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Abstract

Compressing large language models (LLMs),
often consisting of billions of parameters, pro-
vides faster inference, smaller memory foot-
prints, and enables local deployment. Two
standard compression techniques are pruning
and quantization, with the former eliminating
redundant connections in model layers and
the latter representing model parameters with
fewer bits. The key tradeoff is between the
degree of compression and the impact on the
quality of the compressed model. Existing
research on LLM compression primarily fo-
cuses on performance in terms of general met-
rics like perplexity or downstream task accu-
racy. More fine-grained metrics, such as those
measuring parametric knowledge, remain sig-
nificantly underexplored. To help bridge this
gap, we present a comprehensive analysis
across multiple model families (ENCODER,
ENCODER-DECODER, and DECODER) using
the LAMA and LM-HARNESS benchmarks in
order to systematically quantify the effect of
commonly employed compression techniques
on model performance. A particular focus is
on tradeoffs involving parametric knowledge,
with the goal of providing practitioners with
practical insights to help make informed deci-
sions on compression. We release our code-
base1 to enable further research.

1 Introduction

Large language models (LLMs) have demon-
strated exceptional performance across diverse
tasks. However, their deployment in real-world ap-
plications is hindered by their substantial size and
the associated costs, even for inference (Schwartz
et al., 2020; Strubell et al., 2019). For in-
stance, the LLama-65B model (Touvron et al.,
2023), a pioneering open-sourced LLM, uses ap-
proximately 130GB of RAM for 16-bit inference.
To address this challenge, recent research has

1https://github.com/NamburiSrinath/LLMCompression

focused on developing novel compression tech-
niques that enable efficient local deployment and
inference. Notable examples of such techniques
include SparseGPT (Frantar and Alistarh, 2023)
and LLM.int8() (Dettmers et al., 2022).

The tradeoff between model compression and
quality is typically studied either through general
metrics like perplexity (See et al., 2016; Michel
et al., 2019) or standardized benchmark task accu-
racy (Liang et al., 2021; Du et al., 2021) on, e.g.,
GLUE (Wang et al., 2018). Furthermore, much of
the literature studies such tradeoffs for one model
or a particular class of models. Unfortunately, as a
result, practitioners do not have access to reliable
insights or rules-of-thumb to ensure they can make
an informed decision for compression in their own
models. This is because

• Metrics like perplexity are too general, while
benchmark prediction metrics are too easy
to fool. For example, recent findings sug-
gest that distilled versions of foundational
LLMs, known as imitation models, may ex-
hibit stylistic similarities but potentially lack
knowledge when compared to the models
they seek to imitate (Gudibande et al., 2023).

• Most recent research on compression tech-
niques has primarily focused on DECODER

models. The applicability and effectiveness
of such techniques for large ENCODER and
ENCODER-DECODER models (Chung et al.,
2022) has yet to be extensively studied.

These difficulties suggest that there is a need for
a more fine-grained understanding of the effects
of compression schemes, comparing a variety of
model families, compression techniques, and spe-
cialized measurements.

We address these challenges, specifically focus-
ing on the preservation of parametric knowledge,
i.e., knowledge acquired during pretraining, that
is stored in model weights. This is particularly
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crucial for tasks involving reasoning and for spe-
cialized applications. Concretely, we examine
the impact of different compression schemes on
parametric knowledge across multiple model fam-
ilies (ENCODER, ENCODER-DECODER and DE-
CODER) where we apply pruning and quantization
approaches and analyze the performance of such
techniques on downstream reasoning tasks. To the
best of our knowledge, this work represents one of
the first large-scale investigations in this direction.
Among the crucial observations resulting from this
study include:

• Pruning all modules together has the most
significant impact on parametric knowledge,
compared to pruning specific modules,

• At pruning levels of >50%, the parametric
knowledge of all the models declines rapidly,

• Quantizing attention modules has less impact
on performance compared to quantizing feed-
forward networks for all the models,

• Across all models, structured pruning at the
final layer has detrimental effects compared
to unstructured pruning.

2 Background

In this section, we briefly discuss the various com-
pression techniques we use in our study.

2.1 Pruning

Pruning involves reducing the model size by
eliminating unnecessary or redundant connections
between neurons or entire neurons altogether.
Broadly speaking, pruning approaches can be clas-
sified into two types (Fig. 1):

Unstructured Pruning: Each connection is
treated as an individual entity, and sparsity is
attained by eliminating connections with lower
saliency. Although this approach enables the re-
moval of less important connections without com-
promising performance, it leads to sparse matrix
operations, which may not be optimal for certain
hardware accelerators2 (Buluc and Gilbert, 2008;
Gale et al., 2019).

Structured Pruning: This involves removing
a group of connections, such as channels or entire
neurons, instead of individual connections. Unlike
unstructured pruning, this approach avoids intro-
ducing sparse matrix operations. However, aggres-

2The current landscape is evolving as advanced accelera-
tors are emerging that provide support for sparse multiplica-
tions.

