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Abstract

Out-of-distribution (OOD) detection is essen-
tial for reliable and trustworthy machine learn-
ing. Recent multi-modal OOD detection lever-
ages textual information from in-distribution
(ID) class names for visual OOD detection, yet
it currently neglects the rich contextual infor-
mation of ID classes. Large language models
(LLMs) encode a wealth of world knowledge
and can be prompted to generate descriptive
features for each class. Indiscriminately using
such knowledge causes catastrophic damage to
OOD detection due to LLMs’ hallucinations,
as is observed by our analysis. In this paper, we
propose to apply world knowledge to enhance
OOD detection performance through selective
generation from LLMs. Specifically, we intro-
duce a consistency-based uncertainty calibra-
tion method to estimate the confidence score
of each generation. We further extract visual
objects from each image to fully capitalize on
the aforementioned world knowledge. Exten-
sive experiments demonstrate that our method
consistently outperforms the state-of-the-art.

1 Introduction

Machine learning models deployed in the wild of-
ten encounter out-of-distribution (OOD) samples
that are not seen in the training phase (Bendale
and Boult, 2015; Fei and Liu, 2016). A reliable
model should not only obtain high performance on
samples from seen distributions, i.e., in-distribution
(ID) samples, but also accurately detect OOD sam-
ples for caution (Amodei et al., 2016; Boult et al.,
2019; Dai et al., 2023b). Most existing OOD de-
tection methods are built upon single-modal in-
puts, e.g., visual inputs (Hsu et al., 2020; Liu et al.,
2020) or textual inputs (Zhou et al., 2021; Zhan
et al., 2021). Recently, Esmaeilpour et al. (2022);
Ming et al. (2022a) attempt to tackle multi-modal
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World knowledge from LLMs:
descriptive features of a black swan
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Figure 1: World knowledge from large language models
can facilitate the detection of visual objects.

OOD detection problem that explores the seman-
tic information conveyed in class labels for visual
OOD detection, relying on large-scale pre-trained
vision-language models such as CLIP (Radford
et al., 2021).

In this paper, we apply world knowledge from
large language models (LLMs) (Petroni et al.,
2019a) to multi-modal OOD detection by gener-
ating descriptive features for class names (Menon
and Vondrick, 2023). As illustrated in Figure 1, to
find a black swan, look for its long neck, webbed
feet, and black feathers. These descriptors provide
rich additional semantic information for ID classes,
which can lead to a more robust estimation of OOD
uncertainty (Ming et al., 2022a), i.e., measuring the
distance from the visual features of an input to the
closest textual features of ID classes.

However, the knowledge encoding of LLMs
such as GPT-3 (Brown et al., 2020) is lossy (Peng
et al., 2023) and tends to hallucinate (Ji et al., 2023),
which can cause damage when applied for OOD
detection tasks. As shown in Figure 2, LLMs gener-
ate unfaithful descriptors for class “hen”, assuming
a featherless head appearing in a hen. Indiscrimi-
nately employing generated descriptive features to
model ID classes brings noise to the inference pro-
cess due to LLMs’ hallucinations. Moreover, this
issue becomes more severe as OOD detection deals
with samples in an unbounded feature space (Shen
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et al., 2021). Collisions between OOD samples and
ID classes with augmented descriptors would be
common.

To address the challenge mentioned above, we
propose an approach for selective generation of
high-quality descriptive features from LLMs, while
abstaining from low-quality unfaithful ones (Ren
et al., 2022). Recent studies show LLMs can pre-
dict the quality of their outputs, i.e., providing cal-
ibrated confidence scores for each prediction that
accurately reflects the likelihood of the predicted
answer being correct (Kadavath et al., 2022; Si
et al., 2022a). Unfortunately, descriptors of a class
name generated by LLMs are long-form and struc-
tured intermediate results for the ultimate OOD
detection task, and calibration of LLMs for gener-
ating such long open-ended text (Lee et al., 2022)
is still in its infancy.

We perform uncertainty calibration in LLMs
by exploring a consistency-based approach (Wang
et al., 2022). We assume if the same correct predic-
tion is consistent throughout multiple generations,
then it could serve as a strong sign that LLMs are
confident about the prediction (Si et al., 2022b).
Instead of computing literal similarity, we define
consistency between multiple outputs from LLMs
for a given input based on whether they can re-
trieve similar items from a fixed set of unlabeled
images. Specifically, for each descriptor, we first
retrieve a subset of images, leveraging the joint
vision-language representations. Then, we measure
generation consistency by calculating the overlap
between these image subsets.

To further capitalize on the world knowledge
expressed in descriptors from LLMs, we employ
a general object detector to detect all the candi-
date objects (concepts) in an image (Cai et al.,
2022) and represent them with their predicted
class names (Chen et al., 2023b) such as “mirror”,
“chair”, and “sink” (see Figure 5). These visual
concepts provide valuable contextual information
about an image in the textual space and can po-
tentially match descriptive features of an ID class
if the image belongs to that class. Accordingly,
we improve our distance metric of input samples
from ID classes by considering the similarity be-
tween image visual concepts and ID class descrip-
tive features in language representations. Our key
contributions are summarized as follows:

• We apply world knowledge from large lan-
guage models (LLMs) to multi-modal OOD

detection for the first time by generating de-
scriptive features for ID class names.

• We analyse LLMs’ hallucinations which can
cause damage to OOD detection. A selective
generation framework is introduced and an
uncertainty calibration method in LLMs is
developed to tackle the hallucination issue.

