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Abstract

We introduce COEDIT, a state-of-the-art text
editing system for writing assistance. COEDIT
takes instructions from the user specifying the
attributes of the desired text, such as "Make
the sentence simpler" or "Write it in a more
neutral style," and outputs the edited text. We
present a large language model fine-tuned on a
diverse collection of task-specific instructions
for text editing (a total of 82K instructions).
Our model (1) achieves state-of-the-art perfor-
mance on various text editing benchmarks, (2)
is competitive with publicly available largest-
sized LLMs trained on instructions while being
∼60x smaller, (3) is capable of generalizing to
unseen edit instructions, and (4) exhibits abili-
ties to generalize to composite instructions con-
taining different combinations of edit actions.
Through extensive qualitative and quantitative
analysis, we show that writers prefer the edits
suggested by COEDIT, relative to other state-
of-the-art text editing models1.

1 Introduction

Large language models (LLMs) have made remark-
able progress toward generating coherent text in a
wide variety of tasks and domains to support writ-
ing assistance (Du et al., 2022a; Mallinson et al.,
2022; Schick et al., 2023), such as grammatical er-
ror correction (Wu et al., 2023), text simplification
(Štajner et al., 2022), paraphrasing (Chowdhury
et al., 2022), and style transfer (Reif et al., 2022).
One of the emergent abilities of LLMs is the ca-
pability to generalize to unseen tasks by following
new or composed instructions. Instruction-tuning,
where LLMs are fine-tuned on a collection of tasks
phrased as instructions, makes the models more
adept at interpreting and following instructions,
reducing the need for few-shot exemplars (Sanh
et al., 2022; Ouyang et al., 2022b; Wei et al., 2022;
Chung et al., 2022b).

1Code, data, and models available at https://github.
com/vipulraheja/coedit
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Figure 1: Model comparison according to training pa-
rameters vs. average performance across all text editing
benchmarks reported in Tables 2 and 11. Publicly avail-
able models are denoted with (*).

Text editing is a complex task because human
writers cannot simultaneously grasp multiple de-
mands and constraints of the task and tend to iterate
and revise their work multiple times (Flower, 1980;
Collins and Gentner, 1980; Vaughan and McDon-
ald, 1986). This poses a significant challenge for
intelligent writing assistants.

In this work, we aim to improve the capabili-
ties of instruction-tuned models for text editing by
leveraging instruction-tuning from diverse tasks of
text editing benchmarks. While multiple previous
works have attempted to develop general-purpose
text editing models using LLMs, they are either not
trained with instruction-tuning (Du et al., 2022c;
Kim et al., 2022), trained on much smaller models
or not trained on task-specific datasets (Mallinson
et al., 2022; Schick et al., 2023), or are not publicly
available (Schick et al., 2023), which limits their
effectiveness, performance, or usability.

We introduce COEDIT, a text editing system de-
signed to provide writing assistance with a natural
language interface. A user can employ COEDIT
by providing natural language instructions such as
"Paraphrase the sentence" or "Fix the grammar".
Our experiments demonstrate that fine-tuning in-
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structions for specific tasks is more effective than
multi-task learning and general-purpose instruction
tuning. We conjecture that task-specific instruc-
tions increase the density of the instruction space,
reinforcing the complementary effects of multiple
tasks and facilitating their generalization to com-
posite and new text editing tasks, as shown in Fig.
2.

To build COEDIT, we fine-tune a pre-trained
sequence-to-sequence model on a parallel corpus
of instruction-based 82K input-output pairs. The
inputs and outputs are sourced from publicly avail-
able corpora for different text editing tasks, and
the instructions are constructed based on rules that
introduce lexical and semantic variations.

Our main contributions are as follows:
• We achieve state-of-the-art performance on mul-

tiple text editing tasks: grammatical error cor-
rection, text simplification, sentence fusion, it-
erative text editing, and three stylistic editing
tasks (formality style transfer, neutralization,
and paraphrasing).

• We find that even our smallest instruction-tuned
model outperforms other supervised text editing
models, instruction-tuned models, and general-
purpose LLMs with nearly 60x greater parame-
ters, on both manual and automatic evaluations.

• COEDIT generalizes well to new, adjacent tasks
not seen while fine-tuning, as well as composite
instructions with multiple task specifications.

• Our data and models will be publicly available.

2 Related Work

Large Language Models for Text Editing In
general, our work is related to many prior works
that leverage LLMs; for instance, finetuning T5
(Raffel et al., 2020a) on pairs of original and edited
text (Faltings et al., 2021; Reid and Neubig, 2022;
Mallinson et al., 2022; Du et al., 2022a,b; Kim
et al., 2022). However, these aforementioned works
are either not based on instruction tuning, use dif-
ferent modeling techniques such as tag-based se-

quence labeling, or are not general enough to work
on multiple text editing tasks. Moreover, several
LLMs are trained to solve specific tasks only, such
as grammar errors (Mallinson et al., 2022; Fang
et al., 2023), text simplification (Štajner et al.,
2022), paraphrase generation (Chowdhury et al.,
2022), or style transfer (Reif et al., 2022), which
limits their generalizability.

Instruction Tuning for Writing Assistance Ex-
plicitly teaching models how to follow natural
language instructions is closely related to recent
work for fine-tuning models using large datasets
of human-written instructions (Wei et al., 2022;
Mishra et al., 2022; Sanh et al., 2022; Ouyang et al.,
2022a; Wang et al., 2022; Iyer et al., 2022; Bach
et al., 2022; Longpre et al., 2023). Recently, ad-
vanced data augmentation and instruction tuning,
starting with the Flan models (Chung et al., 2022b),
have shown that strong results stem both from the
larger and more diverse set of tasks. Additionally,
enriching task diversity and balancing task sources
(Sanh et al., 2022) are shown to be critical to perfor-
mance, suggesting instruction-tuned models offer
a more computationally-efficient starting check-
point for downstream applications, corroborating
Liu et al. (2022) and Aribandi et al. (2022).

On instruction tuning for writing assistance, our
work is closely related to PEER (Schick et al.,
2023), who fine-tuned T5-based LLMs by follow-
ing user-provided text-editing plans to perform the
said edits. There are a few significant differences in
our approach compared to PEER. While PEER at-
tempts to either create or leverage a user-provided
plan, realize the edits conditioned on the plan, and
try to explain the plan, we focus only on the plan
and edit parts of the pipeline. Even when it comes
to handling editing plans in the form of natural lan-
guage instructions, our work focuses on edits that
do not add new information. Therefore, we com-
pare our models only against PEER-Edit models.

Finally, no prior works, to the best of our knowl-
edge, have investigated the ability of instruction-
tuned LLMs for text editing to generalize to com-
posite instructions.

3 COEDIT
3.1 Training Dataset

Our dataset creation is based on the ITERATER+
dataset proposed by Kim et al. (2022) who com-
bined datasets from various text editing tasks (See
Table 1). Their work, in turn, is based on Du et al.
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Edit Intention Datasets Size Example Input Example Output

FLUENCY NUCLE-14, Lang-8,
BEA-19

20k Fix the grammar: When I grow up, I start
to understand what he said is quite right.

When I grew up, I started to understand
what he said was quite right.

COHERENCE DiscoFuse 11k Make this text coherent: Their flight is
weak. They run quickly through the tree
canopy.

Their flight is weak, but they run quickly
through the tree canopy.

CLARITY
(Simplification)

NEWSELA,WikiAuto,
WikiLarge,
ParabankV2,
ITERATER-CLARITY

13k Rewrite to make this easier to understand:
A storm surge is what forecasters consider
a hurricane’s most treacherous aspect.