Figure 1: An illustration of unstructured (left) vs struc-
tured (right) pruning.

sive structured pruning may disproportionately im-
pact the model’s performance (Yao et al., 2019).

Choosing Saliency of Weights: When choos-
ing the criterion to determine saliency, various fac-
tors can be taken into account, such as weight mag-
nitude, importance to the overall network function-
ality, or contribution to specific tasks. Typically,
the saliency of weights is determined based on
their magnitudes when selecting which ones to re-
move during pruning. A sparsity of k% means that
the least salient k% connections are removed.

The most commonly used pruning types are:

1. L1-Unstructured: Connections between
neurons are eliminated individually, and their
saliency is determined by their L1-norm, i.e.,
the smallest weights are removed.

2. Lp-Structured: Connections are elimi-
nated in a structured way, i.e., an entire
layer/channel is removed, and saliency is de-
termined by their Lp-norm where p is a hy-
perparameter.

2.2 Quantization

Model parameters can be categorized into weights
and activations, which are typically represented us-
ing 32 bits. Quantization aims to reduce the num-
ber of bits used for representing these parameters.
A popular choice for this mapping is3:

Q(r) = Int(r/S)− Z,

where Q is the quantization operator, r is a real-
valued input (weight or activation), S is a real-
valued scaling factor, and Z is an integer zero-
point. An important factor in mapping r to an in-
teger is the scaling factor S. This is usually given
by

S =
β − α

2b − 1
. (1)

3Uniform quantization maps real values to equally spaced
integers
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Here [α, β] denotes the clipping range and b is
the quantization bandwidth. The process of de-
termining the clipping range is known as calibra-
tion. Extensive research has been conducted to de-
termine the optimal range to reduce the bit repre-
sentation while balancing accuracy, computational
efficiency, and inference speed (Gholami et al.,
2021). In most cases, statistics for weights are
precomputed as they remain constant during in-
ference. Often, it may be necessary to fine-tune
the quantized model parameters to enhance perfor-
mance on task-specific datasets. Taking these fac-
tors into account, various methods have been pro-
posed (Nagel et al., 2021):

Post Training Static Quantization (PTSQ):
The clipping range for activations is pre-calculated
using a representative dataset, which is a small
subset derived from the task-specific dataset. Us-
ing this clipping range, the activations are quan-
tized in advance and thus remain static during in-
ference.

Post Training Dynamic Quantization
(PTDQ): The clipping range is dynamically
calculated for each activation during inference.
Although this introduces additional computational
overhead during inference, it yields improved
performance compared to Post Training Static
Quantization (PTSQ) as the signal range is exactly
calculated for each input.

Quantization Aware Training (QAT): The
model undergoes a process known as fake-
quantization, i.e., during training all the calcula-
tions involving forward and backward passes are
performed in full-precision. Subsequently, after
updating the weight parameters through gradient
descent, the weights are quantized to a lower bit.
While this approach achieves the highest perfor-
mance, it requires finetuning the model.

We note that while a huge diversity of often so-
phisticated and specialized compression methods
have been proposed, we focus on a subset of stan-
dard approaches. This enables us to seek more
general insights on compression tradeoffs.

3 Experimental Setup

In this section, we present a comprehensive
overview of our experimental setup, including the
rationale behind our design choices, along with the
selection of models and datasets.

Figure 2: Block diagram of a simplified Transformer
describing modules compressed in our experiments.

3.1 Settings Under Consideration

The general transformer block consists of an atten-
tion module followed by a feed-forward network.
As a result, we consider three choices for compres-
sion: compress the attention module alone §3.2,
compress the feed-forward network alone §3.3, or
compress both together §3.4. Figure 2 contains a
visual representation of these modules.

Our chosen compression techniques include
pruning, quantization, and a combination of prun-
ing and quantization. Following the methodology
proposed in Han et al. (2015), we adhere to the
sequential order of pruning the selected group of
modules first and then applying quantization. In
addition, we also investigate the impact on dis-
tilled models and explore the effects of employing
various combined compression techniques.

3.2 Attention-only Global Compression

We include all the linear layers within all the
attention modules of the model. For encoder-
decoder models, we also consider the cross-
attention blocks.

Attention-only Global Pruning, (AttGP ):
We apply pruning to all the linear layers within the
attention modules.

Attention-only Global Quantization,
(AttGQ): We quantize all the linear layers
within the attention modules.

Attention-only Global Pruning + Quantiza-
tion, (AttGPQ): We prune the linear layers in
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the attention modules and subsequently quantize
them.

3.3 Feed-forward-only Global Compression

We include all the linear layers within all the feed-
forward networks of the model.

Feed-forward-only Global Pruning, (FFGP ):
We employ pruning to all the linear layers within
the feed-forward networks.

Feed-forward-only Global Quantization,
(FFGQ): We quantize all the linear layers within
the feed-forward networks.

