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Abstract

In cross-lingual language understanding, ma-
chine translation is often utilized to enhance
the transferability of models across languages,
either by translating the training data from the
source language to the target, or from the tar-
get to the source to aid inference. However, in
cross-lingual machine reading comprehension
(MRC), it is difficult to perform a deep level
of assistance to enhance cross-lingual trans-
fer because of the variation of answer span
positions in different languages. In this pa-
per, we propose X-STA, a new approach for
cross-lingual MRC. Specifically, we leverage
an attentive teacher to subtly transfer the an-
swer spans of the source language to the an-
swer output space of the target. A Gradient-
Disentangled Knowledge Sharing technique is
proposed as an improved cross-attention block.
In addition, we force the model to learn se-
mantic alignments from multiple granularities
and calibrate the model outputs with teacher
guidance to enhance cross-lingual transferabil-
ity. Experiments on three multi-lingual MRC
datasets show the effectiveness of our method,
outperforming state-of-the-art approaches. 1

1 Introduction

Recently, significant progress has been made in
NLP by pre-trained language models (PLMs) (Rad-
ford et al., 2018; Devlin et al., 2019; Zhang et al.,
2022). Yet, these models often require a sufficient
amount of training data to perform well, which is
difficult to achieve in cross-lingual low-resource
adaptation. Although many cross-lingual PLMs
have been proposed to learn generic feature repre-
sentations (Devlin et al., 2019; Conneau and Lam-
ple, 2019; Conneau et al., 2020; Xue et al., 2021;
Liu et al., 2020), the performance gap between

∗Work done during an internship at Alibaba.
†C. Wang and J. Zhu are co-corresponding authors.

1Source codes will be publicly available in the EasyNLP
framework (Wang et al., 2022). URL: https://github.com/
alibaba/EasyNLP.

I do not know why.
I am pretty sure why.

我不知道为什么。
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Q: Where is Combs from?

Combs rose from poverty 
in his native Clay 
County […]

Q: 康布斯来自哪里？

康布斯生于克莱县，
出身贫寒 […]
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Figure 1: Machine translation as an aid for cross-lingual
transfer. Above is a natural language inference (NLI)
task. The probability distribution of the source lan-
guage can be fitted by KL Divergence for teaching low-
resource languages; during inference, the target lan-
guage can be translated into the source language with
its output used for calibration. Below is an MRC task,
where the knowledge is difficult to transfer directly.

source and target languages is still relatively large,
especially for token-level tasks such as machine
reading comprehension (MRC). In addition, ultra-
large PLMs such as ChatGPT (OpenAI, 2023) ex-
hibit amazing zero-shot generation abilities over
multiple languages. We observe that such models
may not be sufficient for cross-language MRC due
to the linguistic and cultural differences between
these languages, together with the requirements of
very fine-grained extraction of answer spans.

One of the most significant challenges in cross-
lingual MRC is the lack of annotated datasets in
low-resource languages, which are difficult to ob-
tain. As seen, most of the current MRC datasets
are in English (Rajpurkar et al., 2016). Another
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challenge is the linguistic and cultural variations
that exist across different languages, which exhibit
different sentence structures, word orders and mor-
phological features. For instance, languages such
as Japanese, Chinese, Hindi and Arabic have differ-
ent writing systems and a more complicated gram-
matical system than English, making it challenging
for MRC models to comprehend the texts.

In the literature, machine translation-based data
augmentation is often employed to translate the
dataset of the source language into each target lan-
guage for model training (Conneau et al., 2018; Hu
et al., 2020; Ruder et al., 2021). As shown in Fig-
ure 1, it is relatively easy to enhance cross-lingual
transferability of simple sequential classification
tasks by directly fitting the output probability distri-
bution of the source language via Kullback-Leibler
Divergence (Fang et al., 2021; Zheng et al., 2021;
Yang et al., 2022). However, for MRC, it is not
possible to use the output distribution of the source
language directly to teach the target language, due
to the answer span shift caused by translation.

Motivated by this, we propose X-STA, a new
approach for cross-lingual MRC that follows three
principles: Sharing, Teaching and Aligning. For
sharing, we propose the Gradient-Disentangled
Knowledge Sharing (GDKS) technique, which uses
parallel language pairs as model inputs and ex-
tracts knowledge from the source language. It en-
hances the understanding of the target language
while avoiding degradation of the source language
representations. For teaching, our approach lever-
ages an attention mechanism by finding answers
span from the target language’s context that are se-
mantically similar to the source language’s output
answers to calibrate the output answers. For align-
ing, alignments at multi-granularity are utilized
to further enhance the cross-lingual transferability
of the MRC model. In this way, we can enhance
the language understanding of the model for differ-
ent languages through knowledge sharing, teacher-
guided calibration and multi-granularity alignment.

In summary, the main contributions of this study
are as follows:

• We propose X-STA, a new approach for cross-
lingual MRC based on three principles: shar-
ing, teaching, and aligning.

• In X-STA, a Gradient-Disentangled Knowl-
edge Sharing technique is proposed for trans-
ferring language representations. Output cal-
ibration and semantic alignments are further

leveraged to enhance the cross-lingual trans-
ferability of the model.