A storm surge is considered a hurricane’s
most dangerous aspect.

STYLE
(Paraphrase)

ParabankV2 15k Paraphrase this: Do you know where I
was born?

Do you know my birthplace?

STYLE
(Formalize)

GYAFC 12k Write this more formally: omg i love that
song im listening to it right now

I love that song and I am listening to it at
this moment.

STYLE
(Neutralize)

WNC 11k Write in a more neutral way: The authors’
exposé on nutrition studies.

The authors’ statements on nutrition stud-
ies.

Table 1: Example data instances in the COEDIT dataset. Instructions in the inputs are italicized.

(2022b), who categorized each edit into MEANING-
CHANGED or NON-MEANING-CHANGED. Edits
that belong to the latter group are further assigned
to FLUENCY, COHERENCE, CLARITY, or STYLE.
The aforementioned taxonomy of edit intents from
ITERATER reflects writers’ general intention be-
hind their revision, providing more in-depth infor-
mation than just superficial edit operations, such as
ADD and DELETE.

Similar to Kim et al. (2022), our work focuses
on non-MEANING-CHANGED edits. We consider
those edits to be ones that do not add new infor-
mation or perform fact updates. Since the STYLE

edits are quite subjective in nature, we allow for the
possibility of meaning change so as to fulfill the
needs of making stylistic edits, but we constrain
the editing tasks to ensure the edited texts are se-
mantically similar to the sources, but not to the
extent of adding new information or fact updates.
With this in mind, we expand the STYLE edit in-
tention category from ITERATER+ to include three
new sub-intentions: Paraphrasing, Formality Style
Transfer (or Formalization), and Neutralization.

The aforementioned ITERATER dataset taxon-
omy lends itself conveniently to be articulated as
natural language instructions and allows us to nat-
urally formulate them into instructional prompts
(See Table 1). We rewrite each edit intention as
a set of natural language instruction prompts to
create the COEDIT dataset. To allow models to
adapt to linguistic variations of the instructions,
we also include paraphrases of the instruction tem-
plates, e.g., instead of “Write" we also use “Gen-
erate” or "Rewrite," or instead of “Paraphrase the
text” we use “Rewrite the text with different word-
ing," and so on. For each task, we develop a vari-
ety of such diverse instructional prompts and ran-

domly sample an instruction from the aforemen-
tioned group of task-specific instruction candidates
to be pre-pended to the source in order to form an
<instruction: source, target> data pair. We
provide the full list of our instructional prompts in
§C. In total, our training dataset consists of around
82K <instruction: source, target> pairs.
We keep the original train-validation-test splits con-
sistent as the original datasets but diversify the train
and validation splits with the paraphrasing augmen-
tations. The details of datasets and instructions
used to train our models are described in §A.

3.2 Text Editing Models

We fine-tune different versions of pre-trained
FLANT5 (Chung et al., 2022a) models on the
COEDIT dataset. Specifically, we use FLANT5-L
(770M parameters), FLANT5-XL (3B parameters),
FLANT5-XXL (11B parameters) models, which are
henceforth referred to as COEDIT-L, COEDIT-XL,
and COEDIT-XXL respectively. The training de-
tails are summarized in §D.

4 Experimental Setup

We conduct experiments to determine if a stan-
dard instruction-tuned language model fine-tuned
using task-specific data can improve text editing
performance and if it can further generalize into
a general-purpose text editing model capable of
following human-written instructions and handling
a wider array of editing tasks, such as unseen and
composite instructions. Specifically, we aim to
answer the following research questions:
• RQ1: Can COEDIT follow text editing instruc-

tions and perform high-quality edits across a
wide variety of tasks?

5276



• RQ2: Is COEDIT generalizable to perform
high-quality edits for new types of text editing
instructions?

• RQ3: Does COEDIT make the writing process
more efficient and effective for human writers?

We answer these questions via quantitative analy-
ses of model outputs (Section 5) and via qualitative
analyses and human evaluations of model outputs
(Section 6). Further, we investigate RQ2 along
two dimensions: (1) generalization to composite
instructions containing combinations of multiple
different kinds of edits and (2) out-of-domain gener-
alization to instructions with new task requirements
on previously unseen data.

4.1 Models
No-Edits Baseline We first evaluate a no-edits
baseline, where the output is simply a copy of the
source input without the instruction. This strategy
performs reasonably well on tasks where the target
output largely overlaps with the input (e.g., GEC).

Supervised Text Editing Models We also evalu-
ate existing LLMs for text editing that are not fine-
tuned with instruction-specific data. Specifically,
to understand the effect of task-specific fine-tuning,
we evaluate against T52 (Raffel et al., 2020b) mod-
els as primary alternatives of our FLAN-T5 models.
We also compare our models against ITERATER
(Du et al., 2022b) and DELITERATER (Kim et al.,
2022), which have shown strong performance on a
variety of text editing tasks.3

Instruction-tuned LLMs A major group of our
comparisons is against instruction-tuned LLMs:
• Our main comparison is against PEER (Schick

et al., 2023), which is primarily based on the
LM Adapted variant of T5. As the focus of our
work is on improving revision quality (Section
2), we compare against PEER-EDIT (both 3B
and 11B versions).

• T0, T0++ (Sanh et al., 2022) and Tk-Instruct
(Wang et al., 2022), which are all initialized
from the LM Adapted variant of T5, and fine-
tuned using PromptSource (Bach et al., 2022),
and Super-NaturalInstructions (Wang et al.,
2022) datasets, respectively.

2The original T5 model cannot continue text well due to its
infilling pre-training objective. Hence, similar to Schick et al.
(2023), we evaluate its LM Adapted versions (Lester et al.,
2021), which are trained with a language modeling objective.

3We are unable to make full comparisons against EdiT5
(Mallinson et al., 2022) and PEER (Schick et al., 2023) as the
models are not publicly available.

• Alpaca (Taori et al., 2023) is an instruction-
tuned version of the LLaMA-7B model (Tou-
vron et al., 2023) trained on 52K instruction-
following demonstrations generated by GPT3.

• We also compare InstructGPT (Ouyang et al.,
2022a), a variant of GPT3 fine-tuned via rein-
forcement learning on a large dataset of instruc-
tions and human-written outputs.4

• GPT3.5 (henceforth referred to as ChatGPT),
is an improved version of InstructGPT opti-
mized for chat. We utilize OpenAI’s API for all
inference tasks.5

• GPT3 also offers a text Editing API6 (we refer
to as GPT3-Edit), which is usable for editing
tasks rather than completion, making it directly
comparable to the tasks we train COEDIT on.

Large-Pretrained Decoder-only Models We
compare against LLMs with no instruction tuning
in two settings – zero-shot and few-shot (details in
Section 5.1):
• The 175B GPT3 (Brown et al., 2020) model

that is not instruction-tuned demonstrates strong
general-purpose text revision capabilities.

• LLaMA (Touvron et al., 2023) is Meta AI’s
general-purpose language model trained only
on publicly available data. We utilize the 7B
model due to computing constraints.

Outputs of all models were generated using
greedy decoding unless specified otherwise.

