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Abstract

Misinformation is often conveyed in multiple
modalities, e.g. a miscaptioned image. Mul-
timodal misinformation is perceived as more
credible by humans, and spreads faster than
its text-only counterparts. While an increas-
ing body of research investigates automated
fact-checking (AFC), previous surveys mostly
focus on text. In this survey, we conceptualise a
framework for AFC including subtasks unique
to multimodal misinformation. Furthermore,
we discuss related terms used in different com-
munities and map them to our framework. We
focus on four modalities prevalent in real-world
fact-checking: text, image, audio, and video.
We survey benchmarks and models, and dis-
cuss limitations and promising directions for
future research.

1 Introduction

Motivated by the challenges presented by misinfor-
mation in the modern media ecosystem, previous
research has commonly modelled automated fact-
checking (AFC) as a pipeline consisting of different
stages, surveyed in a variety of axes (Thorne and
Vlachos, 2018; Kotonya and Toni, 2020a; Zeng
et al., 2021; Nakov et al., 2021; Guo et al., 2022).
However, these surveys focus on a single modality,
text. This is different to real-world misinformation
that often occurs via several modalities.

In AFC, the term multimodal has been used to
refer to cases where the claim and/or evidence are
expressed through different or multiple modali-
ties (Hameleers et al., 2020; Alam et al., 2022;
Biamby et al., 2022). Examples of multimodal
misinformation include: (i) claims about digitally
manipulated content (Agarwal et al., 2019; Rössler
et al., 2018) such as photos depicting former US
president Trump’s arrest (Figure 1); (ii) combining

* This work was partially done during Mubashara’s re-
search visit at Cambridge.

1https://www.bbc.com/news/
world-us-canada-65069316

Figure 1: Manipulated image depicting arrest of former
US president Donald Trump (source: BBC1).

content from different modalities and contexts, e.g.
using video footage in a misleading context (Aneja
et al., 2021; Biamby et al., 2022; Abdelnabi et al.,
2022); (iii) embedding a claim in another modal-
ity, e.g. a meme, an image with embedded text (Qu
et al., 2022a), with notable real-world examples
including a Brexit Vote Leave poster2 and TikTok
videos with COVID misinformation (Shang et al.,
2021); (iv) verifying a claim with evidence from a
different modality than the input claim, e.g. verify-
ing images against text (Shao et al., 2023), audio
against textual metadata (Kopev et al., 2019), and
text against images (Akhtar et al., 2023).

Fact-checking multimodal misinformation is im-
portant for a number of reasons. First, multimodal
content is perceived as more credible compared to
text containing a similar claim (Newman et al.,
2012). For example, previous research shows
that visual content exhibits a “photo truthiness”-
effect (Newman and Zhang, 2020), biasing readers
to believe a claim is true. Second, multimodal con-
tent spreads faster and has a higher engagement
than text-only posts (Li and Xie, 2020). Third,
with recent advances in generative machine learn-
ing models (Rombach et al., 2022), the generation
of multimodal misinformation has been simplified.

To validate the importance of multimodal fact-

2https://www.itv.com/news/2019-01-18/
boris-johnson-under-attack-over-turkey-claim/
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Claim Modality Percentage
Image 20.07%
Video 8.06%
Audio 0.55%
Total 28.68%

Table 1: Non-textual modalities present and/or used in
addition to text in our manually annotated snapshot of
real-world claims from the Google ClaimReview API.

checking, we manually annotated 9,255 claims
from the AVeriTeC dataset (Schlichtkrull et al.,
2023), which were collected with the Google
FactCheck ClaimReview API3. For each claim, we
identified the modalities present in it and evidence
strategies (e.g. identification of geolocation) used
for fact-checking. We find that more than 2, 600
(28.68%) claims either contain multimodal data
or require multimodal reasoning for verification,
with 20.07% involving images, 8.06% videos, and
0.55% audios (see Table 1).4 These claims can
neither be fact-checked by a text-only model, nor
by a model with no text capabilities.

In this survey, we introduce a three-stage frame-
work for multimodal automated fact-checking:
claim detection and extraction, evidence retrieval,
and verdict prediction encompassing veracity, ma-
nipulation and out-of-context classification, as well
as justification production. The input and output
data of each stage can have different or multiple
modalities. For each stage, we discuss related terms
and definitions developed in different research com-
munities. In contrast to previous surveys on multi-
modal fact-checking that focus on individual sub-
tasks (Cao et al., 2020; Alam et al., 2022; Abdali,
2022), we consider all subtasks surveying bench-
marks and modeling approaches for them.

We focus on four prevalent modalities of real-
world fact-checking identified in our annotations:
text, image, audio, and video. While tables and
knowledge graphs are increasingly used as evi-
dence for benchmarks (Chen et al., 2020; Aly et al.,
2021; Akhtar et al., 2022), they have been covered
in previous surveys (Thorne and Vlachos, 2018;
Zeng et al., 2021; Guo et al., 2022). Finally, we dis-
cuss the extent to which current approaches to AFC
work for multimodal data, and promising directions
for further research (Section 4). We accompany the

3https://toolbox.google.com/factcheck/apis
4Annotations at http://github.com/MichSchli/

AVeriTeC.

survey with a repository,5 which lists the resources
mentioned in our survey.