• Extensive experiments on three multi-lingual
MRC datasets verify that our approach out-
performs state-of-the-art methods. Thorough
ablation studies are conducted to understand
the impact of each component of our method.

2 Related Work

In this section, we summarize the related work in
the following three aspects.

2.1 Pre-trained Multi-lingual Language
Models

Recent work has demonstrated that large-scale
PLMs have tremendous potential for downstream
tasks, as well as for multilingual representations in-
cluding multilingual BERT (mBERT, Devlin et al.,
2019), XLM (Conneau and Lample, 2019), XLM-
RoBERTa (Conneau et al., 2020), mT5 (Xue et al.,
2021), mBART (Liu et al., 2020). These models ex-
tend training sets to unlabeled multilingual corpora
and project all languages into the same semantic
space, allowing for cross-lingual understanding.

2.2 Cross-lingual Knowledge Transfer

It aims to transfer knowledge learned from a source
language to target languages. A intuitive approach
is to use machine translation for data augmentation
(Conneau et al., 2018; Bornea et al., 2021; Hu et al.,
2020). Under this setting, more transferable cross-
lingual representations can be learned through fea-
ture fusion (Fang et al., 2021), consistency regular-
ization (Zheng et al., 2021) and mainfold mixup
(Yang et al., 2022). However, these works are not
sufficiently exploited on translation data for MRC.
Other work learns language-agnostic representa-
tions through adversarial training to explicitly de-
compose language-specific representations (Keung
et al., 2019; Chen et al., 2019; Wu et al., 2022a),
or through normalization to implicitly preserve
more generic representations across languages (Li-
bovickỳ et al., 2020; Zhao et al., 2021; Aboagye
et al., 2022). A more intuitive idea used for align-
ment is contrastive learning (Li et al., 2021; Feng
et al., 2022; Zhang et al., 2023), where translation
pairs are positive examples and texts from other
pairs as negative examples.
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2.3 Cross-lingual MRC

Yuan et al. (2020) propose several auxiliary pre-
training tasks for solving answer boundary prob-
lems for low-resource languages. Liang et al.
(2021) introduce an unsupervised phrase boundary
recovery pre-training task to further address this
problem. Chen et al. (2022) propose a two-stage
step-by-step algorithm for finding the best answer
from good to best for cross-lingual MRC. Wu et al.
(2022b) introduce a Siamese Semantic Disentangle-
ment Model to disassociate semantics from syntax.
Our work further focuses on finding the correspond-
ing answers from the target language based on bet-
ter knowledge transfer and textual alignments from
multiple granularities.

3 X-STA: Proposed Approach

In this section, we present the detailed techniques
of X-STA for cross-lingual MRC.

3.1 Task Definition and Basic Notations

Given the a context C and a question Q, the MRC
task is to extract a sub-sequence from context C as
the right answer to question Q. Denote the input se-
quence as X = {Q,C} ∈ RN , where N is the se-
quence length. We use pstart ∈ RN and pend ∈ RN

to denote the answer start and end position proba-
bility distributions. For the sake of simplicity, we
concatenate the two together to p ∈ RN×2. Sim-
ilarly, y ∈ RN×2 represents the one-hot golden
label sequence. For cross-lingual scenarios, only
annotated training data from the source language
DTrain

S = {XTrain
S ,yTrain

S } and raw test data from
the target language DTest

T = {XTest
T ,yTest

T } are avail-
able. S and T denote the source and target lan-
guage. Machine translation can be used to ob-
tain training data for the target language DTrain

T =
{XTrain

T ,yTrain
T } and test data for the source lan-

guage DTest
S = {XTest

S ,yTest
S } (Hu et al., 2020). In

addition, we use hl to denote the hidden states of
a sequence in layer l ∈ L, where L is the total
number of transformer layers. Thus, to predict the
start position and end position of the correct an-
swer span in X, the probability distributions p is
induced over the entire sequence by feeding hL

into a linear classification layer and a softmax func-
tion: p = softmax(WhL + b), W and b are the
weights and bias of the linear classifier.
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Figure 2: Model architecture. The cross-attention block
(GDKS) is implemented only in a certain layer. In other
layers, vanilla transformer layers are applied.

3.2 Gradient-Disentangled Knowledge
Sharing

Although machine translation from high-resource
languages to low-resource ones can be used for
training multi-lingual models, the drawbacks are
evident. i) Machine translation quality varies across
languages. ii) The original semantics can be eas-
ily lost during translation. iii) Task labels are rel-
atively expensive to obtain, especially for token-
level cross-lingual tasks. Thus, as shown in 2, we
leverage parallel language pairs as the input and
fuse cross-lingual representations.