4.2 Test Datasets

To assess the editing capabilities of COEDIT, we
perform evaluations on standard test sets sourced
from a variety of text editing task benchmarks,
most notably, EDITEVAL (Dwivedi-Yu et al., 2022).
Owing to the overlap of our work with PEER, we
keep our evaluation datasets and evaluation metrics
as close to theirs as possible for consistency: We
used JFLEG (Napoles et al., 2017) for grammati-
cal error collection, TurkCorpus (Xu et al., 2016)
and ASSET (Alva-Manchego et al., 2020) for text
simplification, Coherence split of ITERATER (Du
et al., 2022b) and the DISCOFUSE dataset (Geva
et al., 2019) for coherence, and ITERATER (Du
et al., 2022b) for iterative text revision. For Style-
related edits, we used GYAFC (Rao and Tetreault,
2018) for formality style, WNC (Pryzant et al.,
2020) for neutralization, and MRPC (Dolan and

4We use text-davinci-003
5We use gpt-3.5-turbo
6We use text-davinci-edit-001
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Brockett, 2005), STS (Cer et al., 2017), and QQP
for paraphrasing. Detailed descriptions of each
dataset and its evaluation metrics are in §B.

5 Quantitative Results

5.1 Text Editing Performance

Table 2 helps us answer RQ1 by comparing the
performance of COEDIT to other models across
various text editing tasks. We first present results
from the more well-known evaluation sets here
and present additional results (i.e., sub-tasks and
additional datasets) in Table 11.

We segregate the models into seven groups. The
first group (a) consists of the copy baseline and
T5-LARGE baseline fine-tuned with prefix-tuning
(each data point is prefixed with task-specific tags
rather than instructions), while the second group (b)
consists of instruction-fine-tuned T5-based models
on non-text-editing tasks. We find that COEDIT
substantially outperforms these models across all
tasks.

The next two groups (c, d) show different LLMs
varying from 7B to 176B parameters in size, evalu-
ated in a zero-shot setting. Those in group (c) are
decoder-only models, while those in group (d) are
instruction-tuned. We find that COEDIT outper-
forms all LLMs comparable to its model size (e.g.,
Alpaca and LLaMA) across all tasks, as well as on
most tasks compared to models several times larger,
such as ChatGPT and InstructGPT. This indicates
that current general-purpose and instruction-tuned
models are underfitted, and it is beneficial to den-
sify the task/instruction space rather than to scale
model size.

Although models such as Alpaca and T5-based
models (Tk-instruct, T0, T0++) have previously
shown strong capabilities for zero-shot tasks, they
show weaker performance compared to COEDIT.
We also see that the decoder-only models (e.g.,
GPT3 and LLaMA) often repeat the input for more
complex tasks, such as ones under the Style intent
group. This can be attributed to difficulty under-
standing the prompted task, resulting in the models
either repeating the input sentence or generating a
continuation unrelated to the task.

7Since PEER had several scores missing, and due to the
high scores of paraphrasing transfer, for fairness, it was left
out of the Overall score calculations. For results with multiple
metrics, the best-performing method is calculated by taking
the average. For the MRPC average, we subtract the Self-
BLEU score from 100 since lower is better.

Next, in the fifth group (e), we evaluate the
LLMs under a few-shot setting. As mentioned
in Section 4.1, we conduct these experiments in
a 4-shot evaluation setting, where example inputs
were constructed by randomly sampling four inputs
for each task from the COEDIT dataset such that
all examples chosen would fit in the input window
for all models as seen in (Brown et al., 2020). The
input sentence and its corresponding revised refer-
ence were pre-pended to the instructional prompt.
We conduct few-shot evaluations for decoder-only
LLMs (GPT3) and three instruction-tuned LLMs
(InstructGPT, ChatGPT, and Alpaca). Outputs of
all models were generated using greedy decoding
unless specified otherwise.

We observe that giving specific examples im-
proves performance in all models for all tasks ex-
cept MRPC for GPT3. This may be because GPT3
still exhibits some similar behavior in repeating its
generations continuously, resulting in a low BLEU
score but low semantic similarity as well. We don’t
present any experiments for GPT3-Edit under the
few-shot setting, as scores tended to stay the same
across all tasks – implying that GPT3-Edit may not
have as good in-context learning capabilities. Over-
all, we find that even our smallest 770M parameter
model is competitive against LLMs evaluated in a
few-shot setting in most tasks.

In the final group (f), we compare our models
against task-specific text editing models such as
ITERATER, DELITERATER, and PEER. ITER-
ATER and DELITERATER perform comparatively
worse than the scores reported in the original paper
as we present different and more difficult inputs,
only pre-pending instructions to the inputs while
ITERATER and DELITERATER were trained with
task-specific tags. Furthermore, they were trained
using BART and Pegasus, respectively, both of
which have a summarization pre-training objective,
and were not trained to follow instructions. On
average, COEDIT beats PEER across all reported
evaluations except the ITERATER benchmark. This
can primarily be attributed to the difference in task-
specific fine-tuning since PEER uses Wikipedia as
the source of instructional edit data.

5.2 Ablation Studies

Table 3 shows the performance of various baselines,
which we discuss in detail in this section.

Instruction Tuning. To understand the effective-
ness of instruction-tuning, we fine-tune the 3B pa-
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Model Size Overall IteraTeR Fluency Clarity Coherence Style

ITERATER↑ JFLEG↑ ASSET↑ DiscoFuse-
Wiki↑

GYAFC(↑/↑) WNC(↑/↑) MRPC(↓/↑)

(a) COPY - 27.6 29.8 26.7 / 40.5 20.7 30.8 17.6 / 10.6 31.85 / 0 47.4 / 100
T5-LARGE 770M 24.7 21.1 32.7 / 22.9 35.8 28.01 30.9 / 4.89 13.2 / 0 27.6 / 62.8

T0* 3B 29.7 26.1 42.2 / 36.1 33.2 32.4 37.9 / 39.3 19.4 / 0 28.3 / 84.1
(b) Tk-INSTRUCT

* 3B 27.3 21.0 35.2 / 26.8 36.9 28.9 35.7 / 43.01 24.2 / 0.1 20.4 / 48.9
T0++* 11B 32.6 31.5 39.4 / 40.5 33.1 35.5 36.8 / 43.7 21.2 / 0 42.9 / 94.9

(c) LLAMA 7B 28.2 30.1 27.7 / 3.34 21.8 31.1 18.8 / 89.1 31.9 / 0 5.29 / 64.2
GPT3 175B 27.4 23.3 38.1 / 2.8 34.8 26.2 36.6 / 87.9 23.4 / 0 0 / 51.7

ALPACA 7B 28.4 30.4 28.5 / 6.4 22.0 31.1 18.9 / 94.4 31.9 / 0 0 / 77.9
(d) GPT3-EDIT 175B 41.8 36.1 52.4 / 50.6 32.9 54.0 35.7 / 52.3 50.7 / 17.1 22.6 / 98.7

INSTRUCTGPT 175B 41.6 32.6 62.4 / 57.2 44.6 47.4 47.8 / 98.2 33.7 / 0.1 16.03 / 98.9

CHATGPT - 36.9 28.2 57.6 / 49.4 45.9 40.2 40.7 / 99.6 28.5 / 0.1 13.4 / 99.0

ALPACA (FS) 7B 30.0 30.8 33.03 / 11.3 23.2 33.1 20.6 / 95.4 32.04 / 0 0.1 / 66.7
(e) GPT3 (FS) 175B 38.4 32.4 50.1 / 4.1 39.2 45.1 43.1 / 97.2 36.7 / 0 0 / 14.5

INSTRUCTGPT (FS) 175B 45.1 36.2 64.5 / 55.7 46.3 55.2 47.3 / 98.8 42.8 / 0 15.9 / 99.5
CHATGPT (FS) - 40.1 30.8 58 / 50.6 45.4 51.2 42.3 / 99.6 34.1 / 0 13.3 / 96.1

ITERATER 570M 31.0 32.8 35.9 / 34.3 21.8 30.1 22.7 / 54.1 34.2 / 0 40.5 / 97.8
(f) DELITERATER 570M 28.0 29.9 27.5 / 31.2 21.2 32.2 18.1 / 57.8 31.9 / 0 39.1 / 100