Feed-forward-only Global Pruning + Quan-
tization, (FFGPQ): We prune all the linear lay-
ers from feed-forward networks and subsequently
quantize them.

3.4 Overall Global Compression

We specifically target the linear layers within the
attention and feed-forward network. Under this
compression, the different setups are:

Overall Global Pruning, (OverallGP ) : We
employ pruning to all the linear layers (except the
final dense layer).

Overall Global Quantization,(OverallGQ)
+ : We apply quantization to all the linear lay-

ers (including the final dense layer).
Overall Global Pruning + Quantization

(OverallGPQ) + : We first apply pruning to
all the linear layers (except the final dense layer),
and subsequently, we quantize all the linear layers.

3.5 Final Dense Layer Pruning, (FLP )

Recent studies (Mitchell et al., 2021, 2022; Meng
et al., 2022) provide evidence suggesting that the
final layers of a language model play a signifi-
cant role in storing information. Given its im-
portance, we focus on understanding how knowl-
edge is encoded in the final layer. Therefore, we
treat the final layer as an individual module in
our experimental setup and prune it. We consider
L1-structured and L1-unstructured pruning as out-
lined in §2.1.

We note that the number of parameters com-
pressed differs for different settings. We record
all of the values required for normalizing mea-
surements. However, our focus is predominantly
aimed at understanding the effects of compressing
modules and their combinations rather than pre-
senting normalized results, and our insights reflect
this framing. We provide full parameter counts

that permit normalized quantities that can be used
by practitioners who seek to directly apply our
work and refer the readers to Sec. A.2 for more
details.

3.6 Design Choices

• In our global pruning experiments
(OverallGP , AttGP , FFGP ), we use
L1-Unstructured and apply pruning per-
centages ranging from 10% to 90% with
increments of 10%.

• For quantization experiments, as we seek
to investigate the zero-shot capabilities of
LLMs, we select post-training dynamic quan-
tization §2.2, eliminating the need for finetun-
ing (unlike quantization-aware training; QAT
§2.2) or calibration of the model to a repre-
sentative dataset (unlike post-training static
quantization; PTSQ §2.2) and quantize to 8
bits (int8).

• Since the quantization of activations occurs
during inference, which is dynamic in nature,
the order of inputs within a batch has a minor
impact on the final accuracy (< 1%). There-
fore, we seed the experiments to ensure con-
sistent and reproducible results (§A.1).

• Previous studies (Gordon et al., 2020; Michel
et al., 2019) suggest that pruning levels of
30%-40% do not affect the model on down-
stream tasks. Such rules-of-thumb may or
may not hold for parametric knowledge. In
our experimental settings (GPQ, FLP ), we
select 20% and 40% as the levels to under-
stand when a similar result holds.

3.7 Model Zoo

We consider the following models for our study.
Where available, we choose both the base and
large versions of the model to understand if larger
models exhibit different behavior.

3.7.1 Encoder-only:
• BERT (Devlin et al., 2019): Pretrained on

masked language modeling (MLM) and next
sentence prediction (NSP) objective.

• RoBERTa (Liu et al., 2019): Similar to
BERT with different training choices (larger
training dataset and removed NSP).

• DistilBERT (Sanh et al., 2020): Distilled ver-
sion of BERT whose training objective in-
cludes MLM, a distillation loss, and a cosine
embedding loss.
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• ALBERT (Lan et al., 2019): Parameter-
reduced version of BERT using cross-layer
parameter sharing and factorized embedding
parameterization.

3.7.2 Encoder-Decoder:
• Flan-T5 (Chung et al., 2022): Instruction-

finetuned encoder-decoder model with
masked span corruption objective.

• Lamini-Flan-T5 (Wu et al., 2023): Flan-
T5 model finetuned on LaMini instruction
dataset4 which is generated and distilled us-
ing ChatGPT output.

3.7.3 Decoder only:
• Vicuna-7B (Chiang et al., 2023): An

instruction-based LLama derived model fine-
tuned on user-shared conversations collected
from ShareGPT.

• WizardLM-7B (Xu et al., 2023): An
instruction-based LLama derived model with
instructions generated by LLMs (rather than
humans) using the Evol-Instruct mechanism.

3.8 Datasets
We use the following datasets for our empirical
analysis:

LAMA: To examine the effects of compression
on encoder-only models, we use the LAMA (LAn-
guage Model Analysis) benchmark (Petroni et al.,
2019). LAMA assesses the factual and common-
sense knowledge of language models. Each ex-
ample in LAMA is formulated as a cloze-style
question, where either the subject or object is
masked. By predicting the masked word, we can
evaluate the model’s ability to recover real-world
facts. Specifically, we probe the encoder-only
models with LAMA to investigate the impact of
compression on various knowledge tasks. This
benchmark consists of four datasets, namely TRex,
Google-RE, ConceptNet, and SQUAD, each de-
signed to assess specific types of relational knowl-
edge. These datasets provide valuable insights into
the model’s performance and its understanding of
different types of information.