• We detect objects in an image and represent
them with their predicted class names to fur-
ther explore world knowledge from LLMs.
Our extensive experimentation on various
datasets shows that our method consistently
outperforms the state-of-the-art.

2 Related Work

OOD Detection is widely investigated in vi-
sion classification problems (Yang et al., 2021),
and also in text classification problems (Lang
et al., 2023). Existing approaches try to improve
the OOD detection performance by logits-based
scores (Hendrycks and Gimpel, 2017a; Liu et al.,
2020), distance-based OOD detectors (Lee et al.,
2018; Sun et al., 2022), robust representation learn-
ing (Winkens et al., 2020; Zhou et al., 2021), and
generated pseudo OOD samples (Shu et al., 2021;
Lang et al., 2022).

Multi-modal OOD detection is recently studied
by Fort et al. (2021a); Esmaeilpour et al. (2022);
Ming et al. (2022a), which leverages textual infor-
mation for visual OOD detection. These works do
not explore world knowledge from LLMs.

Large language models like GPT3 (Brown
et al., 2020) can serve as a knowledge base and
help various tasks (Petroni et al., 2019b; Dai et al.,
2023a). While some works demonstrate that world
knowledge from LLMs can provide substantial aid
to vision tasks (Yang et al., 2022) such as vision
classification (Menon and Vondrick, 2023), its ef-
ficacy in multi-modal OOD detection is currently
underexplored. Moreover, as LLMs tend to halluci-
nate and generate unfaithful facts (Ji et al., 2023),
additional effects are needed to explore LLMs ef-
fectively.

Uncertainty Calibration provides confidence
scores for predictions to safely explore LLMs,
helping users decide when to trust LLMs outputs.
Recent studies examine calibration of LLMs in
multiple-choice and generation QA tasks (Kada-
vath et al., 2022; Si et al., 2022a; Kuhn et al., 2023).
In multi-modal OOD detection task, open-ended
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Classification(↑) OOD Detection(↓)
ID dataset CLIP CLIP+Desp. CLIP CLIP+Desp.

ImageNet-1k 64.05 68.03 42.74 48.99
CUB-200 56.35 57.75 7.09 4.72
Stanford-Cars 61.56 63.26 0.08 0.10
Food-101 85.61 88.50 1.86 3.86
Oxford-Pet 81.88 86.92 1.70 3.52

Table 1: Effect of class name descriptors from LLMs
in classification and OOD detection tasks. CLIP and
CLIP+Desp. are VLMs based methods without and
with descriptors. Classification is evaluated by accuracy
and OOD detection is evaluated by FPR95 (averaged on
iNaturalist, SUN, Places, Texture OOD datasets).

text (Lee et al., 2022) are generated to provide de-
scriptive features for ID classes (Menon and Von-
drick, 2023), and calibration in this task is yet un-
derexplored.

3 Background

3.1 Problem Setup

We start by formulating the multi-modal OOD de-
tection problem, following Ming et al. (2022a). We
denote the input and label space by X and Y , re-
spectively. Y is a set of class labels/names refer-
ring to the known ID classes. The goal of OOD
detection is to detect samples that do not belong
to any of the known classes or assign a test sam-
ple to one of the known classes. We formulate the
OOD detection as a binary classification problem:
G(x;Y, I, T ) : X → {0, 1}, where x ∈ X de-
notes an input image, I and T are image encoder
and text encoder from pre-trained vision-language
models (VLMs), respectively. The joint vision-
language embeddings of VLMs associate objects
in visual and textual modalities well. Note that
there is no training data of ID samples provided to
train the OOD detector.

3.2 Analyzing Class Name Descriptors from
LLMs

Recent work has demonstrated that class name de-
scriptors, i.e., descriptive features for distinguish-
ing a known object category in a photograph gen-
erated by prompting LLMs (see Section 4.2 for
more details), can improve zero-shot visual classi-
fication performance (Menon and Vondrick, 2023)
in a close-world setting (Vapnik, 1991). A natural
extension of this work is to leverage the descriptors
for OOD detection in an open world (Fei and Liu,
2016), which is largely unexplored.

Unfortunately, we find that the descriptors used

hen
· featherless head
· round body shape
· yellow beak
· webbed red-orange legs

goldfish
· long, flowing tail
· small, black eyes
· a small mouth
· dorsal fins

Figure 2: Cases of descriptors generated by LLMs. Un-
faithful descriptors may appear due to hallucinations.

in previous approach fail to improve the OOD de-
tection performance in a few datasets. As shown
in Table 1, although descriptors can improve the
classification performance in all five datasets, they
degenerate the OOD detection performance in four
ID datasets. We hypothesize this is because LLMs
generate unfaithful descriptors due to hallucina-
tions (see cases in Figure 2), which bring noise to
the OOD detection process.

To verify our hypothesis, we visualize ID sam-
ples from ImageNet-1k dataset and OOD samples
from iNaturalist dataset, together with their origi-
nal class names, based on aligned vision-language
features (Radford et al., 2021). As illustrated in
Figure 3(b), class names of ID samples may coin-
cide with these of OOD samples, when augmented
with descriptors from LLMs. Thus, it is improper
to indiscriminately adopt these descriptors.

The above assumptions are also evidenced in Fig-
ure 4. ID samples obtain higher similarity scores
to their classes when augmented with descriptors
(Figure 4(a)), which show the effect of descriptors
for the classification task. Meanwhile, OOD sam-
ples gain larger maximum similarity scores with
ID classes with descriptors (Figure 4(b)), which
makes OOD detection more difficult.