PEER-3B* 3B 41.7 37.1 55.5 / 54.3 30.5 - - 53.3 / 21.6 -

PEER-11B* 11B 42.1 37.8 55.8 / 54.3 29.5 - - 54.5 / 22.8 -

COEDIT-L 770M 49.8 35.2 62.4 / 59.3 42.4 75.3 54.6 / 98.0 69.3 / 46.4 23.3 / 99.1

(g) COEDIT-XL 3B 51.4 36.6 64.5 / 60.7 42.2 80.5 55.1 / 98.3 70.4 / 48.8 21.3 / 99.6

COEDIT-XXL 11B 51.5 37.1 65.0 / 61.5 41.7 78.6 55.1 / 97.2 71.0 / 51.4 21.8 / 99.0

Table 2: Comparison of COEDIT against various baselines: (a) copy baseline and T5-LARGE baseline with
task-specific prefixes (i.e. <gec>, <clarity>, etc.) (b) T5-based models, (c) Decoder-only LLMs (zero-shot), (d)
Instruction-tuned LLMs (zero-shot), (e) Few-shot evaluations of pre-trained LLMs, (f) SOTA text editing models,
and, (g) Variants of COEDIT models (our work). The first score for each task (excluding MRPC style task) is SARI.
The second scores for Fluency, GYAFC, and WNC are GLEU, Formality Transfer accuracy (%), and EM. For
MRPC, the first score is Self-BLEU, while the second score is semantic similarity. The best-performing models7

for each dataset are highlighted in boxes. Results with (*) are ones reported in prior works. (FS) denotes few-shot
evaluation. Results on other datasets are in Table 11.

Model Size IteraTeR Fluency Clarity Coherence Style

ITERATER↑ JFLEG↑ ASSET↑ DiscoFuse-Wiki↑ GYAFC(↑/↑) WNC(↑/↑) MRPC(↓/↑)

COEDIT-XL 3B 36.6 64.5 / 60.7 42.2 80.5 55.1 / 98.3 70.4 / 48.8 21.3 / 99.6

(a) T5-XL (prefix) 3B 34.3 61.8 / 58.6 41.0 71.4 50.7 / 94.6 62.7 / 33 30.6 / 87.4
(b) FLANT5-XL 3B 30.2 28.3 / 41.3 25.5 37.9 25.0 / 27.8 33.5 / 0.0 46.6 / 92.5
(c) COEDIT-XL-R 3B 33.9 63.8 / 60.2 36.2 69.7 52.6 / 48.7 69.2 / 25.4 35.4 / 92.6

Table 3: Ablation results for COEDIT to evaluate the impact of (a) instruction tuning (b) task-specific training, and
(c) quality of instructions. The scores from left to right follow exactly as Table 2.

rameter T5 model (T5-XL) and compare it with
COEDIT-XL, its FLANT5 counterpart on the same
training and validation sets. The only change
is that the instructional prompts for the train-
ing datasets are replaced by task-specific prefixes.
Specifically, the 82k <instruction: source,
target> pairs in the training dataset used to train
the COEDIT models were modified to <task:
source, target>

8. We observe (Table 3(a)) that
the instruction-tuned COEDIT models consistently
outperform prefix-tuned T5 models, showing the ef-

8
task was one of gec, simplify, clarify,

coherence, formalize, neutralize and paraphrase

fectiveness of instruction-tuning over prefix-tuning.

Task-Specific Training. A core contribution of
this work is to push the performance of small- (<1B
parameters) to medium-sized (1-10B parameters)
LLMs for common text editing tasks. This drives
the need for fine-tuning on task-specific datasets.
The impact of this task-specific data augmenta-
tion for text editing tasks has already been shown
in Kim et al. (2022). For this work, we com-
pare our task-specific fine-tuned models against
their FLANT5 un-tuned counterparts referred to as
FLANT5-XL (Table 3(b)). We see a substantial gap
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COEDIT-XL GPT3-Edit Tie Neither

64% 10% 4% 22%

Table 4: Human evaluation results: Pair-wise com-
parison of COEDIT-XL against the best-performing
175B-parameter instruction-tuned LLM for text editing
(GPT3-EDIT). Scores indicate the % of test inputs for
which the human annotators preferred the said model.

between the two for all datasets and model sizes,
thus, confirming prior findings.

Quality of Instructions. While we developed
with a limited set of task-specific instructional
prompts, there has been widespread work on the
prompt sensitivity of LLMs, especially with grow-
ing model capacity (Lu et al., 2022). To assess
the robustness of COEDIT models on instructional
prompts, we train another baseline COEDIT-XL

model with randomized task-specific instructions
(henceforth referred to as COEDIT-XL-R). Specif-
ically, the entire training dataset was randomized,
where an instruction from one task was replaced
randomly by an instruction from another task. Ta-
ble 3(c) shows the results for this experiment. We
observe that while COEDIT-XL-R achieves scores
that are higher than the non-task-specific tuned
FLANT5-XL (especially on edit-based metrics such
as SARI), it significantly falls behind COEDIT-XL

on those, as well as on the style accuracy met-
rics such as formality transfer accuracy and para-
phrasing semantic similarity. This indicates that
while the instructional structure of the inputs and
task-specific training makes the model learn how
to make edits (which drives up the SARI scores),
however, the accuracy of those edits suffers since
they are trained with the wrong instructions most of
the time. Overall, the improvements highlight the
positive impact of task-specific training, and the
gaps in performance highlight the negative impact
of lack of proper instruction tuning.

6 Qualitative Results

We now address RQ2 and RQ3 (Section 4). We
show that COEDIT shows generalization abilities
to adjacent tasks not seen during fine-tuning and
can generalize to composite instructions containing
a combination of tasks. Further, our human eval-
uation studies show that expert human evaluators
find the text generated by COEDIT to be of higher
quality than a much larger instruction-tuned LLM.

Sentence Politeness
Compression Transfer

Model SARI↑/ CR(%)↑ S-BLEU↓/ TA(%)↑

GPT3-EDIT 23.98 / 6.09 63.31 / 63.11
T5-XL (prefix) 31.47 / 7.66 81.43 / 58.82
FLANT5-XL 33.21 / 15.29 91.91 / 52.69
COEDIT-XL 35.17 / 22.78 60.32 / 64.45

Table 5: Comparison of COEDIT-XL against the best-
performing non-instruction-tuned model (T5-XL), non-
task-specific-tuned model (FLANT5-XL) and GPT3-
EDIT on out-of-domain generalization.

6.1 Text Editing Quality

Since text editing is often subjective, and automatic
metrics are not always accurate in measuring if an
instruction is satisfied, we conduct human evalu-
ations for our model outputs by linguistic experts
on 50 test inputs to ensure they meet the instruc-
tional constraints. Given the automatic evaluation
results in Section 5, we compare our 3B-parameter
COEDIT-XL model against the largest compara-
ble 175B instruction-tuned LLM for text editing
GPT3-EDIT. Specifically, we conducted a pair-
wise comparison: each annotator was shown an
instructional input and outputs from both models
(they were not aware which output was generated
by which model). They were then asked to evalu-
ate the fluency, accuracy, and meaning preservation
of the edited texts and choose the higher-quality
output ("neither" and "tie" are also valid options).
We collect three annotations for each question and
use the majority vote as the final judgment.

Table 4 shows the results of the evaluation. The
annotators prefer our COEDIT model for 64% of
the inputs, whereas, for 10% of the inputs, GPT3-
EDIT’s output is preferred. In 4% cases, both mod-
els produce equally good outputs, whereas, for 22%
of the inputs, both models generate unacceptable
outputs. Table 12 provides a side-by-side compari-
son of the outputs generated by the two models.