Language model evaluation harness: To
examine the effects of compression on encoder-
decoder and decoder-only models, we use a sub-
set of evaluation harness tasks (Gao et al., 2021):
the BoolQ dataset (Clark et al., 2019), the PIQA

4https://huggingface.co/datasets/MBZUAI/LaMini-
instruction

dataset (Bisk et al., 2020), and the Winogrande
dataset (Sakaguchi et al., 2021). These datasets
provide a range of challenging prompts for each
model type. We refer the reader to Table 2 for ex-
amples of samples from each dataset.

4 Experimental Results and Insights

To facilitate our discussion, we categorize pruning
levels as follows:

• plow: Sparsity levels of 10-30%
• pmedium: Sparsity levels of 30-50%
• phigh: Sparsity levels of >50%

For encoder-only models, we report the % drop
in top-1 accuracy, averaged across all the probes
in LAMA. For the decoder-only and encoder-
decoder models, we report the % drop in accuracy,
averaged across BoolQ, PIQA and Winogrande. In
the decoder-only and encoder-decoder plots, the
majority-baseline indicates the accuracy when all
the predictions are assigned to the majority class.

4.1 Global Pruning

We observe that for encoder-only models (Fig. 3,
19), there is a minimal decline in performance
at plow. At pmedium, the drop in performance is
more significant for pruning feed-forward net-
works (FFGP ) as compared to attention modules
(AttGP ).

Finding: At pmedium, for encoder-
only models, pruning attention modules
(AttGP ) has a smaller impact compared to
pruning feed-forward networks (FFGP ).

We observe that for encoder-decoder (Fig. 5,
13) and decoder-only models (Fig. 4), there is a
minimal decline in performance at plow. However,
at pmedium, the drop in performance is more
significant for pruning attention modules (AttGP )
compared to feed-forward networks (FFGP ).

Finding: At pmedium, for encoder-
decoder and decoder-only models, pruning
the attention module (AttGP ) has more im-
pact on performance compared to pruning
feed-forward networks (FFGP ).
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Figure 3: Averaged drop in Top-1 accuracy for encoder-only models for global pruning.

0 20 40 60 80 100
% pruned

−40

−30

−20

−10

0

Vicuna-7B

0 20 40 60 80 100
% pruned

WizardLM-7B

%
 lo

ss

OverallGP AttGP FFGP Majority Baseline

Figure 4: Averaged drop in accuracy for decoder-only
models for global pruning.
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Figure 5: Averaged drop in accuracy for encoder-decoder
models for global pruning.

We note that the number of parameters in the
feed-forward networks is significantly higher than
the number of parameters in the attention mod-
ules for all these models (Table 3). This observa-
tion provides a likely explanation for the pattern
observed in encoder-only models, where pruning
more parameters results in a higher loss of para-
metric knowledge. However, this finding is coun-
terintuitive for encoder-decoder and decoder-only
models, as we would expect that pruning the larger
feed-forward networks would have a more signif-
icant impact on the parametric knowledge. We
suspect that the feed-forward networks are over-
parameterized and thus they can be pruned without
a significant drop in performance.

Finding: For all the models, pruning all
the modules together (OverallGP ) has the
most significant impact on performance.

Among all the models analyzed, pruning all
modules together (OverallGP ) has the most sig-
nificant negative impact on performance. This
finding suggests that when compressing models,
pruning all modules simultaneously leads to a
greater loss of parametric knowledge compared to
pruning specific modules or components individu-
ally. Therefore, it is crucial to carefully consider

the implications of employing global pruning tech-
niques. We additionally note that at phigh, the per-
formance goes to zero as expected.

Additional results for global pruning on individ-
ual datasets for encoder-only models are shown in
Fig 20, 21, 22; for decoder-only models at Fig 23;
for encoder-decoder models at Fig 13, 25.

4.2 Global Quantization

We observe that across all the models (Fig. 6,
15, 16), the performance drop is less significant
when quantizing attention modules (AttGQ) com-
pared to quantizing feed-forward networks alone
(FFGQ). This contrasts with the results from
global pruning (§4.1), where pruning attention-
only modules had a more detrimental effect on
encoder-decoder and decoder-only models.

Finding: For all the models, quantizing
attention modules (AttGQ) has lesser im-
pact compared to quantizing feed-forward
networks (FFGQ).

We hypothesize that in the case of quantiza-
tion where all connections are preserved, the para-
metric knowledge in cross-attention modules may
remain relatively intact. However, in pruning,
as connections are eliminated, there may have
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Figure 6: Averaged drop in Top-1 accuracy for encoder-
only models for global quantization.
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Figure 7: Averaged drop in Top-1 accuracy for encoder-
only models for global pruning+quantization.

a greater impact on the parametric knowledge
in cross-attention modules, thereby affecting the
overall capabilities of the model. It is also interest-
ing to observe that the performance drop during
quantization is almost similar to that of pmedium.