4 Method

4.1 Overview

In this study, we build the multi-modal OOD de-
tector following four steps: 1. Generate a set of
descriptors d(c) for each class name c ∈ Y by
prompting LLMs; 2. Estimate a confidence score
for descriptors d(c) with uncertainty calibration;
3. Detect visual objects for each test image x; 4.
Build an OOD detector with selective generation
of descriptors and image visual objects. Figure 5
shows an overview of our approach.
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Figure 3: t-SNE visualization of ID and OOD samples, which are from ImageNet-1k and iNaturalist datasets,
respectively. ID/OOD Image represent visual representations of images, and ID/OOD Text are textual representations
of their class names, based on CLIP. Each line denotes a pair of vision-language representations for one sample.

���� ���� ���� ���� ���� ���� ���� ����

�
�
�
�
��
�

�������������������������������������

����������

�����������������������

(a)
����� ����� ����� ����� ����� ����� ����� �����

�
�
�
�
��
�

��������������������������������

����������

�����������������������

(b)

Figure 4: Left: Similarities between ID samples and
their class names; Right: Maximum similarities be-
tween OOD samples and ID classes. ID samples from
mageNet-1K and OOD samples from Naturalist.

4.2 Descriptor Generation

To apply world knowledge from LLMs for OOD
detection, we generate a set of descriptors d(c)
for each known class name c by prompting LLMs
(see Figure 6), following (Menon and Vondrick,
2023). We randomly select 1 visual category and
manually compose descriptors to use as 1-shot in-
context example. We prompt LLMs to describe the
visual features for distinguishing a category in a
photograph. The generated list composes the set
d(c). Figure 2 shows cases of generated descrip-
tors, which include shape, size, color, and object
parts in natural language.

4.3 Uncertainty Calibration

As Figure 2 illustrates, LLMs may generate unfaith-
ful descriptors due to hallucinations, which would
hurt the performance of OOD detection if applied
indiscriminately. To address this issue, we design a

consistency-based (Wang et al., 2022) uncertainty
calibration method to estimate a confidence score
for each generation, which helps decide when to
trust the LLMs outputs. We assume if the same
correct prediction is consistent throughout multiple
generations, then it shows that LLMs are confident
about the prediction (Si et al., 2022b), thus the
generation results are more trustworthy.

It is non-trivial to directly extend previous
consistency-based methods to our settings. Specifi-
cally, we leverage LLMs to generate long-form and
structured descriptor lists without a fixed candidate
answer set. Any permutation of the descriptor list
can convey the same meaning, despite the incon-
sistency in surface form. Meanwhile, the outputs
of LLMs are intermediate results for our OOD de-
tection task. It is challenging to measure quality
of these intermediate results while maintaining a
tangible connection to the ultimate detection task.

We take inspiration from prior code generation
works (Li et al., 2022; Chen et al., 2023a), which
prompt LLMs to generate structured codes aiming
at solving programming tasks. Multiple codes are
sampled from LLMs for one input and then execu-
tion results are obtained by executing these codes.
The code with the most frequent execution result is
selected as the final prediction. In a similar manner,
we quantify the characteristics of descriptor sets
through their retrieval feedbacks from a fixed set
of unlabeled images, and define their consistency
according to consensus among retrieval results.
Specifically, we propose a three-stage consistency-
based uncertainty calibration method.
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ID classes Y

· a barber chair
· mirrors
· a sink

· round shape
· brown leather
· weight of 
20 ounces 
· raised laces

basketball

which has
· a barber chair
· mirrors
· a sink

What are useful 
features for 
distinguishing a 
{class name} in 
a photo?

· barber shop
… … 

· basketball barber shop

basketball

1.Bicycle
2.Bag

Prompt

Test images

1.Mirror
2.Chair
3.Sink

barber shop

General Object DetectorLarge Language Model

1. Descriptor Generation 2. Uncertainty Calibration 3. Object Detection

smax(x)

ID image
(barber shop)

OOD image

≥ 𝜆

< 𝜆

p(c)=0.8

p(c)=0.4

… …

VisionLanguage Model

p(c)≥ 𝛾

p(c) < 𝛾

4. OOD Detection

Figure 5: Our multi-modal OOD detection framework. For each image x and ID classes Y , 1. Generate a descriptor
set for each class c ∈ Y by prompting LLMs; 2. Estimate a confidence score p(c) for each descriptor set; 3. Detect
objects in x and represent them with object names; 4. Compute the maximum class matching score smax(x).

Q: What are useful visual features for 
distinguishing a lemur in a photo? 
A: There are several useful visual features
to tell there is a lemur in a photo: 
- furry bodies
- long tail 
- large eyes
Q: What are useful visual features for 
distinguishing a goldfish in a photo?
A: There are several useful visual features
to tell there is a goldfish in a photo:
- long, flowing tail
- small, black eyes
- a small mouth
- dorsal fins

𝑄prompt

Aprompt

𝑄test

Atest

Figure 6: Example prompt for generating descriptors of
the category goldfish. The trailing ‘-’ guides LLMs to
generate text in the form of a bulleted list.

Stage I. We sample n sets of descriptors D(c) =
{d1(c), · · · ,dn(c)} from LLMs for each ID class
name c ∈ Y .

Stage II. We cluster descriptor sets D(c) into
groups S(c), where each group s ∈ S(c) is com-
prised of descriptor sets that consist with each other.
We define descriptor consistency, C(·, ·), which re-
tains any two descriptor sets that share the same
characteristics through retrieval feedback. Con-
cretely, we retrieve top k images from an unla-
beled image set M via a retriever R(·) for each set
d ∈ D(c). The resulting image subset for descrip-
tor set d is denoted as R(d) ∈ {0, 1}m, where m
is the size of M and entry j of the vector is 1 if the
j-th image of M is in the retrieved subset. Finally,
we assume descriptor consistency C(d,d′) holds if
cosine similarity between R(d) and R(d′) is above

η. Note that text similarity between descriptor sets
can also be used in consistency computation.