As in Yang et al. (2022), cross-attention can be
leveraged for feature fusion. However, a perfor-
mance loss can be observed in the source language,
as shown in Figure 3. A reasonable conjecture is
that helping the target language to extract target-
related information from the hidden states of the
source language leads to a degeneration of source
language representations. To alleviate this prob-
lem, we propose Gradient-Disentangled Knowl-
edge Sharing (GDKS), which is an improved ver-
sion of the cross-attention block. Specifically, we
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Figure 3: The performance of previous methods and
our method on cross-lingual MRC. X-MIXUP (a cross-
attention based approach) improves the performance on
target languages, but with a performance drop on the
source language (en). Our approach addresses the issue
by GDKS.

block the gradients from the target language output
back to the source language hidden states hl

S . As a
compensation, we add a trainable correction term:

h̃l
S =

{
hl
S S = T

sg(hl
S) + f(sg(hl

S), sg(h
l
T )) otherwise

Here, sg(·) is used to stop back-propagating gradi-
ents, preventing interfering with source language
representations. f(·) refers to a trainable linear
transformation with dropout. Then use the target
hidden states as the query and the converted source
hidden states h̃lS as key and value to perform cross-
attention, defined as follows:

hl
T |S = MHA(hl

T , h̃
l
S , h̃

l
S)

where MHA is multi-head attention (Vaswani et al.,
2017). Then, the target hidden states are fused with
the source-aware target hidden states by the weight
λ, computed as follows:

hl+1
T = (1− λ) · hl

T |S + λ · MHA(hl
T ,h

l
T ,h

l
T )

where λ = w ∗ λ0 + b, with w and b to be train-
able parameters. It is worth noting that GDKS is
implemented in a certain transformer layer only.

3.3 Attentive Teacher-Guided Calibration

As GDKS focuses on transferring knowledge from
hidden states of the teacher model (trained from
the source language), we also calibrate the model
output distributions with teacher guidance.

Normalization. The premise of obtaining good
guidance is that the representations of different lan-
guages should be normalized first. Following Pires
et al. (2019), we hypothesize that the representation
of a multi-lingual model is composed of language-
specific and language-agnostic representations. We
estimate language-specific features as the mean of
the language representations and remove language-
specific features by subtracting the mean to retain
only the generic semantic features. The intuition
behind this is that a certain language may have a
large number of phenomena such as function words
(Libovickỳ et al., 2020). Therefore, the average rep-
resentation of that language is prominent. Inspired
by Batch Normalization (Ioffe and Szegedy, 2015),
we transform the generic semantic representation
to the standard normal distribution space:

h̃ =
hL − µβ√
σ2
β + ϵ

where µβ and σβ are mean and variance of token-
level representations in batch β. ϵ is a constant for
numerical stability. To facilitate its use in inference,
it is set to be linguistically independent.
Calibration. After normalization, we use the hid-
den states of the target language as query, and the
hidden states and the output distribution of the
source language as key and value, respectively. We
also leverage MHA and average the results of the
transformation of multiple heads. Hence, the trans-
ferred output distribution p

T |S ∈ RN×2 is:

p
T |S = MHA(h̃T , h̃S , sg(pS ))

where h̃T and h̃S are the normalized hidden states
of source and target languages, respectively.

During the model training phase, we incorporate
a teacher-guided loss Ltg for the computation of
p

T |S . Thus, tokens with the same semantics but
in different languages can still be brought closer
together by annotated data, even if their representa-
tions differ significantly. Specifically, we have the
sample-wise loss Ltg defined as follows:

Ltg = −
N∑

i

2∑

j

yijlogpij
T |S .

For model inference, we leverage p
T |S to cali-

brate the output for the target language by averag-
ing the results from two output distributions, i.e.,

p̃T =
p
T |S+ p

T

2 .
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3.4 Multi-Granularity Semantic Alignment

We further enhance the knowledge transfer of our
model, based on our proposed Multi-Granularity
Semantic Alignment (MGSA) technique.
Sentence-Level Alignment. A vanilla approach to
learn alignments is from the sentence level. Here,
we employ Contrastive Learning (CL, Hadsell et al.,
2006; Chen et al., 2020) to strengthen the alignment
across languages:

LalignS
= −log

esim(r,r+)/τ

esim(r,r+)/τ +
∑

i e
sim(r,r−i )/τ

where r is the mean pooled sentence representa-
tion. r+ and r− represent a positive sample from
the parallel translated data and a negative example
in the mini-batch, respectively. sim(r1, r2) is the

cosine similarity, i.e., sim(r1, r2) =
r⊤1 r2

∥r1∥·∥r2∥ . τ is
the temperature hyper-parameter, which we set to
0.05 in default.
Token-Level Alignment. In Fomicheva et al.
(2020); Yang et al. (2022), the entropy of the cross-
attention distribution (ECA) is used to measure the
quality of machine translation. A smaller entropy
of the attention distribution, i.e., more focused at-
tention, can indicate a relatively higher translation
quality (Rikters and Fishel, 2017). Similarly, ECA
can also be used to represent the cross-lingual align-
ment quality, which we use as a penalty term for
training the cross-lingual model to avoid distraction
in GDKS. The token-level alignment loss LalignT

can be defined as:

LalignT
= −1

I

I∑

i

J∑

j

aijlogaij

where aij = softmax(
hTi

h⊤
Sj√

n
) represents attention

weights, n is the hidden size, I is the number of
target tokens and J is the number of source tokens.
Next, the total alignment loss is summed by the
two parts, with ς and η to be the coefficients:

Lalign = ς LalignS
+ η LalignT

.

3.5 Final Training Objective

In brief, the final training objective of X-STA is:

L = LMRC + γLtg + Lalign

where γ is a factor for the teacher-guided loss Ltg.
LMRC refers to the cross-entropy loss of the MRC

task. Following Yang et al. (2022), we split the
MRC loss LMRC into the MRC loss of the source
language and the target language with a balancing
factor α:

LMRC = αLS
MRC + (1− α)LT

MRC.