Finding: For all the models, quantizing all
the modules together (OverallGQ) hurts
the most.

It is intuitive that quantizing all the modules to-
gether (OverallGQ) has the most significant nega-
tive impact. Additional results are shown in Tables.
4, 5, 6.

4.3 Global Pruning + Quantization

For all the models (Fig. 7, 17, 18), at 20%
sparsity, compressing attention modules (AttGPQ)
results in a smaller performance drop compared
to compressing feed-forward networks (FFGPQ).
At 40% sparsity, the same trend is observed for
encoder-only and decoder-only models. However,
we notice the reverse for ENCODER-DECODER

models i.e., that compressing feed-forward net-
works affects performance less than compressing
the attention modules at 40% sparsity.

Finding: For all the models, at 20% spar-
sity level, AttGPQ hurts less compared to
FFGPQ.

We hypothesize that the sequential effects of
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Figure 8: Averaged drop in accuracy for encoder-
decoder models for different attention modules
compression. SelfAttGPQ

: Compressing only
self-attention modules, CrossAttGPQ

: Compress-
ing only cross-attention modules, EncoderAttGPQ

:
Compressing attention modules in encoder only,
DecoderAttGPQ

: Compressing attention modules in
decoder only.

pruning and quantization on the cross-attention
modules could be responsible for this change in
the order of impact. To test this hypothesis, we se-
lectively prune and quantize the self-attention and
cross-attention modules separately and found out
that it is indeed the case (Fig. 8) and aligns with
the claim made in Michel et al. (2019). Additional
results for compressing attention-only modules are
shown in Fig 12, 24. For fine-grained analysis on
individual datasets, we refer the interested reader
to Table 4, 5, 6.

4.4 Final Dense layer Pruning

For encoder-only models (Fig. 9), L1-
unstructured pruning has a smaller impact
compared to L1-structured pruning. We hypoth-
esize that the final layer of the encoder-only
models might encode knowledge in a structured
or modular manner, and any form of structured
compression would disrupt this encoding, result-
ing in a larger performance drop. Such a result
would be consistent with existing approaches that
enable editing knowledge in language models and
rely on structure (Mitchell et al., 2021).

Finding: For encoder-only models, L1-
unstructured leads to a smaller decrease in
performance than L1-structured.
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Figure 10: Averaged drop in Top-1 accuracy for
decoder-only models for final layer pruning.

For decoder-only (Fig. 10) and encoder-decoder
(Fig. 14) models, even at a sparsity level of 20%,
the predicted accuracy is very close to the major-
ity baseline. This finding aligns with the claims
made in Mitchell et al. (2022) that final layers en-
code significant amount of information. The dras-
tic performance drop observed suggests that the fi-
nal layers play a crucial role in encoding knowl-
edge. Additional results for pruning the final layer
are shown in Fig. 26, 27, 28.

5 Related Work

Early works seeking to understand large language
model behavior focused on contextual represen-
tations and how such models gain linguistic ca-
pabilities (Goldberg, 2019; Ettinger et al., 2018;
Jawahar et al., 2019). More recently, some lines
of work have steered towards understanding how
these models acquire factual and commonsense
knowledge. Techniques such as probing evolved
as a way to understand the knowledge capabili-
ties of these models (Petroni et al., 2019; Kassner
and Schütze, 2020; Talmor et al., 2020; Weir et al.,
2020; Wallat et al., 2021).

Previous works including Gordon et al. (2020);
Michel et al. (2019) pruned BERT and showed that
it is resilient to a medium level of pruning. For ex-
ample, Michel et al. (2019) showed that after fine-
tuning for a particular downstream task, it is pos-
sible to prune about 40% of the attention weights
without any loss in performance. A particular fo-

cus has been to understand the importance of the
attention mechanism (Voita et al., 2019; Michel
et al., 2019) by pruning the heads. In a similar
fashion, works such as Zafrir et al. (2019); Bai
et al. (2020); Zadeh et al. (2020); Tao et al. (2022);
Prato et al. (2019); Frantar et al. (2022); Dettmers
et al. (2023) pushed the limits of quantization on
language models. Most of these works have fo-
cused on one model class or a particular metric.

In another line of work, a variety of approaches
(Li and Liang, 2021; Hu et al., 2021; Liu et al.,
2021; Lester et al., 2021) focus on alternatives to
traditional finetuning of the model due to its scale.
In contrast to these works, our paper primarily fo-
cuses on the in-built parametric knowledge present
in the model. This means we do not finetune and
instead seek to understand whether some of the
previously described phenomenona are applicable
to other models as well.

Also connected to this work are techniques that
edit factual knowledge in models. The goal for
such works is to avoid retraining or even finetun-
ing models, instead seeking to directly change pa-
rameters connected to certain facts (Mitchell et al.,
2021, 2022; Meng et al., 2022). However, given
our focus on compression, the main theme of our
work differs. Nevertheless, it would be interesting
to understand the impact of relying on compressed
models when using such editing techniques.