Stage III. We compute the confidence score p(c)

for descriptor set d(c) as |s∗|
n , where s∗ is the

largest group in S(c).

4.4 Visual Object Detection
To further capitalize on the world knowledge con-
veyed in generated descriptors, we introduce a gen-
eral object detector with a vocabulary of 600 object
categories to detect visual objects v(x) for each
testing image x (Cai et al., 2022). Specifically,
v(x) consists of detected objects’ class names,
such as “mirror”, “chair”, and “sink” in a pho-
tograph of a barber shop (see Figure 5).

4.5 OOD Detection
For each ID class name c, descriptor set d(c) is
used to augment the representation of c if its con-
fidence score p(c) is above threshold γ, otherwise
c is used to represent that class only. Thus, the
textual features for class name c are:

t(c) =
{ {g(d)|d ∈ d(c)}, if p(c) ≥ γ,

{c}, otherwise,

where d is one descriptor in the set d(c) and g(·)
transforms d into the form {c} which has {d}.

For an input image x, we calculate the class-wise
matching score for each ID class name c ∈ Y:

sc(x) = E
t∈t(c)

σ(I(x), T (t)) + E
v∈v(x)
t∈t(c)

σ(T (v), T (t)),

(1)

where σ(·, ·) denotes the cosine similarity func-
tion, the left term computes the similarity between
image visual representations and class name tex-
tual representations, and the right term measures
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the similarity between detected image objects and
class names in the text space.

Lastly, we define the maximum class
matching score as: smax(x;Y, I, T ) =

maxc
exp(sc(x))∑

c′∈Y exp(sc′ (x))
, similar to Ming et al.

(2022a). Our OOD detection function can be
defined as:

G(x;Y, I, T ) =

{
1 smax(x;Y, I, T ) ≥ λ

0 smax(x;Y, I, T ) < λ
, (2)

where 1 represents ID class and 0 indicates OOD
conventionally. λ is a chosen threshold.

5 Experiments

5.1 Datasets and Metrics

Datasets Following recent works (Ming et al.,
2022a), we use large-scale datasets that are more
realistic and complex. We consider the following
ID datasets: variants of ImageNet (Deng et al.,
2009), CUB-200 (Wah et al., 2011), Stanford-
Cars (Krause et al., 2013), Food-101 (Bossard et al.,
2014), Oxford-Pet (Parkhi et al., 2012). For OOD
datasets, we use iNaturalist (Van Horn et al., 2018),
SUN (Xiao et al., 2010), Places (Zhou et al., 2017),
and Texture (Cimpoi et al., 2014).

Metrics For evaluation, we use these metrics (1)
the false positive rate (FPR95) of OOD samples
when the true positive rate of ID samples is at 95%,
(2) the area under the receiver operating character-
istic curve (AUROC).

5.2 Implementation Details

In our experiments, we adopt CLIP (Radford et al.,
2021) as the pre-trained vision-language model.
Specifically, we mainly use CLIP-B/16 (CLIP-B),
which consists of a ViT-B/16 Transformer as the
image encoder and a masked self-attention Trans-
former (Vaswani et al., 2017) as the text encoder.
We also use CLIP-L/14 (CLIP-L) as a represen-
tative of large models. To generate descriptors,
we query text-davinci-003 (Ouyang et al., 2022)
with sampling temperature T = 0.7 and maxi-
mum token length of 100. We construct the un-
labeled image set M through the random selection
of m = 50000 images from the training set of
ImageNet. The retriever R(·) retrieves k = 50 im-
ages from M. We set the threshold η = 0.9 and
γ = 0.5. In visual object detection, we employ the
object detection model CBNetV2-Swin-Base (Cai
et al., 2022) as a general object detector with a

vocabulary of 600 objects. See more details in
Appendix B.

5.3 Baselines
We compared our method with competitive base-
lines: 1. MOS (Huang and Li, 2021) divides ID
classes into small groups with similar concepts to
improve OOD detection; 2. Fort et al. (Fort et al.,
2021b) finetunes a full ViT model pre-trained on
the ID dataset; 3. Energy (Liu et al., 2020) pro-
poses a logit-based score to detect OOD samples; 4.
MSP (Hendrycks and Gimpel, 2017b) employs the
maximum classification probability of samples to
estimate OOD uncertainty; 5. MCM (Ming et al.,
2022a) estimates OOD uncertainty with the maxi-
mum similarity between the embeddings of a sam-
ple and ID class names; 6. Menon et al. (Menon
and Vondrick, 2023) prompts LLMs to generate
descriptors of each class as cues for image classifi-
cation. We extend it to OOD detection and use the
maximum classification probability as a measure of
OOD uncertainty (Hendrycks and Gimpel, 2017b).

5.4 Main Results
To evaluate the scalability of our method in real-
world scenarios, we compare it with recent OOD
detection baselines on the ImageNet-1k dataset
(ID) in Table 2. It can be seen that our method out-
performs all competitive zero-shot methods. Com-
pared with the best-performing zero-shot baseline
MCM, it reduces FPR95 by 5.03%. We can also
observe that: 1. Indiscriminately employing knowl-
edge from LLMs (i.e., Menon et al.) degenerates
the OOD detection performance. This indicates the
adverse impact of LLMs’ hallucinations and under-
lines the importance of selective generation from
LLMs. 2. Despite being training-free, our method
favorably matches or even outperforms some strong
task-specific baselines that require training (e.g.,
MOS). It shows the advantage of incorporating
world knowledge from LLMs for OOD detection.