4 Experiments

4.1 Datasets
We evaluate X-STA on three multi-lingual MRC
datasets, namely MLQA (Lewis et al., 2020),
XQuAD (Artetxe et al., 2020) and TyDiQA (Clark
et al., 2020). MLQA is a benchmark dataset con-
sisting of over 5K extractive MRC instances in 7
languages: English (en), Arabic (ar), German (de),
Spanish (es), Hindi (hi), Vietnamese (vi) and Chi-
nese (zh). XQuAD consists of a subset of 240
paragraphs and 1190 question-answer pairs from
the SQuAD v1.1 (Rajpurkar et al., 2016) develop-
ment set together with their professional transla-
tions into ten languages: English (en), Arabic (ar),
German (de), Greek (el), Spanish (es), Hindi (hi),
Russian (ru), Thai (th), Turkish (tr), Vietnamese
(vi), and Chinese (zh). TyDiQA covers 9 typologi-
cally diverse languages: English (en), Arabic (ar),
Bengali (bn), Finnish (fi), Indonesian (id), Korean
(ko), Russian (ru), Swahili (sw), Telugu (te). Fol-
low XTREME (Hu et al., 2020), we use the gold
passage version of TyDiQA.

For the translated data, we employ the translate-
train and translate-test data from XTREME 2. We
use two evaluation metrics, namely exact match
(EM) and macro-average F1 score (F1), follow-
ing Rajpurkar et al. (2016); Hu et al. (2020).

4.2 Experimental Settings
We conduct extensive experiments based on two
multi-lingual pre-trained backbones: mBERT (De-
vlin et al., 2019) and XLM-Rbase (Conneau et al.,
2020). The batch size is set to 32. The learning rate
is set to 3e-5, and decreases linearly with warmup.
Following Yang et al. (2022), α is set to 0.2 and
we implement GDKS in the 8th layer. We set λ0

to 0.3 and ϵ to 1e-8. We perform grid search ς , η
and γ from [0.01, 0.05, 0.1, 0.5] on the validation
set of MLQA, and finally set them to 0.05, 0.05
and 0.1, respectively. We save the model with the
best averaged performance of all languages on the
validation set for testing. Since there are no val-
idation sets in XQuAD and TyDiQA. Following

2https://github.com/google-research/xtreme
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Methods en ar de es hi vi zh Avg.
Based on mBERT
Zero-shot 80.2/67.0 52.3/34.6 59.0/43.8 67.4/49.2 50.2/35.3 61.2/40.7 59.6/38.6 61.4/44.2
Trans-train 80.7/67.7 58.9/39.0 66.0/51.6 71.3/53.7 62.4/45.0 67.9/47.6 66.0/43.9 67.6/49.8
LAKM 80.1/66.9 - 64.4/49.9 69.5/51.5 - - - -
X-MIXUP - - - - - - - 69.0/50.9
X-MIXUP∗ 78.4/64.9 63.3/43.5 67.5/53.6 72.3/55.0 65.8/47.5 72.2/51.7 66.6/45.6 69.5/51.7
Ours 80.5/67.6 64.1/43.7 69.2/54.6 74.2/56.5 67.6/49.7 73.5/52.8 69.2/47.7 71.2/53.2
Based on XLM-Rbase

Zero-shot∗ 79.2/66.2 56.2/37.2 61.7/46.9 67.4/50.0 61.5/44.2 65.6/45.2 62.5/39.0 64.9/47.0
Trans-train∗ 80.9/67.9 59.8/40.4 65.2/50.8 70.3/52.9 65.1/47.9 69.3/49.1 63.4/41.3 67.7/50.1
CalibreNet 79.7/66.6 56.1/37.8 61.7/47.6 68.0/50.8 60.0/43.8 66.9/46.6 - -
AA-CL 80.1/66.8 58.5/41.3 64.6/49.8 69.0/51.2 62.8/46.5 67.9/47.2 - -
X-MIXUP∗ 78.9/65.8 62.5/43.1 65.7/51.5 71.8/54.5 66.8/49.6 71.4/50.9 65.3/43.4 68.9/51.3
Ours 81.6/68.7 63.1/43.2 67.5/52.9 72.7/55.1 68.6/50.9 72.7/52.0 66.3/43.5 70.4/52.3

Table 1: Overall evaluation (F1/EM) over the MLQA dataset. ∗ denotes the results of our re-implementation.

Yang et al. (2022), for the former, we use MLQA’s
validation set and for the latter, we use the English
data as the validation set. All the experiments are
implemented in PyTorch and run on a single server
with NVIDIA Tesla V100 (32GB) GPUs.

4.3 Baselines

We systematically compare our method with the
following strong baselines:

• Zero-shot models are trained on labeled data
in the source language only, and directly eval-
uated on target languages.

• Trans-train (Hu et al., 2020) translates train-
ing data in English into target languages. The
model is trained on the combination of these
original and translated training sets.

• LAKM (Yuan et al., 2020) leverages a
language-agnostic knowledge masking task
by knowledge phrases based on mBERT.