6 Conclusion

Compression is crucial in deploying and using
large language models. Despite its importance,
existing empirical studies predominantly rely on
generic measurements such as perplexity or stan-
dardized benchmark metrics when investigating
the effects of compression. These coarse measure-
ments are challenging to interpret. As a result, it is
difficult to use them to develop meaningful heuris-
tics for practitioners.

To address these limitations, we provided a
large-scale study that focused on fine-grained ef-
fects on quantities like parametric knowledge. We
studied a variety of compression choices across
multiple model families, providing usable insights
into what types of compression schemes have the
least and most significant impact on models. We
hope this work serves as a useful step towards de-
veloping users’ intuition for rules-of-thumb when
selecting appropriate compression techniques in
large language models. For future work, we hope
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to add additional, more specialized techniques for
large language model compression.

7 Limitations

Our research has tackled a diverse combination of
models, compression schemes, and compression
targets within the vast large language model re-
search area. We note that sophisticated and spe-
cialized compression techniques tailored to spe-
cific objectives for a particular class of models
may exhibit distinct behavior compared to the find-
ings presented in this study. Hence, our work does
not aim to present an exhaustive set of findings that
universally characterize the impact on parametric
knowledge across all conceivable models and com-
pression approaches. We believe that our study
serves as a valuable starting point, offering a nu-
anced examination of prevalent methodologies.

We note, additionally, that we do not directly
address the tradeoff between wall-clock inference
time versus compression. While this is also an
important tradeoff, the impact of compression on
inference time contains many intricacies that are
best treated with a separate large-scale study.
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A Appendix

The appendix contains all of the results we could
not include in the body of the paper. We first
discuss the statistical approach of the experiments
and the performance drop against compression ra-
tio. Then, we show individual plots for a set of ex-
periments that track decrease in accuracy for sev-
eral types of compression and models. Next, we
provide a table that contains information on the
datasets used in our experiments. Afterwards, we
provide tables with model details, including pa-
rameter counts, and explicit results for compres-
sion results across model families. Afterwards, we
present a large-scale comparison across datasets
for encoder-decoder models under various atten-
tion module compression approaches. We pro-
vide LAMA probe results and finally, change-in-
accuracy plots for a variety of datasets for different
model classes.

A.1 Experimental Approach
Our experiments fall into two categories: deter-
ministic and stochastic. Our experiments on prun-
ing are deterministic as we used L1-unstructured
pruning. On the other hand, our quantization ex-
periments have an element of randomness. This
is due to our use of PTDQ, which computes a
dynamic clipping range. We deliberately struck
a balance between the number of trials per set-
ting and the overall number of settings studied.
Consequently, we ran experiments with multiple
seeds and recorded confidence intervals, as demon-
strated in Table 1.

A.2 Performance drop against compression
ratio

Normalizing the x-axis to account for the param-
eter ratio results in the same plots, but with a
skewed x-axis (Fig. 11). Given a specific perfor-
mance drop percentage, it is highly likely that we
can achieve greater parameter compression by tar-
geting feedforward modules rather than attention
modules. It is worth noting that across all the
models studied, feedforward modules have more
parameters than attention module
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Figure 11: Performance drop vs compression ratios for
different model families. Models and Datasets are ran-
domly chosen for representation
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Table 1: Top-1 Accuracy from quantizing BERT on SQUAD. Left: BERT-Base, Right: BERT-Large. Baseline for
BERT-Base is 12.987 and BERT-Large is 15.909

OverallGQ AttGQ FFGQ

Seed 40 5.844 13.312 3.896
Seed 50 5.844 13.312 5.195
Seed 60 6.169 12.987 4.221
Mean 5.952 13.204 4.437
Standard Deviation (sample) 0.188 0.188 0.676
Standard Deviation (population) 0.153 0.153 0.676

OverallGQ AttGQ FFGQ

Seed 40 2.273 16.883 2.597
Seed 50 2.922 14.286 3.896
Seed 60 2.922 15.909 4.545
Mean 2.706 15.693 3.679
Standard Deviation (sample) 0.375 1.312 0.992
Standard Deviation (population) 0.306 1.071 0.992

Table 2: Datasets in our experiments (we use dev sets for BoolQ, PIQA, and Winogrande)

Probe Type #Egs Question Answer
TRex Factual 34k Francesco Bartolomeo Conti was born in [MASK]. Florence
Google-RE Factual 5.5k Mareva is a [MASK] actress & former beauty Queen French Polynesia
Squad Factual 305 Newton played a [MASK] during Super Bowl 50. Quarterback
ConceptNet Commonsense 11k Joke would make you want to [MASK]. laugh
BoolQ Mix 3.2k Is there any dollar bill higher than a 100? No

PIQA Commonsense 1.8k
Goal: "ice box"