We further evaluate the effectiveness of our
method on hard OOD inputs. Specifically, two
kinds of hard OOD are considered, i.e., semanti-
cally hard OOD (Winkens et al., 2020) and spurious
OOD (Ming et al., 2022b). As shown in Table 3,
our method exhibits robust OOD detection capa-
bility and outperforms all competitive baselines,
e.g., improvement of 1.93% in FPR95 compared to
the best-performing baseline MCM. We can also
observe that zero-shot methods generally obtain
higher performance than task-specific baselines.
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Method
OOD Dataset AverageiNaturalist SUN Places Texture

FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑
Task-specific (training required)

MOS (BiT) 9.28 98.15 40.63 92.01 49.54 89.06 60.43 81.23 39.97 90.11
Fort et al.(ViT-B) 15.07 96.64 54.12 86.37 57.99 85.24 53.32 84.77 45.12 88.25
Fort et al.(ViT-L) 15.74 96.51 52.34 87.32 55.14 86.48 51.38 85.54 43.65 88.96
Energy (CLIP-B) 21.59 95.99 34.28 93.15 36.64 91.82 51.18 88.09 35.92 92.26
Energy (CLIP-L) 10.62 97.52 30.46 93.83 32.25 93.01 44.35 89.64 29.42 93.50
MSP (CLIP-B) 40.89 88.63 65.81 81.24 67.90 80.14 64.96 78.16 59.89 82.04
MSP (CLIP-L) 34.54 92.62 61.18 83.68 59.86 84.10 59.27 82.31 53.71 85.68

Zero-shot (no training required)
MCM (CLIP-B) 30.91 94.61 37.59 92.57 44.69 89.77 57.77 86.11 42.74 90.77
MCM (CLIP-L) 28.38 94.95 29.00 94.14 35.42 92.00 59.88 84.88 38.17 91.49
Menon et al. (CLIP-B) 41.23 92.09 44.12 91.72 49.74 88.91 60.89 85.07 48.99 89.45
Menon et al. (CLIP-L) 33.26 93.92 30.29 94.18 37.30 91.78 59.82 84.40 40.17 91.07
w/o Obj. (CLIP-B) 23.67 95.40 37.19 92.57 43.97 89.77 56.97 86.33 40.45 91.02
w/o Obj. (CLIP-L) 28.20 95.22 27.81 94.44 33.22 91.56 56.37 86.05 36.40 91.82
w/o Calib. (CLIP-B) 48.30 90.53 41.17 92.11 45.08 89.61 56.91 87.01 47.87 89.81
w/o Calib. (CLIP-L) 40.41 92.09 29.90 94.00 35.99 91.08 52.93 87.17 39.81 91.09
w/o Know. (CLIP-B) 30.19 94.81 37.39 91.56 43.63 89.76 57.30 86.17 42.13 90.58
w/o Know. (CLIP-L) 28.66 94.88 33.25 93.70 40.00 91.31 59.09 85.41 40.26 91.33
Ours (CLIP-B) 22.88 95.54 34.29 92.60 41.63 89.87 52.02 87.71 37.71 91.43
Ours (CLIP-L) 26.47 95.10 26.35 94.56 33.13 91.77 51.77 87.45 34.43 92.22

Table 2: OOD detection performance for ImageNet-1k as ID. The performances of all task-specific baselines come
from Ming et al. (2022a).

Method
ID ImageNet-10 ImageNet-20 Waterbirds AverageOOD ImageNet-20 ImageNet-10 Spurious OOD

FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑
Task-specific (training required)

MOS (BiT) 24.60 95.30 41.80 92.63 78.21 78.60 48.20 88.84
Fort et al. (ViT-B) 8.14 98.07 11.71 98.08 4.63 98.57 8.16 98.24
Energy (CLIP-B) 15.23 96.87 15.20 96.90 41.51 89.30 23.98 94.36
MSP (CLIP-B) 9.38 98.31 12.51 97.70 39.57 90.99 20.49 95.67

Zero-shot (no training required)
MCM (CLIP-B) 5.00 98.31 12.91 98.09 5.87 98.36 7.93 98.25
Menon et al. (CLIP-B) 5.80 98.65 13.09 98.08 5.57 98.45 8.15 98.39
w/o Obj. (CLIP-B) 4.70 98.71 10.78 98.25 4.88 98.46 6.79 98.47
w/o Calib. (CLIP-B) 6.00 98.50 11.14 98.04 5.17 98.49 7.44 98.34
w/o Know. (CLIP-B) 5.00 98.73 11.38 98.22 4.86 98.39 7.08 98.45
Ours (CLIP-B) 4.20 98.77 9.24 98.26 4.56 98.62 6.00 98.55

Table 3: Performance comparison on hard OOD detection tasks.

This indicates that exposing a model to a training
set may suffer from bias and spurious correlations.
We also make comparisons on a larger number of
ID and OOD datasets in Appendix A.