• CalibreNet (Liang et al., 2021) employs a
unsupervised phrase boundary recovery pre-
training task to enhance the multi-lingual
boundary detection capability of XLM-Rbase.

• AA-CL (Chen et al., 2022) is a two-stage step-
by-step algorithm for finding the best answer
for cross-lingual MRC over XLM-Rbase.

• X-MIXUP (Yang et al., 2022) is a cross-
lingual manifold mixup method that learns
compromised representations for target lan-
guages, which produces the state-of-the-art
results for cross-lingual MRC.

For Zero-shot and Trans-train, we report the
results of mBERT from Hu et al. (2020) and re-
produce the results of XLM-Rbase. For LAKM,
CalibreNet and AA-CL (which have been evalu-
ated over part of our settings), we report the results
from their original papers. As for X-MIXUP (the
state-of-the-art method), in order to conduct a rigor-
ous comparison, we report both the results from the
original paper and our re-implementation. Among
these methods, only Zero-shot and CalibreNet are
under zero-shot setting, for the rest of the methods
translate data are available.

4.4 General Experimental Results

As in Table 1, based on mBERT, we achieved an
average of 71.2% F1 and 53.2% EM in MLQA,
exceeding all strong baselines. A gain of 1.7/1.5%
is obtained compared to the state-of-the-art X-
MIXUP. As shown in Tables 2 and 3, our method
also consistently outperforms all the strong base-
lines on XQuAD and TyDiQA. Our method ob-
tains on average 1.8/2.2 and 2.6/3.5 improvement
F1/EM scores compared to X-MIXUP. In conclu-
sion, based on two backbones, our method outper-
forms state-of-the-art methods on three datasets,
showing the effectiveness and generalization of
our method. In addition, X-MIXUP significantly
reduces the performance gap between the source
and target languages, but also compromises per-
formance on the source language; whereas our
approach can achieve comparable performance to
translate-train on English without negatively affect-
ing the representation of the source language.
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Methods en ar bn fi id ko ru sw te Avg.

Based on mBERT
Zero-shot 75.3/63.6 62.2/42.8 49.3/32.7 59.7/45.3 64.8/45.8 58.8/50.0 60.0/38.8 57.5/37.9 49.6/38.4 59.7/43.9
Trans-train 73.2/62.5 71.8/54.2 49.7/36.3 68.1/53.6 72.3/55.2 58.6/47.8 64.3/45.3 66.8/48.9 53.3/40.2 64.2/49.3
X-MIXUP - - - - - - - - - 60.8/46.5
X-MIXUP∗ 72.5/60.7 70.0/52.8 55.1/41.6 65.8/50.0 74.1/57.7 62.6/52.2 63.0/43.3 67.5/49.1 51.2/37.5 64.6/49.4
Ours 73.9/63.4 72.4/54.5 60.9/47.8 69.4/55.9 76.2/60.9 64.0/52.2 65.2/46.0 71.2/54.1 51.2/41.7 67.2/52.9

Based on XLM-Rbase

Zero-shot∗ 66.0/53.4 61.1/41.6 37.8/23.0 61.4/45.7 72.6/55.0 48.1/33.0 59.5/35.0 54.7/35.9 37.5/25.4 55.4/38.7
Trans-train∗ 70.9/59.2 67.7/49.6 46.3/31.0 65.1/51.3 74.2/57.5 54.3/43.1 63.9/46.0 63.2/47.1 63.3/46.9 63.2/48.0
X-MIXUP∗ 68.0/54.8 67.7/48.8 50.6/33.6 66.5/52.6 72.0/55.0 52.7/40.6 64.0/45.0 64.0/47.5 60.2/43.3 62.9/46.8
Ours 71.3/59.3 68.6/50.8 56.7/40.7 67.6/54.1 77.7/62.5 55.7/44.6 64.2/46.1 64.6/48.5 70.2/52.9 66.3/51.0

Table 2: Overall evaluation (F1/EM) over the TyDiQA dataset. ∗ denotes the results of our re-implementation.

a) w/o. alignment𝑡𝑡 b) w/ alignment𝑡𝑡

Figure 4: The attention distribution heat map of query part. We show the average result of multi-head attention.

a) Original b) Normalized 

Figure 5: t-SNE distributions of sentence representa-
tions. Different shapes indicate different examples.

4.5 Ablation Study

We conduct an ablation study by removing each key
component individually to evaluate the effective-
ness of our method. As shown in Table 4, there is
a performance gap when removing any of the com-
ponents. Although the removal of GDKS has little
effect on the overall performance, it significantly
affects the representation of the source language,
resulting in an obvious performance drop in the
source language (i.e., English).

Removing the Attentive Teacher-Guided Cali-
bration (ATGC) component degrades the model

performance the most, and the results demonstrate
that mapping the output of the source language
to the target language space is efficient and feasi-
ble. In addition, there is still some performance
loss compared to removing ATGC only at infer-
ence time, which suggests that the improvement
from ATGC does not only come from weighted out-
puts of source and target languages. Using the an-
swer span as additional knowledge can enhance the
cross-lingual alignment through the teacher-guided
loss Ltg. Figure 5 shows the visual distribution
of sentence representations before and after nor-
malization. In the original space, the distributions
of the same language (same color) tend to cluster
together, while after normalization, these represen-
tations are sparsely dispersed, which also shows
that normalization can indeed decompose some of
the language-specific representations.