6.2 Generalizability to Adjacent Tasks

We analyze the generalization capabilities of our
models by evaluating them on a few related tasks
that do not exist in the fine-tuning data. Specifi-
cally, we chose two standard NLP tasks – sentence
compression (SC) (Filippova and Altun, 2013) and
politeness transfer (PT) (Madaan and Yang, 2021).
It is noteworthy that while our models were not
fine-tuned on these exact tasks, we chose them so
that the models could still comprehend them based
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Model Size IteraTeR Fluency Clarity Coherence Style

ITERATER↑ JFLEG↑ ASSET↑ DiscoFuse-Wiki↑ GYAFC(↑/↑) WNC(↑/↑) MRPC(↓/↑)

COEDIT-XL 3B 36.6 64.5 / 60.7 42.2 80.5 55.1 / 98.3 70.4 / 48.8 21.3 / 99.6

COEDIT-XL-C 3B 36.5 65.1 / 61.3 42.0 74.8 55.9 / 97.2 69.7 / 48.5 20.7 / 98.8

Table 6: Results for composite prompt training on single-task performance. Scores follow exactly as Table 2.

COEDIT-XL-C GPT3-Edit Tie Neither

38% 34% 3% 25%

COEDIT-XL-C COEDIT-XL Tie Neither

34% 21% 14% 31%

Table 7: Human evaluation results: Pair-wise compari-
son of COEDIT-XL-C against GPT3-EDIT and equiv-
alent COEDIT-XL (with chaining pipeline). Human
annotators preferred the said model for % of test inputs.

on other tasks they were fine-tuned on. We de-
fine them as being adjacent tasks, which still exist
within the scope of existing tasks but have not been
seen during fine-tuning (blue lines in Fig. 2).

Similar to the previous experiment, in addition to
GPT3-EDIT, we compare COEDIT-XL against the
similarly-sized prefix-tuned (T5-XL) model and
the non-task-specific trained FLANT5-XL model
(same models as the ones used in Table 3 (a) and
(b)). For evaluation, we curated a set of new instruc-
tional prompts geared towards both the new tasks
(details in Appendix C). We evaluated the models
on the respective test datasets from Filippova and
Altun (2013) and Madaan and Yang (2021).

Table 5 shows the results of COEDIT-XL against
various models on the sentence compression and
politeness transfer tasks. For SC, we report the
SARI metric for rewrite quality and compression
ratio (CR) for task-specific quality. For PT, we re-
port Self-BLEU (Zhu et al., 2018) for the rewrite
quality9 and Transfer Accuracy (TA) for the task-
specific quality. We observe that COEDIT con-
sistently outperforms other models on both tasks,
which indicates its generalization abilities on these
new and unseen adjacent tasks. It is noteworthy
that GPT3-EDIT performs quite well out-of-the-
box on PT, but not so much on the SC task.

6.3 Generalizability to Composite
Instructions

Finally, we also explore the capability of our model
to understand composite natural language instruc-

9We report Self-BLEU based on the original PT paper
since there are no references provided in the dataset.

tions. Composite instructions are made up of a
combination of tasks. For example, for the compos-
ite instruction, "Make the text simpler, paraphrase
it, and make it formal", the model needs to simulta-
neously perform simplification, paraphrasing and
formalization of the input sentence.

Since there is no publicly available dataset
for composite instructions, we create the
COEDIT-COMPOSITE dataset by expanding
the COEDIT dataset to a total of 90k pairs.
In addition to the single-task instructions, we
use seven new combinations of instructions as
part of our training set, with each composite
instruction having either two or three tasks.
Specifically, these are GEC-Paraphrasing, GEC-
Simplification, GEC-Paraphrasing-Simplification,
Formality-Paraphrasing, Formality-Simplification,
Formality-Paraphrasing-Simplification, and
Paraphrasing-Simplification (more details in §A).
We then fine-tune the FLANT5-XL model on
COEDIT-COMPOSITE (referred as COEDIT-
XL-C). The training details are summarized in
§D.

We evaluate COEDIT-XL-C on both single and
composite instructions. For the single instructions,
we use the same evaluation setup as in Table 2
and find that the overall performance of COEDIT-
XL-C is on par with that of COEDIT-XL (Table
6). This shows that training the model additionally
on composite prompts has no negative impact on
single-task performance.

For composite instructions, we conduct human
evaluations since there is no standard test dataset
available. We use three new task combinations
in addition to the seven seen during training to
evaluate the model’s generalizability. These are
Coherence-Paraphrase, Coherence-Simplify, and
Coherence-Simplify-Paraphrase. Specifically, we
conduct two sets of pairwise annotations (simi-
lar setup as the one in Section 6.1) comparing
COEDIT-XL-C with GPT3-EDIT and COEDIT-
XL (shown in Table 7) on 30 composite instructions.
For a fair comparison against COEDIT-XL, we pre-
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pare a chaining pipeline10 by decomposing compos-
ite instructions into a sequence of multiple single in-
structions and executing them one-by-one. In 38%
of cases, experts show a preference for COEDIT-
XL-C, compared to 34% for GPT3-EDIT. In 3%
cases, both models are preferred equally, whereas,
for 25% of the cases, none of them are preferred.
The experts prefer COEDIT-XL-C for 34% of
the cases versus 21% for the chaining baseline.
Both outputs are preferred equally in 14% cases,
whereas, for 31% of the cases, both models gener-
ate unacceptable predictions. Table 13 provides a
side-by-side comparison of outputs generated by
these models.

7 Conclusions

We present COEDIT – an open-sourced dataset and
set of instruction-tuned large language models that
can act as a writing assistant by following natu-
ral language instructions to perform various tex-
tual edits by removing, updating, or adding words,
phrases, and sentences. COEDIT achieves state-of-
the-art performance on multiple text editing bench-
marks, spanning syntactic, semantic, and stylistic
edit requirements. Through extensive experiments,
we have shown that COEDIT is capable of further
generalizing to unseen, adjacent, and composite
instructions to perform edits along multiple dimen-
sions in a single turn. In our human evaluations,
we observe that COEDIT can assist writers with
various aspects of the text revision process at scale
by following natural language instructions.

Limitations

Although COEDIT achieves state-of-the-art perfor-
mance on multiple text editing benchmarks, we
acknowledge some limitations to our approach and
evaluation methods. Our task-specific fine-tuning
(like most other works) mainly focuses on sentence-
level editing tasks, and its effectiveness on much
longer sequences of texts that are more appropriate
to real-world editing settings remains to be seen.
Additionally, our system mainly focuses on non-
meaning-changing text edits, thus, which could
potentially limit the utility of our model to more
real-world scenarios where fact-based editing or
corrections are needed. Another limitation of our

10Chaining increases the inference time, and the ordering
of the tasks in the sequence is also likely to result in different
outputs. We leave the optimal ordering of the tasks in prompt
chaining for future work.

work involves prompt sensitivity. While we con-
struct our inputs by randomly choosing from a pool
of verbalizers for every task, we acknowledge that
different prompts may induce better or worse ed-
its, and as we evaluate each input with a random
verbalizer, a fully controlled comparison for each
available prompt across all models is not done. Fur-
thermore, the prompting format was kept uniform
across all evaluated models, whereas some models
may perform better with a different prompting for-
mat. We plan to address this in future work. Finally,
computing resource requirements could pose some
difficulty in replicating the results (which we try to
address by sharing our models publicly).