5.5 Ablation Studies

Model Components Ablation studies are carried
out to validate the effectiveness of each main com-
ponent in our model. Specifically, the following
variants are investigated: 1. w/o Obj. removes the
visual object detection step, i.e., only the left term
in Eq. 1 is adopted. 2. w/o Calib. removes the
uncertainty calibration step and indiscriminately
uses descriptors from LLMs. 3. w/o Know. only
uses class names to represent each class without

descriptors from LLMs. Results in Table 2 and
Table 3 show that our method outperforms all the
above variants. Specifically, we can observe that:
1. Incorporating knowledge from LLMs (see w/o
Know.) improves the OOD detection performance
by 4.42%. This verifies that world knowledge is
important in multi-modal OOD detection. 2. Both
uncertainty calibration (see w/o Calib.) and visual
object detection (see w/o Obj.) help to improve the
OOD detection performance.

Uncertainty Calibration To evaluate our pro-
posed uncertainty calibration method, we perform
ablation on alternatives: 1. Confidence (Si et al.,
2022a) leverages language model probabilities of
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Categories Variants FPR95↓ AUROC↑

Uncertainty
Calibration

Confidence 40.81 91.16
Self-consistency 41.64 90.93
Self-evaluation 40.83 90.82

Visual Object
Detection

Class Sim. 38.55 91.05
Simple Det. 39.40 90.97

Ours 37.71 91.43

Table 4: Ablation variants of uncertainty calibration and
visual object detection. We use the average performance
on four OOD datasets with ImageNet-1k as ID.

generated descriptors as the confidence score. 2.
Self-consistency (Wang et al., 2022) makes multi-
ple predictions for one input and makes use of the
frequency of the majority prediction as the confi-
dence score. 3. Self-evaluation (Kadavath et al.,
2022) asks LLMs to first propose answers and then
estimate the probability that these answers are cor-
rect. Results in Table 4 show that our uncertainty
calibration method performs better than other vari-
ants. This further indicates that dedicated uncer-
tainty calibration approaches should be explored to
safely explore generations from LLMs.

Visual Object Detection We evaluate the visual
object detection module by implementing the fol-
lowing variants: 1. Class Sim. uses class name c
instead of the descriptive features t(c) in the right
term of Eq. 1. 2. Simple Det. adopts a simple
object detection model with a smaller vocabulary
of 80 objects (Li et al., 2023). As shown in Table 4,
our method outperforms the above variants. Specif-
ically, we can observe that: 1. Calculating the
similarity between detected image concept names
and ID class names without descriptors degenerates
the OOD detection performance. 2. Using a gen-
eral object detection model with a large vocabulary
of objects helps to improve the performance.

5.6 Further Analysis

Cases of Retrieval Feedback We provide a case
study where descriptor sets for the same class are
similar/dissimilar in textual form. Figure 7 illus-
trates that even with low textual similarity and vari-
ations in textual form, two descriptor sets can have
consistent retrieval feedback if they accurately cap-
ture the descriptive features of the same object.

Analysis of Unlabeled Image Set Figure 8
shows the effect of unlabeled image set with vary-
ing sizes on the OOD detection performance. We
compose image subsets either through random

• black fur
• white fur on 

the head and                 
c chest
• furry bodies
• prominent lips

• wet and 
hairless nose 

• white or light 
grey head

• furry bodies
• clawed hands

• barber chair
• barber pole
• sinks
• mirrors
• shelves of 

products

• barber chair
• barber pole
• sinks
• mirrors
• shelves

within top-5 retrieved 
images for set #1 and #2

Textual Similarity

1.00

Retrieval Feedback

Textual Similarity

0.94

Retrieval Feedback

0.98

Set #1 Set #2

Set #1 Set #2

0.98

Figure 7: Case study on descriptor sets and correspond-
ing retrieval feedbacks.

�� �� �� �� �� �� �� �� ���

������������������������

����

����

����

����

����

����

����

����

����

�
�
�
�
�
�

�

������

���������

Figure 8: Analysis of unlabeled image set.

down-sampling from the original unlabeled image
set (“Random”), or removing images from certain
categories (“Diversity”). We can observe that: 1.
Our method achieves superior OOD detection per-
formance along with the increase of unlabeled im-
age data. 2. Unlabeled image sets that lack diver-
sity achieve limited detection performance, espe-
cially in small sizes.

6 Conclusion

In this paper, we introduce a novel framework for
multi-modal out-of-distribution detection. It em-
ploys world knowledge from large language mod-
els (LLMs) to characterize ID classes. An uncer-
tainty calibration method is introduced to tackle the
issue of LLMs’ hallucinations, and visual object
detection is proposed to fully capitalize on the gen-
erated world knowledge. Experiments on a variety
of OOD detection tasks show the effectiveness of
our method, demonstrating its exciting property
where world knowledge can be reliably exploited
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via LLMs by evaluating their uncertainty.

Limitations

We identify one major limitation of this work is
its input modality. Specifically, our method is lim-
ited to detecting visual out-of-distribution (OOD)
inputs and ignores inputs in other modalities such
as textual, audio, electroencephalogram (EEG) and
robotic features. These modalities provide valuable
information that can be used to construct better
OOD detectors. Fortunately, through multi-modal
pre-training models (Xu et al., 2021; Huo et al.,
2021), we can obtain robust representations in vari-
ous modalities.

Ethics Statement

This work does not raise any direct ethical issues.
In the proposed work, we seek to develop a zero-
shot multi-modal OOD detection model equipped
with world knowledge from LLMs, and we believe
this work can benefit the field of OOD detection,
with the potential to benefit other fields requiring
trustworthy models. All experiments are conducted
on open datasets.
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A More Results

We use an extra collection of ID datasets
to showcase the versatility of our method:
CUB-200 (Wah et al., 2011), STANFORD-
CARS (Krause et al., 2013), FOOD-101 (Bossard
et al., 2014), OXFORD-PET (Parkhi et al.,
2012), and three variants of ImageNet con-
structed by Ming et al. (2022a), i.e., ImageNet-
10, ImageNet-20, ImageNet-100. The results
are shown in Table 5, demonstrating that our
method offers superior performance on various
multi-modal OOD detection tasks without training.