Soln1Soln1: will turn into a cooler if you add water to it
Soln2: will turn into a cooler if you add soda to it

Winogrande Commonsense 1.2k The trophy doesnt fit into the brown suitcase because its too small. suitcase
The trophy doesnt fit into the brown suitcase because its too large. trophy

Table 3: Number of parameters (in million) across all the models

Model Name OverallGP AttGP,GQ,GPQ FFGP,GQ,GPQ FLP Total trainable parameters (for OverallGQ,GPQ)
Bert-base 86 21 64 23 109
Bert-large 303 75 226 31 334
Roberta-base 86 21 64 39 124
Roberta-large 303 75 226 51 355
Distilbert-base 43 14 28 23 66
Albert-base-v2 85 28 57 4 89
Albert-large-v2 302 101 201 4 306
FlanT5-base 198 85 113 25 223
Distil-FlanT5-base 198 85 113 25 223
FlanT5-large 717 302 311 33 750
Distil-FlanT5-large 717 302 311 33 750
Vicuna 6476 2147 4329 131 6607
Wizard-LM 6476 2147 4329 131 6607

Table 4: Results from compressing different modules for encoder-only models (numbers represent top-1 accuracy)

Model Dataset Baseline OverallGQ AttGQ FFGQ OverallGPQ AttGPQ FFGPQ

20% 40% 20% 40% 20% 40%

BERT-base

TREx 30.27 11.536 29.903 16.614 5.552 4.233 29.675 29.217 14.691 14.628
GoogleRe 10.29 4.374 10.109 5.662 2.377 1.96 9.873 9.673 4.628 5.753

Squad 12.987 5.844 13.312 3.896 2.597 0.974 12.338 10.39 4.87 4.87
Conceptnet 16.33 6.02 15.897 8.677 3.919 3.69 16.224 15.553 8.262 8.324

BERT-large

TREx 30.485 4.376 30.539 4.592 1.277 0.848 29.624 29.195 8.145 6.673
GoogleRe 10.472 3.829 10.309 3.612 1.434 0.436 10.018 9.964 4.247 3.376

Squad 15.909 2.273 16.883 2.597 1.948 0.325 15.584 14.935 3.247 2.597
Conceptnet 19.534 4.652 19.048 5.649 1.818 1.342 18.801 18.086 5.164 4.864

RoBERTa-base

TREx 11.9 3.566 8.014 8.421 1.424 0.006 11.529 4.663 6.489 0.048
GoogleRe 4.102 1.143 2.668 1.234 0.617 0 3.249 1.779 1.053 0.091

Squad 8.442 0.325 4.545 2.922 0 0 5.195 1.623 1.299 0
Conceptnet 17.036 3.769 14.467 7.247 0.83 0.026 14.865 8.147 5.746 0.856

RoBERTa-large

TREx 16.862 6.264 16.159 11.885 0.175 0.019 15.845 15.714 5.355 0.057
GoogleRe 3.811 1.488 3.829 2.868 0.036 0 2.196 1.869 0.926 0.054

Squad 13.636 4.87 13.312 7.468 0 0 12.013 10.714 1.299 0
Conceptnet 19.861 8.324 19.119 15.244 1.006 0.079 18.775 17.036 7.15 0.494

DistilBERT-base

TREx 28.082 14.186 28.184 20.383 18.285 12.673 27.021 25.229 20.367 18.593
GoogleRe 10.181 4.791 10.073 8.766 5.681 3.92 9.111 8.403 8.113 7.241

Squad 10.39 5.195 10.714 6.494 6.494 2.273 11.688 9.74 5.519 5.195
Conceptnet 14.308 6.391 14.132 9.101 9.339 5.976 14.105 13.346 9.727 7.238

ALBERT-base

TREx 13.016 0 9.213 0.003 0 0.003 7.595 0.845 0 0.003
GoogleRe 1.307 0 0.762 0 0 0 0.436 0.036 0 0

Squad 3.896 0 1.623 0 0 0 1.299 0.649 0 0
Conceptnet 9.86 0.018 6.682 0.009 0 0 5.517 1.077 0.009 0.018

ALBERT-large

TREx 22.057 0 0 0.133 0 0.013 0.003 0.006 0 0.003
GoogleRe 2.686 0 0 0 0 0 0 0 0.018 0

Squad 9.74 0 0 0 0 0 0 0 0 0
Conceptnet 14.794 0.009 0.071 0.132 0 0.009 0.026 0.044 0 0.009

5267



Table 5: Results from compressing different modules of decoder-only models (numbers represent accuracy).
Majority baselines are - BoolQ: 0.621, PIQA: 0.504, Winogrande: 0.504

Model Dataset Baseline OverallGQ AttGQ FFGQ OverallGPQ AttGPQ FFGPQ

20% 40% 20% 40% 20% 40%

Vicuna-7B
Boolq 0.7657 0.5211 0.7645 0.5437 0.5272 0.4398 0.7125 0.556 0.5346 0.4495

