences. To eliminate the noisy
common words, we remove 10% of the vocabulary
with low TF-IDF values over the whole dataset.
We initialize sentence nodes with ds = 150. We
use a batch size of 8 during pre-training and apply
the Adam optimizer with a learning rate of 5e-5
for CNN/DailyMail and 2e-5 for Multi-News. The
dropout is 0.1. The pre-training model is trained
for 210,000 steps, and the warm-up step is set to
8000. Attempts made to invoke certain model inter-
faces in PYG have revealed that using JKNET (Xu
et al., 2018) and GCNII (Chen et al., 2020) as the
encoder backbone in the pre-training process re-
sults in performance for downstream tasks that are
essentially indistinguishable from those of GCN.

8.3 Hyper-parameters in Summarization

We begin by using Stanford NLP 6 to split sen-
tences and preprocess the dataset. The source text
has a maximum sentence length of 512, while the
summary is limited to a maximum sentence length
of 140. During the tuning process for extractive
summarization, we fine-tune the parameters related
to the centrality algorithm within a narrow range
of [-1.0, 2.0]. Table 6 presents the optimal hyper-
parameters for each extractive summarization back-
bones, utilizing our Bi-GAE pre-trained sentence
representations. For the CNN/DailyMail dataset,
we select the top-3 sentences for the summarization
based on the average length of the Oracle human-
written summaries, whereas, for Multi-New, we
choose the top-9 sentences.

8.4 Sentence Similarity Computation

The crucial aspect of the unsupervised graph rank
method in downstream tasks lies in the calculation
of similarity between two sentences. In this regard,
we examine two methods for calculating similarity,
both of which draw inspiration from the similarity
calculation approach utilized in PacSum(Zheng and
Lapata, 2019). The first one can employ a pair-wise
dot product to compute an unnormalized similarity
matrix Ēi j = v⊤i v j, and the second one is cosine
similarity Ēi j = cos(vi, v j). The final normalized

5https://nlp.stanford.edu/projects/glove/
6https://github.com/stanfordnlp/CoreNLP
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Datasets Methods Hyper-parameters

CNN/DailyMail

PacSum λ1 = −1.0, λ2 = 1.0

FAR λ1 = −0.5, λ2 = 0.9

DASG β = 0.05, λ+1 = −1.5, λ+2 = −0.5, λ+3 = −1.0, λ−1 = 1.0, λ−2 = 1.5, λ−3 = 2.0

Multi-News

PacSum λ1 = 0.3, λ2 = −0.7

FAR λ1 = −0.5, λ2 = 2.0

DASG β = 0.8, λ+1 = −1.5, λ+2 = −0.5, λ+3 = −1.0, λ−1 = 1.0, λ−2 = 1.5, λ−3 = 2.0

Table 6: Main hyper-parameters of centrality algorithms for tuning extractive summarization with our Bi-GAE
pre-trained sentence representations.

Table 7: ROUGE F1 performance of the extractive sum-
marization. The pre-trained encoder in our Bi-GAE is
equipped with extractive frameworks DASG or FAR,
respectively, and is tested in CNN/DailyMail dataset.
The pre-training corpora used also is CNN/DailyMail
dataset without summarization labels.

Method Sim ROUGE-1 ROUGE-2 ROUGE-L

Bi-GAE + DASG
cos 41.13 17.97 37.34
dot 41.37 18.25 37.56

Bi-GAE + FAR
cos 41.20 18.19 37.40
dot 41.26 18.24 37.45

similarity matrix E is defined as:

Ẽi j = Ēi j −
[
minĒ + β(maxĒ − minĒ)

]
, (12)

where Ẽi j is designed to mitigate the influence of
absolute values and instead emphasize the relative
contributions of different similarity scores. The
hyper-parameter β ∈ [0, 1] controls the threshold
below which the similarity score of Ẽi j is set to 0.

Figure 7 and Figure 8 illustrate the testing results
of models using two similarities. Through empiri-
cal analysis, we have discovered that the pair-wise
dot product yields better performance in most cases
on CNN/Dailymail summarization and Multi-news
summarization. This finding aligns with the results
reported in PacSum(Zheng and Lapata, 2019).

8.5 Bi-GAE Pre-training Validation
We meticulously fine-tune a multitude of param-
eters in our process. For the pre-training of the
CNN/Daily Mail corpus, we find that the optimal
learning rate for our model is 5e-5, with a batch
size of 8. Similarly, in the pre-training of the Multi-
news corpus, we find that the optimal learning rate
is 2e-5 while maintaining a batch size of 8.

To assess the pre-training performances, we con-
duct accuracy tests of the edge weight prediction on

Table 8: ROUGE F1 performance of the extractive sum-
marization. The pre-trained encoder in our Bi-GAE is
equipped with extractive frameworks DASG or FAR,
respectively, and is tested in the Multi-news dataset.
The pre-training corpora used is the Multi-news dataset
without summarization labels.

Method Sim ROUGE-1 ROUGE-2 ROUGE-L

Bi-GAE + DASG
cos 43.39 14.27 39.22
dot 43.12 14.16 38.99

Bi-GAE + FAR
cos 42.97 14.34 38.87
dot 43.58 14.58 39.30

the verification set. As shown in Figure 4, our find-
ings indicate that the optimal prediction accuracy
for both corpora typically ranges between 0.60 and
0.65. Based on these observations, we formulated
the following hypothesis: when there are more
unique nodes, their edge weights should be smaller
since they are not shared by other nodes. Con-
versely, when there are more shared nodes, their
edge weights should be greater. The improvement
in performance on downstream tasks validates the
soundness of our hypothesis.

8.6 Characterizing Summarization Strategies
As shown in Figure 3, each box is a normalized bi-
variate density plot of extractive fragment coverage
(x-axis) and density (y-axis), and the top left corner
of each plot shows the median compression ratio c
between text A and text B.
Fragment Coverage Extractive fragment coverage
is the percentage of words in the summary that are
from the source article, measuring the extent to
which a summary is derivative of a text:

COVERAGE(A, B) =
1
|B|

∑

f∈F(A,B)

| f | , (13)

where F (A, B) is the set of shared sequences of
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(a) Pre-training on CNN/Daily Mail
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(b) Pre-training on Multi-news

Figure 4: Verification results of edge prediction accu-
racy during Bi-GAE pre-training on CNN/Daily Mail
and Multinews corpora.

tokens in A and B and is identified as extractive in
a greedy manner. For example, a summary (text
B) with 10 words that 7 words are the same as its
article (text A) and include 3 new words will have
COVERAGE(A, B) =0.7.
Fragment Density The density measure quantifies
the average length of the extractive fragment to
which each word in the text belongs.

DENS ITY(A, B) =
1
|B|

∑

f∈F(A,B)

| f |2 . (14)

For instance, a summary (text B) might contain
many individual words from the article (text A) and
therefore have high coverage. For instance, a sum-
mary might contain many individual words from
the article and therefore have high coverage. For
an article (text A) with a 10-word summary (text
B) made of two extractive fragments of lengths 3
and 4 would have COVERAGE(A, S) = 0.7 and
DENS ITY(A, B) =2.5.
Compression Ratio The compression ratio c is
defined as the word ratio between the article and
summary:

COMPRES S ION(A, B) =
|A|
|B| . (15)

Summarizing with higher compression is challeng-
ing as it requires capturing more precisely the criti-
cal aspects of the article text.

Among our settings about the above metrics, we
have expanded the comparison between summary

text and article text to include: the comparison
between extracted summary and manual summary,
the comparison between the extractive Oracle and
the manual summary, or the comparison between
extracted summary and Oracle summary.
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