B More Implementation Details

In our experiments, we adopt CLIP (Radford et al.,
2021) as the pre-trained vision-language model.
Specifically, we mainly use CLIP-B/16 (CLIP-B),
which consists of a ViT-B/16 Transformer as the
image encoder and a masked self-attention Trans-
former (Vaswani et al., 2017) as the text encoder.
We also use CLIP-L/14 (CLIP-L) as a representa-
tive of large models. To obtain world knowledge
corresponding to each class, we query text-davinci-
003 (Ouyang et al., 2022) with a sampling tem-
perature of 0.7 and a maximum token length of
100.

To obtain retrieval feedback for each descrip-
tor set, We construct a fixed set of unlabeled im-
ages, denoted as M, through the random selection
of m = 50000 images spanning 1000 categories.
These images are extracted from the training set
of ImageNet-1k without corresponding labels. For
descriptor set d, the retriever R(·) retrieves top k
similar images from M:

R′(d) = argmax
M⊂M,|M |=k

E
x∈M
d∈d

σ(I(x), T (d)).

From the retrieved image subset R′(d) we derive
a binary vector R(d), with entry j equal to 1 if
the j-th image of M is in R′(d). In order to de-
termine whether two descriptor sets, d and d′, are
consistent with each other, denoted as C(d,d′), we
incorporate the following two constraints:

C(d,d′) =1
[
σ(R(d), R(d′)) ≥ η

]
∧

1

[
σ(

∑
d∈d T (d)

|d| ,

∑
d′∈d′ T (d′)

|d′| ) ≥ η′
]
,

(3)

where the first constraint measures the cosine sim-
ilarity between R(d) and R(d′), the second con-
straint computes the cosine similarity between the
averaged textual embeddings of descriptors in d
and d′. Note that the second constraint that com-
putes textual similarity is optional in our method.
We evaluate its impact by constructing an ablation
variant relying solely on the first constraint. Its
average performance on four OOD datasets with
ImageNet-1k as ID dataset is 38.59 in FPR95 and
91.37 in AUROC, which outperforms the other
zero-shot baselines as well. We set k = 50 for
image retrieval and η = 0.9, η′ = 0.99 for consis-
tency computation. We set γ = 0.5 as the confi-
dence threshold for p(c).

In visual object detection, we use CBNetV2-
Swin-Base from Cai et al. (2022) with a vocabulary
of 600 objects as our general object detector. To
construct the ablation variant “Simple Det.”, we
employ YOLOv6-L6 from Li et al. (2023) with a
smaller vocabulary of 80 categories.

C Robustness to Sampling Temperature
T .

We vary sampling temperature T for LLM gen-
eration among {0.3, 0.5, 0.7, 0.9, 1.1}. It can be
seen in Figure 9 that regardless of the temperature,
our method consistently outperforms the ablation
variant “w/o Know.” which does not incorporate
additional world knowledge from LLMs. We can
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Figure 9: Effect of the sampling temperature T for LLM
generation.

also observe that an intermediate temperature of
0.7 can lead to the best performance.

D Reliability under Different LLMs,
Image Detectors and OOD Detectors

To further verify the reliability of our method,
we perform OOD detection using our method un-
der different LLMs (GPT-4, ChatGPT, Claude-1,
Claude-2, Bard and text-davinci-003), image detec-
tors (YOLOv6 (Li et al., 2023), InternImage (Wang
et al., 2023), Bigdetection (Cai et al., 2022), Co-
DETR (Zong et al., 2023)), and OOD detectors
(CLIP-based OOD detector without softmax scal-
ing (Ming et al., 2022a)). We use ImageNet-1K as
ID dataset, and iNaturalist/SUN/Places/Texture as
OOD datasets. As shown in Table 6, our method is
reliable when using different LLMs, image detec-
tors and OOD detectors.
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ID Dataset Method
OOD Dataset AverageiNaturalist SUN Places Texture

FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

CUB-200

MCM 9.83 98.24 4.93 99.10 6.65 98.57 6.97 98.75 7.09 98.66
Menon et al. 8.72 98.36 3.16 99.36 3.89 99.08 3.58 99.28 4.72 99.05

w/o Obj. 7.62 98.51 2.36 99.49 3.24 99.18 3.46 99.24 4.17 99.11
w/o Calib. 8.85 98.09 3.60 99.29 4.64 98.92 3.09 99.38 5.04 98.92
w/o Know. 9.29 98.23 5.28 99.05 6.71 98.58 6.38 98.88 6.92 98.68

Ours 2.33 99.50 3.20 99.17 7.55 98.48 2.43 99.44 3.88 99.15

Stanford-Cars

MCM 0.05 99.77 0.02 99.95 0.24 99.89 0.02 99.96 0.08 99.89
Menon et al. 0.07 99.82 0.05 99.96 0.28 99.90 0.02 99.96 0.10 99.91

w/o Obj. 0.04 99.77 0.02 99.95 0.24 99.90 0.02 99.96 0.08 99.90
w/o Calib. 0.05 99.81 0.05 99.96 0.30 99.90 0.02 99.96 0.10 99.90
w/o Know. 0.06 99.76 0.02 99.95 0.26 99.89 0.02 99.96 0.09 99.89