Piqa 0.778 0.611 0.7671 0.6556 0.5979 0.5332 0.7617 0.7421 0.6202 0.6257
Winogrande 0.6725 0.5391 0.678 0.5825 0.5043 0.4925 0.663 0.6298 0.5612 0.5367

WizardLM-7B
Boolq 0.7844 0.6073 0.7841 0.6003 0.5817 0.4453 0.7514 0.6801 0.6141 0.5547

Piqa 0.7622 0.6518 0.7508 0.6654 0.623 0.5593 0.7481 0.728 0.6556 0.6371
Winogrande 0.6646 0.5517 0.6638 0.588 0.5312 0.5193 0.6622 0.6346 0.5738 0.5817

Table 6: Results from compressing different modules of encoder-decoder models (numbers represent accuracy).
Majority baselines are - BoolQ: 0.621, PIQA: 0.504, Winogrande: 0.504

Model Dataset Baseline OverallGQ AttGQ FFGQ OverallGPQ AttGPQ FFGPQ

20% 40% 20% 40% 20% 40%

FlanT5-Base
Boolq 0.7887 0.618 0.7841 0.6352 0.5049 0.482 0.7609 0.5058 0.6275 0.6125

Piqa 0.6621 0.6251 0.6665 0.6415 0.5724 0.5419 0.6605 0.5631 0.6393 0.6077
Winogrande 0.5422 0.4862 0.5359 0.5138 0.5051 0.4949 0.5272 0.5241 0.5075 0.498

FlanT5-Large
Boolq 0.8645 0.8034 0.8615 0.8165 0.6498 0.5618 0.856 0.4107 0.819 0.7969

Piqa 0.7138 0.6638 0.716 0.6942 0.6181 0.5555 0.7214 0.6616 0.6953 0.6921
Winogrande 0.5991 0.5375 0.5896 0.573 0.5185 0.5067 0.5864 0.4957 0.5596 0.5572

Lamini-Flan-T5-248M
Boolq 0.7982 0.7297 0.8015 0.7346 0.667 0.4349 0.7569 0.6266 0.7315 0.7263

Piqa 0.6676 0.6393 0.6594 0.6507 0.6208 0.5462 0.6627 0.6208 0.6534 0.6338
Winogrande 0.5304 0.5257 0.5083 0.513 0.543 0.5051 0.5099 0.5004 0.4964 0.5028
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Figure 12: Averaged drop in accuracy for Lamini mod-
els under various attention modules compression (§4.3)
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Figure 13: Averaged drop in accuracy for global prun-
ing (§4.1)
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Figure 14: Averaged drop in accuracy for encoder-
decoder models for various local pruning (§4.4)
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Figure 15: Averaged drop in accuracy for global quan-
tization for decoder-only models (§4.2)
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Figure 16: Averaged drop in accuracy for global quanti-
zation for encoder-decoder models (§4.2).
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Figure 17: Averaged drop in accuracy for global prun-
ing+quantization for decoder-only models (§4.3).
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Figure 18: Averaged drop in accuracy for global pruning+quantization for encoder-decoder models (§4.3).
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Figure 19: Averaged drop in Top-1 accuracy for encoder-only models (§4.1).
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Figure 20: Drop in Top-1 accuracy for respective LAMA probes. Left-to-Right, Top-to-bottom: TREx, Google-
RE, SQUAD, Conceptnet (§4.1).
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Figure 21: Drop in Top-1 accuracy for respective LAMA probes. Left-to-Right, Top-to-bottom: TREx, Google-
RE, SQUAD, Conceptnet (§4.1).
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Figure 22: Drop in Top-1 accuracy for respective LAMA probes. Left-to-Right, Top-to-bottom: TREx, Google-
RE, SQUAD, Conceptnet (§4.1).
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Figure 23: Drop in accuracy for decoder-only models. Left-to-Right, Top-to-Bottom: BoolQ, PIQA, and Wino-
grande (§4.1)
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Figure 24: Drop in accuracy across various datasets for encoder-decoder models under various attention modules
compression. Top-to-Bottom: BoolQ, PIQA, Winogrande (§4.3)
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Figure 25: Drop in accuracy across various datasets for encoder-decoder models. Top-to-Bottom: BoolQ, PIQA,
Winogrande (§4.1)
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Figure 26: Drop in Top-1 accuracy across various datasets for encoder-only models for FLP . Left-to-Right, Top-
to-Bottom: TRex, Google-RE, SQUAD, ConceptNet (§4.4)
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Figure 27: Drop in accuracy across various datasets for decoder-only models for FLP . Left-to-Right, Top-to-
Bottom: BoolQ, PIQA, and Winogrande (§4.4)
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Figure 28: Drop in accuracy across various datasets for encoder-decoder models for FLP . Left-to-Right: BoolQ,
PIQA, and Winogrande (§4.4)

5273