Ethics Statement

Since our work mainly focuses on non-meaning-
changing text edits, we are able to avoid many
issues involving generating harmful text. Although,
there is still a possibility of small meaning changes
for stylistic tasks, we try to reduce the chance of
hallucinations by constraining the generation to
strictly edit tasks in order to reduce the chance
of adding any new information, or perpetuating
biases.
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A Training Dataset Description

In this section, we discuss the details of the datasets
used to create our training datasets and also expand
on the dataset creation pipeline. For both COEDIT
and COEDIT-COMPOSITE, we use the following
datasets:

Fluency: We use three prominent corpora for
GEC: the NUS Corpus of Learner English (NU-
CLE) (Dahlmeier et al., 2013), the W&I-LOCNESS

(Bryant et al., 2019), and the NAIST LANG-8 Cor-
pus of Learner English (Tajiri et al., 2012), which
is one of the largest and most widely used datasets
for GEC.

Clarity: We split Clarity into two sub-tasks, one
focused on Text Simplification, and the other cate-
gory focused on the set of edits outside of Simpli-
fication. In total, we use five corpora for Clarity
tasks: Four of them - the NEWSELA corpus (Xu
et al., 2015), WIKILARGE (Zhu et al., 2010; Wood-
send and Lapata, 2011; Kauchak, 2013), WIKI-
AUTO (Jiang et al., 2020) and a subset from PARA-
BANKV2 corpus (Hu et al., 2019) focus on text
simplification, and the last one comes from the
Clarity split of ITERATER (Du et al., 2022b).

Coherence: We use the DISCOFUSE dataset
(Geva et al., 2019), as it involves linking two given
sentences as coherently as possible using edit oper-
ations such as inserting discourse connectives.

Style: Owing to the subjective nature of STYLE

edits based on different sub-intentions (eg. con-
veying writers’ writing preferences, including emo-
tions, tone, and voice, etc.). We use the following
datasets for making different stylistic edits to re-
flect those distinctions:

• Formality: We use Grammarly’s Yahoo An-
swers Formality Corpus (GYAFC) (Rao and
Tetreault, 2018) which is a parallel corpus of
informal and formal sentence pairs from two
different domains.
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• Neutralization: We use WNC (Pryzant et al.,
2020), a dataset from the Subjective Bias Neu-
tralization task, where the objective is to re-
move or mitigate biased words to make sen-
tences more neutral;

• Paraphrasing: For paraphrase generation, we
used the PARABANKV2 corpus (Hu et al.,
2019), since it is a large-scale corpus that con-
tains multiple diverse sentential paraphrases.

Once the raw datasets were collected, we ran-
domly sampled them to the quantities mentioned in
Table 1 based on a few heuristics such as old word
retention, complexity ratios, dependency tree depth
ratio, and character length ratio. The sampled pairs
were then modified by prefixing the source texts
with task-specific verbalizers (Appendix C) to con-
vert a <source, target> pair to a <instruction:
source, target> pair. All our models were then
fine-tuned on the verbalized dataset.

Composite instructions: Table 8 shows the
composition of the COEDIT-COMPOSITE dataset,
in addition to the details about datasets and prompts.
We use seven such composite instructions dur-
ing model training. For the first three composite
prompts (GEC-Paraphrasing, GEC-Simplification,
GEC-Paraphrasing-Simplification), we use GEC
datasets to extract datapoints that show simpli-
fication and paraphrasing edits in addition to
GEC. For the next three prompts (Formality-
Paraphrasing, Formality-Simplification, Formality-
Paraphrasing-Simplification), we use the formality
dataset (GYAFC) to extract pairs which exhibit
paraphrasing and simplification edits in addition to
formality. Lastly, for the last prompt (Paraphrasing-
Simplification), we use the ParabankV2 paraphras-
ing dataset to extract data points which show a
simplification of the source text in addition to para-
phrasing.

To select the appropriate source-target pairs for
a composite instruction, we use similar heuristics
as with single-task instructions, i.e. old word re-
tention, complexity ratios, dependency tree depth
ratio, and character length ratio. For example, a
source-target pair from a GEC dataset can be used
for the composite instruction involving GEC, para-
phrasing and simplification if the target and source
sentence has a high edit distance and low complex-
ity ratio, character length and word retention scores.
The exact details can be found in the code.

Finally, for building the prompts for the com-
posite instructions, we randomly sample from the

task-specific verbalizers and concatenate them. The
ordering of the single tasks in a composite instruc-
tion is also chosen randomly to ensure better gen-
eralization.

B Testing Dataset Description

Specifically, we consider the following datasets:

Grammatical Error Correction We use the JF-
LEG (Napoles et al., 2017) corpus of English sen-
tences that represents a range of language profi-
ciency levels and comprehensive fluency edits. For
evaluation, we use the GLEU (Napoles et al., 2015)
score as the primary metric and also report results
using the SARI (Xu et al., 2016) metric.

Text Simplification We use the TurkCorpus (Xu
et al., 2016) and ASSET (Alva-Manchego et al.,
2020) datasets, which were both created from
WikiLarge data (Zhang and Lapata, 2017), where
each complex sentence consists of multiple crowd-
sourced reference simplifications. We report results
using the SARI metric.

Coherence We use the Coherence split of IT-
ERATER (Du et al., 2022b), and the DISCOFUSE

dataset (Geva et al., 2019), as it involves linking
two given sentences as coherently as possible using
edit operations such as inserting discourse connec-
tives. We report results using the SARI metric.

Iterative Text Editing We use ITERATER (Du
et al., 2022b), an iterative text revision dataset span-
ning five edit intentions (Section 3) across three
different domains (ArXiv, News, Wikipedia). We
evaluate our models using the SARI metric. We
report the performance on individual intentions –
Fluency, Clarity, and Coherence, and also aggre-
gated scores on the full dataset, which includes
Style edits.

The rest of the section describes the evaluation
setups for Style-related edits:

Formality Style Transfer We use Grammarly’s
Yahoo Answers Formality Corpus (GYAFC) (Rao
and Tetreault, 2018), a parallel corpus of informal
and formal sentence pairs from two different do-
mains. Similar to prior works, we evaluate the
quality of rewriting using SARI, and the accuracy
of style transfer using a formality classification
model11.

11
https://huggingface.co/s-nlp/xlmr_formality_

classifier
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Edit Intention Datasets Size Example Input Example Output

GEC-PARAPHRASE NUCLE-14
Lang-8
BEA-19

1k Fix grammar in this sen-
tence, and rewrite this sen-
tence: How about taking ac-
count of psychology?

One such perspective is to
take psychology into ac-
count.

GEC-SIMPLIFY NUCLE-14
Lang-8
BEA-19

1k Make this easier to under-
stand, and remove grammat-
ical mistakes: So it was not
like enjoying the tasteful gar-
dens.

So it was not as if I could
enjoy the pretty gardens.

GEC-PARAPHRASE-SIMPLIFY NUCLE-14
Lang-8
BEA-19

1k Rewrite this sentence,
change to simpler wording,
and fix the grammar mis-
takes: Due to ageing, some
of the people may suffer
from physical and mental
depreciation.

Due to the effects of aging,
some people may suffer.

FORMALITY-PARAPHRASE GYAFC 5k Make this sound more for-
mal, and paraphrase: writ-
ers dont think about what
they will write, they just
write!!!

Some writers can write
freely without putting too
much thought to it.

FORMALITY-SIMPLIFY GYAFC 2k Rewrite more formally, and
make this text less complex:
Not to my knowledge...I’m
a little curious myself now
though.

I do not think so.