Finally, we analyze the effectiveness of MGSA.
As seen, token-level alignment contributes more
than sentence-level alignment. A reasonable spec-
ulation is that the MRC task is more concerned
with token-level representations. As shown in Fig-
ure 4, without token-level alignment, attention is
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Methods en ar de el es hi

Based on mBERT
Zero-shot 83.5/72.2 61.5/45.1 70.6/54.0 62.6/44.9 75.5/56.9 59.2/46.0
Trans-train 86.0/74.5 71.0/54.1 78.8/63.9 74.2/56.1 82.4/66.2 71.3/56.2
X-MIXUP - - - - - -
X-MIXUP∗ 83.4/71.9 78.0/60.9 80.6/65.2 79.0/60.7 81.7/63.7 77.4/61.8
Ours 85.6/74.4 80.1/62.9 82.3/66.6 81.3/64.4 83.5/65.0 79.0/64.2

Based on XLM-Rbase

Zero-shot∗ 83.3/72.3 66.3/50.3 75.4/59.4 74.4/56.6 76.1/58.6 67.4/50.5
Trans-train∗ 83.9/73.0 71.1/54.9 78.1/62.9 76.7/59.4 80.2/62.3 75.0/59.7
AA-CL 84.1/73.1 66.5/50.3 77.9/62.5 - 80.0/61.7 73.8/58.9
X-MIXUP∗ 81.8/70.9 73.7/56.6 77.1/61.4 76.8/59.7 79.9/61.5 75.1/59.7
Ours 86.0/74.9 77.7/61.2 81.4/66.1 80.3/63.6 82.7/65.4 79.4/62.9

Methods ru th tr vi zh Avg.

Based on mBERT
Zero-shot 71.3/53.3 42.7/33.5 55.4/40.1 69.5/49.6 58.0/48.3 64.5/49.4
Trans-train 78.1/63.0 38.1/34.5 70.6/55.7 78.5/58.8 67.7/58.7 72.4/58.3
X-MIXUP - - - - - 73.3/58.9
X-MIXUP∗ 80.1/63.9 61.9/55.7 75.0/58.2 80.4/61.1 71.2/61.8 77.1/62.3
Ours 81.8/66.2 65.2/59.4 76.8/62.2 82.0/63.8 70.2/60.3 78.9/64.5

Based on XLM-Rbase

Zero-shot∗ 74.4/58.8 64.6/53.4 67.7/51.1 73.7/53.6 61.4/52.4 71.3/56.1
Trans-train∗ 77.0/61.3 59.9/55.0 72.2/56.8 77.3/59.1 74.9/72.3 75.1/61.5
AA-CL - - - 77.6/57.5 - -
X-MIXUP∗ 77.8/62.1 72.7/67.1 72.2/56.5 78.2/59.2 77.4/73.9 76.6/62.6
Ours 80.8/66.0 70.2/64.5 76.4/61.2 81.0/63.3 77.7/74.6 79.4/65.8

Table 3: Overall evaluation (F1/EM) over the XQuAD dataset. ∗ denotes the results of our re-implementation.

Ablation MLQA XQuAD

Ours 71.2 / 53.2 78.9 / 64.5
w/o. GDKS 71.1 / 53.0† 78.0 / 63.5‡

w/o. ATGC 70.8 / 52.6 77.4 / 63.1
w/o. ATGC inference 70.9 / 53.0 78.6 / 64.2
w/o. Rep-Norm 71.0 / 52.9 78.0 / 63.5
w/o. alignments 71.2 / 53.0 78.5 / 64.0
w/o. alignmentt 70.8 / 52.6 77.5 / 63.4

Table 4: Ablation study of our method on MLQA and
XQuAD. w/o. GDKS refers to vanilla cross-attention
is used, Rep-Norm is Representation Normalization.
alignments and alignmentt refer to sentence-level align-
ment and token-level alignment. † and ‡ have a perfor-
mance drop of 1.1/1.0 and 1.3/1.0 on English.

more distracted and not well aligned across lan-
guages. Instead, token-level alignment penalizes
this behavior, allowing attention to be focused on
the QA-related token (e.g., “many”).

4.6 Case Study

To further demonstrate the output results of our ap-
proach, we show the answer generation process
of a Hindi example and the corresponding En-
glish example from the XQuAD dataset, and com-

pare it with a powerful ultra-large language model
(i.e., ChatGPT). Figure 6 shows that for English,
both our approach and ChatGPT answer the ques-
tion well. However, in a low-resource language
setting such as Hindi, there are some capability lim-
itations of mBERT and ChatGPT. Without ATGC,
our method fails to find the correct answer. When
mapping the source language output to the target
language output space, it successfully calibrates the
output and generates the correct answer after aver-
aging the two outputs. ChatGPT, on the other hand,
produces plausible but incorrect answers, showing
a sign of producing hallucinations (also reported
in Bang et al. (2023)). More cases in low-resource
languages can be found in Appendix B.