Ours 0.05 99.75 0.02 99.96 0.24 99.90 0.02 99.96 0.08 99.91

Food-101

MCM 0.72 99.76 0.90 99.75 1.86 99.58 4.04 98.62 1.86 99.43
Menon et al. 5.91 98.91 1.21 99.73 2.69 99.38 5.62 98.28 3.86 99.08

w/o Obj. 0.72 99.77 1.02 99.74 1.93 99.55 4.17 98.63 1.96 99.42
w/o Calib. 6.07 98.87 1.78 99.65 3.77 99.24 5.35 98.12 4.24 98.97
w/o Know. 0.76 99.76 1.06 99.73 2.12 99.54 4.20 98.59 2.04 99.40

Ours 0.64 99.78 0.86 99.75 1.86 99.57 3.87 98.65 1.81 99.44

Oxford-Pet

MCM 2.85 99.36 1.06 99.73 2.11 99.56 0.80 99.81 1.70 99.61
Menon et al. 8.14 98.69 1.42 99.66 3.26 99.37 1.28 99.73 3.52 99.36

w/o Obj. 2.81 99.32 1.02 99.72 2.01 99.55 0.83 99.80 1.67 99.60
w/o Calib. 8.41 98.61 1.45 99.65 3.27 99.35 1.31 99.72 3.61 99.33
w/o Know. 2.82 99.32 1.00 99.71 2.04 99.55 0.87 99.80 1.68 99.59

Ours 2.80 99.37 1.00 99.74 2.05 99.58 0.80 99.80 1.66 99.62

ImageNet-10

MCM 0.12 99.80 0.29 99.79 0.88 99.62 0.04 99.90 0.33 99.78
Menon et al. 0.13 99.81 0.28 99.82 0.90 99.66 0.04 99.91 0.34 99.80

w/o Obj. 0.10 99.89 0.24 99.89 0.88 99.72 0.04 99.97 0.31 99.87
w/o Calib. 0.18 99.84 0.29 99.89 1.04 99.64 0.04 99.96 0.38 99.83
w/o Know. 0.13 99.81 0.28 99.79 0.92 99.62 0.04 99.91 0.34 99.78

Ours 0.12 99.87 0.22 99.90 0.83 99.73 0.02 99.97 0.30 99.87

ImageNet-20

MCM 1.02 99.66 2.55 99.50 4.40 99.11 2.43 99.03 2.60 99.32
Menon et al. 1.01 99.60 1.72 99.51 3.71 99.29 3.10 98.85 2.37 99.32

w/o Obj. 0.97 99.59 1.72 99.51 3.61 99.29 3.05 98.87 2.35 99.32
w/o Calib. 0.33 99.78 2.07 99.50 3.37 99.26 2.11 98.93 1.97 99.37
w/o Know. 0.75 99.71 2.08 99.52 3.67 99.20 2.43 98.83 2.23 99.32

Ours 0.65 99.63 1.58 99.59 3.19 99.30 2.06 98.94 1.87 99.37

ImageNet-100

MCM 18.13 96.77 36.45 94.54 34.52 94.36 41.22 92.25 32.58 94.48
Menon et al. 22.83 96.24 27.00 95.41 31.24 94.55 42.55 92.08 30.91 94.57

w/o Obj. 18.38 96.65 25.25 95.65 30.27 94.68 41.76 92.18 28.92 94.79
w/o Calib. 21.73 96.38 24.35 95.75 28.07 94.93 39.06 92.70 28.30 94.94
w/o Know. 18.48 96.61 31.09 95.29 29.71 95.16 39.07 92.83 29.59 94.97

Ours 18.13 96.76 22.02 96.14 26.52 95.21 38.65 93.01 26.33 95.28

Table 5: Zero-shot OOD detection performance based on CLIP-B/16 with various ID datasets.

Method
OOD Dataset AverageiNaturalist SUN Places Texture

FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑
MCM 30.91 94.61 37.59 92.57 44.69 89.77 57.77 86.11 42.74 90.77

Different
LLMs

Ours(GPT-4) 22.56 95.52 33.49 92.81 40.87 90.53 51.89 87.66 37.20 91.63
Ours(ChatGPT) 21.97 95.67 33.68 92.88 41.50 90.14 50.96 88.09 37.03 91.70
Ours(Claude-1) 24.92 95.63 34.97 92.60 42.72 89.72 54.13 86.94 39.19 91.22
Ours(Claude-2) 25.83 95.08 34.71 92.65 41.65 90.86 53.44 87.02 38.91 91.40

Ours(Bard) 25.74 95.07 34.17 92.72 42.12 89.85 53.48 87.02 38.88 91.17
Ours(text-davinci-003) 22.88 95.54 34.29 92.60 41.63 89.87 52.02 87.71 37.71 91.43

Different
Image

Detectors

Ours(InternImage) 23.41 95.45 35.10 92.63 42.13 89.90 53.65 87.30 38.57 91.32
Ours(Co-DETR) 22.10 95.69 33.48 92.78 42.92 89.80 51.77 87.78 37.57 91.51
Ours(YOLOv6) 23.72 95.42 34.29 92.65 43.26 89.84 56.32 86.82 39.40 91.18

Ours(Bigdetection) 22.88 95.54 34.29 92.60 41.63 89.87 52.02 87.71 37.71 91.43

Different
OOD Detectors

CLIP-based(w/o softmax) 61.66 89.31 64.39 87.43 63.67 85.95 86.61 71.68 69.08 83.59
Ours(w/o softmax) 59.87 89.65 61.79 87.90 60.20 86.27 78.67 72.84 65.13 84.17

Table 6: Zero-shot OOD detection performance using different LLMs, image detectors and OOD detectors.
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