FORMALITY-PARAPHRASE-SIMPLIFY GYAFC 4k Rewrite the sentence to be
simpler, make this sound
more formal, and para-
phrase this sentence: my
answer is what...very clever
riddle!!

Your riddle was very clever,
and I am unsure how to re-
spond.

PARAPHRASE-SIMPLIFY ParabankV2 5k Use simpler wording, and
write a paraphrased version
of the sentence: In your sec-
ond communication, you re-
quested reinforcements.

You asked for backup in
your second report

Table 8: Example data instances with composite instructions in the COEDIT-COMPOSITE dataset (90K
<instruction: source, target> pairs). Instructional prompts in the inputs are italicized.

Neutralization We use WNC (Pryzant et al.,
2020), a dataset from the Subjective Bias Neutral-
ization task. Based on prior works, we use Exact-
Match (EM) for evaluations, which is the percent-
age of examples for which the edited text exactly
matches the reference(s).

Paraphrasing We use the widely-used Microsoft
Research Paraphrase Corpus (MRPC) (Dolan
and Brockett, 2005), the STS benchmark from
SemEval-2017 (STS) (Cer et al., 2017), and the
Quora Question Pairs12 (QQP) datasets. We evalu-
ate paraphrasing on two criteria and metrics: Self-
BLEU (Zhu et al., 2018) to measure the diversity of
the paraphrases relative to the given source and ref-

12
https://quoradata.quora.com/

First-Quora-Dataset-Release-Question-Pairs

erence texts, and Semantic Similarity13 to measure
meaning preservation.

C Task Verbalizers

We manually curated a variety of task-specific ver-
balizers to construct the instructional inputs. Table
9 shows the full list of the verbalizers used for train-
ing and evaluations. Table 10 shows the verbalizers
used for the experiments conducted in Section 6.2.

D Training Details

We used the Adam optimizer with a learning rate
of 1e − 4. Each model is trained for 5 epochs

13We use the paraphrase-mpnet-base-v2 model from
SentenceTransformers (Reimers and Gurevych, 2019)
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Edit Intention
/ Task

Verbalizers

GEC Fix grammar, Fix grammar in this sentence, Fix grammar in the sentence, Fix grammar errors, Fix
grammatical errors, Fix grammaticality, Fix all grammatical errors, Fix grammatical errors in this
sentence, Fix grammar errors in this sentence, Fix grammatical mistakes in this sentence, Fix grammat-
icality in this sentence, Fix grammaticality of the sentence, Fix disfluencies in the sentence, Make the
sentence grammatical, Make the sentence fluent, Fix errors in this text, Update to remove grammar
errors, Remove all grammatical errors from this text, Improve the grammar of this text, Improve the
grammaticality, Improve the grammaticality of this text, Improve the grammaticality of this sentence,
Grammar improvements, Remove grammar mistakes, Remove grammatical mistakes, Fix the grammar
mistakes, Fix grammatical mistakes

Clarity Clarify the sentence, Clarify this sentence, Clarify this text, Write a clearer version for the sentence,
Write a clarified version of the sentence, Write a readable version of the sentence, Write a better readable
version of the sentence, Rewrite the sentence more clearly, Rewrite this sentence clearly, Rewrite this
sentence for clarity, Rewrite this sentence for readability, Improve this sentence for readability, Make
this sentence better readable, Make this sentence more readable, Make this sentence readable, Make
the sentence clear, Make the sentence clearer, Clarify, Make the text more understandable, Make this
easier to read, Clarification, Change to clearer wording, Clarify this paragraph, Use clearer wording

Simplification Simplify the sentence, Simplify this sentence, Simplify this text, Write a simpler version for the
sentence, Rewrite the sentence to be simpler, Rewrite this sentence in a simpler manner, Rewrite
this sentence for simplicity, Rewrite this with simpler wording, Make the sentence simple, Make the
sentence simpler, Make this text less complex, Make this simpler, Simplify, Simplification, Change to
simpler wording, Simplify this paragraph, Simplify this text, Use simpler wording, Make this easier to
understand

Coherence Fix coherence, Fix coherence in this sentence, Fix coherence in the sentence, Fix coherence in this text,
Fix coherence in the text, Fix coherence errors, Fix sentence flow, Fix sentence transition, Fix coherence
errors in this sentence, Fix coherence mistakes in this sentence, Fix coherence in this sentence, Fix
coherence of the sentence, Fix lack of coherence in the sentence, Make the text more coherent, Make
the text coherent, Make the text more cohesive, logically linked and consistent as a whole, Make the
text more cohesive, Improve the cohesiveness of the text, Make the text more logical, Make the text
more consistent, Improve the consistency of the text, Make the text clearer, Improve the coherence of
the text

Formality Style
Transfer

Formalize, Improve formality, Formalize the sentence, Formalize this sentence, Formalize the text,
Formalize this text, Make this formal, Make this more formal, Make this sound more formal, Make the
sentence formal, Make the sentence more formal, Make the sentence sound more formal, Write more
formally, Write less informally, Rewrite more formally, Write this more formally, Rewrite this more
formally, Write in a formal manner, Write in a more formal manner, Rewrite in a more formal manner

Neutralization Remove POV, Remove POVs, Remove POV in this text, Remove POVs in this text, Neutralize this text,
Neutralize the text, Neutralize this sentence, Neutralize the sentence, Make this more neutral, Make
this text more neutral, Make this sentence more neutral, Make this paragraph more neutral, Remove
unsourced opinions, Remove unsourced opinions from this text, Remove non-neutral POVs, Remove
non-neutral POV, Remove non-neutral points of view, Remove points of view, Make this text less
biased

Paraphrasing Paraphrase the sentence, Paraphrase this sentence, Paraphrase this text, Paraphrase, Write a paraphrase
for the sentence, Write a paraphrased version of the sentence, Rewrite the sentence with different
wording, Use different wording, Rewrite this sentence, Reword this sentence, Rephrase this sentence,
Rewrite this text, Reword this text, Rephrase this text

Table 9: Complete list of task-specific verbalizers used in our training and test datasets.

Edit Intention
/ Task

Verbalizers

Sentence Com-
pression

Shorten the sentence, Shorten this sentence, Compress this sentence, Shorten this text, Compress
this text, Write a shorter version for the sentence, Rewrite the sentence to be shorter, Rewrite this
sentence in a shorter manner, Rewrite this sentence for shorter length, Make the sentence short, Make
the sentence shorter, Make this shorter, Shorten, Compress, Shorten this paragraph, Shorten this text

Politeness Increase politeness, Make this polite, Make this more polite, Make this sound more polite, Make the
sentence polite, Make the sentence more polite, Make the sentence sound more polite, Write more
politely, Rewrite more politely, Write this more politely, Rewrite this more politely, Write in a polite
manner, Write in a more polite manner, Rewrite in a more polite manner

Table 10: List of task-specific verbalizers used for generalizability experiments.
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Model Size IteraTeR Clarity Coherence Style (Paraphrasing)

ITERATER-
FLU↑

ITERATER-
CLA↑

ITERATER-
COH↑

TURK↑ DiscoFuse-Sport↑ STS(↓/↑) QQP(↓/↑)