5 Conclusion

In this paper, we propose X-STA, which addresses
the challenges of cross-lingual MRC in effectively
utilizing translation data and the linguistic and cul-
tural differences. Our work follows three princi-
ples: sharing, teaching and aligning. Experimental
results on three datasets show that our approach
obtains the state-of-the-art performance compared
to strong baselines. We further analyze the effec-
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Passage: After leaving Edison's company Tesla 
partnered with two businessmen in 1886, Robert 
Lane and Benjamin Vail, who agreed to finance 
an electric lighting company in Tesla's name, 
Tesla Electric Light & Manufacturing. The 
company installed electrical arc light based 
illumination systems designed by Tesla and 
also had designs for dynamo electric machine 
commutators, the first patents issued to Tesla 
in the US.

Question: What was produced at tesla's company? 

Ours: electrical arc light based illumination 
systems

ChatGPT: Tesla Electric Light & Manufacturing 
produced electrical arc light based 
illumination systems and dynamo electric 
machine commutators.

Passage: ए�डसन क� कंपनी छोड़ने के बाद टेस्ला ने दो
व्यापा�रय� रॉबटर् लेन और ब�जा�मन वेल के साथ 1886, भागीदार� 
क�, जो टेस्ला के नाम पर एक इलेिक्ट्रक लाइ�टगं कंपनी टेस्ला 
इलेिक्ट्रक लाइट एंड मैन्युफैक्च�रगं को फाइन�स करने के �लए 
सहमत हुए। कंपनी ने टेस्ला द्वारा �डज़ाइन �कए गए इलेिक्ट्रकल 
आकर्  लाइट आधा�रत रोशनी प्रणाल� इनस्टॉल �कए और उनके 
पास डायनामो इलेिक्ट्रक मशीन कम्यूटेटर के �लए �डजाइन भी थे, 
अमे�रका म� टेस्ला को �दया गया पहला पेट�ट था।

Question: टेस्ला क� कंपनी म� �कसका उत्पादन �कया गया था? 

Ours w/o. ATGC: डायनामो इलेिक्ट्रक मशीन कम्यूटेटर
Attentive Teacher output: इलेिक्ट्रकल आकर्  लाइट 
आधा�रत रोशनी प्रणाल�
Ours: इलेिक्ट्रकल आकर्  लाइट आधा�रत रोशनी प्रणाल�

ChatGPT: टेस्ला क� कंपनी ने इलेिक्ट्रक लाइ�टगं के �लए 
उत्पादन �कया जाने वाले आइटम जैसे इलेिक्ट्रक लाइट्स, इलेिक्ट्रक 
मोटसर्, डायनामो इलेिक्ट्रक मशीन, कम्यूटेटर आधा�रत रोशनी 
प्रणाल� आ�द का उत्पादन �कया था। 

 

 

 
 

×

×

Figure 6: An example from XQuAD dataset, its ground-truth answer is marked with another color and underlined.
The source language example (English) on the left corresponds to the low-resource target language (Hindi) example
on the right. The ChatGPT used is Mar 14 Version, and our method uses mBERT as the backbone.

tiveness of each component. In the future, we will
extend our work to other cross-lingual NLP tasks
for low-resource languages.

Limitations

Our approach requires a translation system as an
aid and incurs additional inference costs during the
inference process (the sequences translated back to
the source language also need to go through model).
For other cross-lingual token-level tasks (e.g., POS,
NER), it is difficult to obtain the labels of translate-
train data directly. Previous approaches usually use
trained models to generate pseudo-labels. These
low-quality labels pose significant challenges to
our approach. Extending our approach to these
tasks is left to our subsequent work.
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A Parameter Analysis

To further evaluate the effectivenss of ATGC, we
conduct a series of experiments on MLQA and
XQuAD for the hyper-parameter γ = {0, 0.01, 0.05,
0.1, 0.5}. Figure 7 shows that the performance
trends are consistent over both datasets, with γ
achieving optimal performance on 0.1. We conjec-
ture that when γ is too large, it can interfere with
the original representation of the model. In addi-
tion, we conduct the implementation of GDKS in
different layers and find that the optimal number of
layers to implement is 8, which is consistent with
the results of X-MIXUP (Yang et al., 2022).

B Cases

As shown is Figure 9, 10 and 11, ChatGPT some-
times fail to generate the answers accurately. In
contrast, our method is able to extract the correct
answers with the help of the English datasets.
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Passage: As northwest Europe slowly began to warm up 
from 22,000 years ago onward, frozen subsoil and 
expanded alpine glaciers began to thaw and fall-
winter snow covers melted in spring. Much of the 
discharge was routed to the Rhine and its downstream 
extension. Rapid warming and changes of vegetation, 
to open forest, began about 13,000 BP. By 9000 BP, 
Europe was fully forested. With globally shrinking 
ice-cover, ocean water levels rose and the English 
Channel and North Sea re-inundated. Meltwater, 
adding to the ocean and land subsidence, drowned the 
former coasts of Europe transgressionally.

Question: When was Europe fully forested and 
recovered from the last Ice Age? 

Ours: 9000 BP

ChatGPT: Europe was fully forested and recovered 
from the last Ice Age by 9000 BP.

Passage: เมื่อยโุรปตะวนัตกเฉียงเหนือคอ่ยๆ อุน่ขึน้ตัง้แต่ 22,000 ปีท่ี

แลว้ เป็นตน้มา ชัน้ใตผิ้วดินซึง่กลายเป็นนํา้แข็งและธารนํา้แขง็หบุเขาซึง่

ขยายตวัก็เริม่ ละลาย และหิมะท่ีตกในฤดใูบไมร้ว่งและฤดหูนาวก็ละลายใน

ฤดใูบไมผ้ล ินํา้ท่ีเกิดจากการละลายจาํนวนมากไหลไปท่ี แมน่ํา้ไรน ์และตาม

ลาํนํา้สาขาท่ีไหลลง อากาศท่ีอุน่ขึน้อยา่งรวดเรว็ และการเปลีย่นแปลงของ

พืชพนัธุใ์นป่าเปิด เริม่ขึน้เมื่อประมาณ 13,000 ก.ป. เมื่อถึงช่วง 9000 ปีก.ป.

ยโุรปก็เต็มไปดว้ยป่า เมื่อนํา้แข็งท่ีปกคลมุทั่วโลกลดจาํนวนลง ระดบันํา้ใน

มหาสมทุรก็สงูขึน้ และช่องแคบองักฤษกบัทะเลเหนือก็โดนนํา้ทว่มอีกครัง้ นํา้

ท่ีเกิดจากการละลายบวกกบันํา้ในมหาสมทุรและการทรุดตวัของพืน้ดิน ทาํ

ใหอ้ดีตชายฝ่ังของยโุรปจมนํา้

Question: ยโุรปเต็มไปดว้ยป่าและฟ้ืนฟจูากยคุนํา้แข็งสดุทา้ยเมื่อใด

Ours: 9000 ปีก.ป.

ChatGPT: ยโุรปเต็มไปดว้ยป่าและฟ้ืนฟจูากยคุนํา้แข็งสดุทา้ยเมื่อ

ประมาณ 13,000 ก.ป.

 

×
 

 

Figure 9: A Thai (th) example from the XQuAD dataset.

Passage: Through combining the definition of 
electric current as the time rate of change of 
electric charge, a rule of vector multiplication 
called Lorentz's Law describes the force on a 
charge moving in a magnetic field. The connection 
between electricity and magnetism allows for the 
description of a unified electromagnetic force
that acts on a charge. This force can be written 
as a sum of the electrostatic force (due to the 
electric field) and the magnetic force (due to the 
magnetic field). Fully stated, this is the law:

Question: What magnetic and electric force acts on 
a charge? 

Ours: unified electromagnetic force

ChatGPT: The magnetic force and electrostatic 
force act on a charge.

Passage: Bằng việc kết hợp định nghĩa của 
dòng diện giống như tốc độ thời gian thay đổi 
của điện tích, quy tắc nhân vectơ gọi là Định 
luật Lorentz mô tả lực tác dụng lên một điện 
tích chuyển động trong từ trường. Việc kết 
nối giữa điện và từ tính giúp mô tả một lực 
điện từ thống nhất tác dụng trên một điện 
tích. Lực này có thể được viết dưới dạng tổng 
của lực tĩnh điện (do điện trường) và lực từ 
(do từ trường). Nói đầy đủ, đây là định luật:

Question: Lực từ và lực điện nào tác dụng lên
một điện tích?

Ours: lực điện từ thống nhất

ChatGPT: Lực từ và lực tĩnh điện tác dụng lên
một điện tích.

 

×

 

×

Figure 10: A Vietnamese (vi) example from the XQuAD dataset.

Passage: Reserved matters are subjects that are outside 
the legislative competence of the Scotland Parliament. 
The Scottish Parliament is unable to legislate on such 
issues that are reserved to, and dealt with at, 
Westminster (and where Ministerial functions usually lie 
with UK Government ministers). These include abortion, 
broadcasting policy, civil service, common markets for 
UK goods and services, constitution, electricity, coal, 
oil, gas, nuclear energy, defence and national security, 
drug policy, employment, foreign policy and relations 
with Europe, most aspects of transport safety and 
regulation, National Lottery, protection of borders, 
social security and stability of UK's fiscal, economic 
and monetary system.

Question: Where are issues like abortion and drug policy 
legislated on? 

Ours: Westminster

ChatGPT: Europe was fully forested and recovered from 
the last Ice Age by 9000 BP.

Passage: 保留问题是苏格兰议会立法能力以外的
议题。苏格兰议会无法对保留问题进行立法，应
交由威斯敏斯特处理（部委职能通常由英国政府
的国务大臣完成。此类问题包括堕胎、广播政策、
国民服务、政府机构、英国商品和服务的共同市场、
宪法、电力、煤炭、石油、燃气、核能、国防和国
家安全、毒品政策、就业、对外政策和对欧关系、
交通安全和管制的大多数方面、英国彩票、边境安
全、社会保障以及英国的财政、经济和货币系统的
稳定性。

Question: 诸如堕胎、毒品政策之类的问题在哪
里立法？

Ours: 威斯敏斯特

ChatGPT: 这些问题的立法权不在苏格兰议会，而
是应交由威斯敏斯特处理，通常由英国政府的国务
大臣完成。

 

 

 

 

Figure 11: A Chinese (zh) example from the XQuAD dataset.
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