(a) COPY - 31.9 28.6 30.8 26.3 30.5 39.6 / 100 30.1 / 100
T5-LARGE 770M 15.1 23.8 21.7 34.2 28.4 18.0 / 50.5 18.2 / 62.5

T0* 3B 27.1 28.0 21.2 34.8 33.6 27.7 / 88.7 10.2 / 63.4
(b) Tk-INSTRUCT

* 3B 22.3 20.9 21.2 32.3 29.1 12.3 / 49.5 19.1 / 79.6
T0++* 11B 37.9 30.2 27.5 34.1 35.1 29.9 / 99.0 16.6 / 79.1

(c) LLAMA 7B 32.4 28.8 31.4 27.2 30.8 1.4 / 14.4 1.5 / 35.8
GPT3 175B 20.9 21.8 21.2 34.6 27.0 0 / 8.2 0 / 13.1

ALPACA 7B 33.0 28.9 31.0 27.4 30.8 0 / 25.8 0 / 64.4
(d) CHATGPT - 36.4 23.1 31.4 37.4 39.1 7.9 / 96.9 8.17 / 96.5

INSTRUCTGPT 175B 43.7 28.1 33.9 38.9 45.8 11.6 / 88.7 9.3 / 95.5
GPT3-EDIT 176B 48.3 31.8 34.2 34.7 48.0 14.0 / 86.6 6.4 / 94.5

ALPACA (FS) 7B 33.0 28.9 31.0 28.4 32.1 0 / 39.2 0 / 63.4
(e) GPT3 (FS) 175B 33.9 30.8 33.9 38.7 46.4 0 / 2.1 0 / 5.9

CHATGPT (FS) - 36.2 27.0 35.6 37.3 49.4 0 / 88.7 0 / 96.8
INSTRUCTGPT
(FS)

175B 44.7 31.7 37.5 39.5 56.9 0 / 91.8 0 / 96.1

ITERATER 570M 36.7 30.4 34.7 27.2 40.9 24.1 / 81.4 20.6 / 94.3
(f) DELITERATER 570M 32.0 28.9 30.6 27.8 31.7 24.7 / 87.6 20.4 / 96.6

PEER-3B* 3B 51.4 32.1 32.1 32.5 - - -
PEER-11B* 11B 52.1 32.5 32.7 34.1 - - -

COEDIT-L 770M 46.8 30.9 31.5 38.5 70.5 22.4 / 92.8 15.7 / 97.2
(g) COEDIT-XL 3B 50.4 31.3 31.5 38.5 74.6 20.8 / 94.8 15.4 / 97.8

COEDIT-XXL 11B 51.6 31.8 31.5 38.2 76.2 21.8 / 93.8 15.4 / 98.2

Table 11: Comparison of COEDIT against various baselines (on sub-tasks and additional datasets to Table 2),
divided into seven groups: (a) a copy baseline and T5-LARGE baseline prefixed only with task-specific tags (i.e.
<gec>, <clarity>, etc.) (b) T5-based models, (c) Decoder-only LLMs, (d) Instruction-tuned LLMs, (e) Few-shot
evaluations of large pre-trained models (f) SOTA text editing models, and, (g) Variants of COEDIT models (our
work). The first scores for each task (excluding STS and QQP style tasks) are SARI scores. For STS and QQP.
the first scores are Self-BLEU scores, and the second is semantic similarity. (↑) indicates higher is better, and (↓)
indicates lower is better. The best-performing models for each dataset are highlighted in bolded boxes. (FS) denotes
few-shot evaluation.

with early stopping. All models were fine-tuned on
A100 GPUs using Deepspeed (Rasley et al., 2020).
Maximum sequence lengths for both the source and
the target were set to 256 tokens (via filtering). The
best-performing checkpoints were chosen based
the validation loss.

E Model Performance

Table 11 compares the performance of COEDIT
with the other models on the remaining test datasets.
We observe similar trends as the ones observed in
Table 2, where COEDIT outperforms most models
we compare against.

F Data Examples
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Instruction GPT3-EDIT COEDIT-xl (ours)

Fix all grammatical errors: Every one
would expect to leave his owns and
secrets dreams like to be a painter, a
writter ...

Every one would expect to leave his
owns and secrets dreams like the paint-
ing and the write ...

Every one would expect to leave his
own and secret dreams like to be a
painter, a writer...

Make this simpler: Fives is a British
sport believed to derive from the same
origins as many racquet sports.

Fives is a British racquet sport. Fives is a British sport. It is thought
to have come from the same place as
many racquet sports.

Fix coherence in this text: Phantom
Budo is an incredibly powerful ability.
Spike has yet to fully develop this awe-
some fighting technique.

Phantom Budo is an incredibly power-
ful fighting technique. Spike is yet to
fully develop it .

Phantom Budo is an incredibly pow-
erful ability, but Spike has yet to fully
develop it.

Use different wording: Judge Gerald
W. Heaney, in dissent, said the authori-
ties should have allowed the prisoner
to be medicated without the conse-
quence of execution.

Judge Gerald W. Heaney, who dis-
agreed with the majority decision, said
the prisoner should be medicated after
important testimony is received.

In his dissent, Gerald W. Heaney said
the authorities should have allowed the
prisoner to be treated without execu-
tion.

Table 12: A sample of text revisions generated by GPT3-EDIT and COEDIT-XL (ours).

Instruction GPT3-EDIT COEDIT-XL (chaining) COEDIT-XL-C

Remove all grammatical errors
from this text, and make this text
less complex: They follow the
way the Sun goes from the east
to the west.

The Sun rises in the east and
sets in the west.

They move with the sun as
it goes from east to west.

They follow the sun as it
goes from east to west.

Make the sentence grammatical,
rewrite the sentence with differ-
ent wording, and make this text
less complex: Fives is a British
sport believed to derive from the
same origins as many racquet
sports.

Fives is a British sport that
is believed to derive from the
same origins as many racquet
sports.

It is thought to have come
from the same sources as
other racquet sports.

Fives is a British sport that
is believed to have origi-
nated from racquet sports.

Make the text coherent, and
rewrite this text: Nebulous is
initially unconcerned when he
is unable to finish his cheese
sandwich. He soon discovers he
is dealing with an infinite sand-
wich and immeasurable garnish.

Nebulous is initially uncon-
cerned when he is unable to fin-
ish his cheese sandwich. He
soon discovers he is dealing
with an infinite sandwich and
immeasurable garnish. He is
then unable to finish his cheese
sandwich.

Nebulous wasn’t too wor-
ried about the fact that he
couldn’t finish his cheese
sandwich, but soon real-
ized that this was an end-
less sandwich and an end-
less amount of condiments.

Nebulous is initially uncon-
cerned when he is unable
to finish his cheese sand-
wich, but soon realizes he
is dealing with an endless
sandwich and an endless
supply of condiments.

Make the text more coherent,
simplification, and rewrite this
sentence: Phantom Budo is
an incredibly powerful abil-
ity. Spike has yet to fully
develop this awesome fighting
technique.

Phantom Budo is an incredibly
powerful ability. It is an awe-
some fighting technique that
Spike has yet to fully develop.

This fighting technique of
Spike is still in develop-
ment.

Spike has yet to fully de-
velop his Phantom Budo
ability.

Rewrite the sentence to be sim-
pler, and paraphrase this text:
The jury asked for transcripts of
Quattrone’s testimony about his
role in the IPO allocation pro-
cess.

The jury asked for transcripts
of Frank Quattrone’s testimony
about his role in the initial pub-
lic offering allocation process.

The jury requested a copy
of Quattrone’s testimony.

Transcriptions of Quat-
trone’s testimony were re-
quested by the jury.

Rewrite more formally, and
make this easier to understand:
brian, he asked the coolest
questions, they suspended him
though, i dont know what’s up
with that!

Brian, he asked the coolest
questions, they suspended him
though, I don’t know what’s up
with that! He was a cool guy,
and I liked his questions.

I do not understand why
Brian was suspended. He
had some great questions.

I do not know why they sus-
pended Brian.

Table 13: A sample of text revisions generated by GPT3-EDIT, COEDIT-XL (chaining) and COEDIT-XL-C for
composite instructions.
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