2 Task Formulation

This section introduces a conceptualisation of mul-
timodal AFC as a three-stage process, including
claim detection and extraction, evidence retrieval,
and production of verdicts and justifications for var-
ious types of misinformation (Figure 2). Compared
to the text-only pipeline presented in Guo et al.
(2022), our framework extends their first stage with
a claim extraction stage, and generalises their third
stage to cover tasks that fall under multimodal AFC,
thus accounting for its particular challenges.

Terminology. A number of works (Singhal et al.,
2022; Fung et al., 2021) use the term multimedia,
which is also more common in public discussions
instead of multimodal (Lauer, 2009). However
in in this survey we adopt the latter, following
other surveys that use multimodal data (Liang et al.,
2022; Guo et al., 2019). Adopting the terminology
of previous surveys (Thorne and Vlachos, 2018;
Alam et al., 2022) and following advice from insti-
tutions such as the UNO (Ireton and Posetti, 2018),
we avoid multimodal fake news (Meel and Vish-
wakarma, 2021; Amri et al., 2021; Patwa et al.,
2022) due to the term’s ambiguous use.

Stage 1: Claim Detection and Extraction. The
first pipeline stage aims to find checkable (i.e.
factually-verifiable) and check-worthy (i.e. impor-
tant factual claims (Hassan et al., 2015b)) claims.
Debunking a typical claim and writing the fact-
checking article takes approximately one day for
a human fact-checker (Hassan et al., 2015a). This
stage aims to focus the AFC process on claims
which are verifiable and most impactful. Multi-
modal claims can be diverse and include: (1) a
written claim embedded in another modality (Prab-
hakar et al., 2021; Maros et al., 2021) such as an
image or a spoken claim in an audio or video; (2) a
claim that a piece of content is authentic, e.g. that
a video footage is from a specific geographic loca-
tion (Zhang et al., 2018; Heller et al., 2018); (3)
a claim for which the evidence is manipulated to
support it, e.g. through lip-syncing (Rössler et al.,
2018). While in some cases the claim is clearly
specified (e.g. in form of a headline), in often mul-
tiple modalities are required to understand and ex-

5https://github.com/Cartus/
Automated-Fact-Checking-Resources
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Figure 2: Multimodal fact-checking pipeline.

tract a claim at this stage. Simply detecting poten-
tially misleading content is often not enough – it is
necessary to extract the claim before fact-checking
it in the subsequent stages. For example, detecting
text in images or videos and understanding it given
the context (Qu et al., 2022b) or verifying audios
by transcribing and extracting claims (Maros et al.,
2021).

Stage 2: Evidence Retrieval. Similarly to fact-
checking with text, multimodal fact-checking of-
ten relies on evidence to make judgments, similar
to the process followed by human fact-checkers
(Silverman, 2013; Nakov et al., 2021). Two main
approaches have been used in the past: (i) using
the claim to-be-checked as evidence itself, e.g. to
detect manipulation (Qi et al., 2019; Bonettini et al.,
2020); this can be seen as the multimodal version
of evidence-free fact-checking of text claims by
checking logical fallacies in the text (Jin et al.,
2022), and (ii) retrieving additional evidence (Ab-
delnabi et al., 2022). In multimodal fact-checking,
the evidence modality can be different from the
claim modality. For example, to retrieve evidence
for image or audio fact-checking, previous works
have also used text e.g. metadata, social media com-
ments, or captions (Gupta et al., 2013; Huh et al.,
2018; Müller-Budack et al., 2020; Kopev et al.,
2019).

Stage 3: Verdict Prediction and Justification
Production. Following the fact-checking pro-
cess of professional fact-checkers, the final stage
comprises verdict prediction and the production
of justification that explains the fact-check to hu-
mans (Graves, 2018). Verdict prediction is decom-
posed into three tasks considering prevalent multi-
modal misinformation types: manipulation, using
content out-of-context, and veracity classification.

Stage 3.1: Manipulation Classification. Ma-
nipulation classification commonly addresses (i)
misinformative claims with manipulated content;
(ii) correct claims accompanied by manipulated
content (e.g. to increase credibility). Many meth-

ods exist to manipulate text, visual and audio con-
tent. While some require more knowledge to use
(e.g. speech synthesis), other manipulations can be
achieved with simple tools (e.g. changing speed of
videos) (Paris and Donovan, 2019). Different terms
have been used for manipulated content in recent
years. A deepfake is commonly defined as “the
product of artificial intelligence (AI) applications
that [...] create fake videos that appear authen-
tic” (Maras and Alexandrou, 2019), with popular
examples including realistic-looking videos where
the speaker’s voice or face is modified (Paris and
Donovan, 2019). On the other hand, cheap fake
defines manipulated content created through more
accessible methods (Paris and Donovan, 2019),
e.g. changing captions or speed of videos (La et al.,
2022). The term fauxtography was first coined in
journalism for images manipulated to “convey a
questionable (or outright false) sense of the events
they seem to depict” (Cooper, 2007; Kalb and
Saivetz, 2007). Other terms used in the litera-
ture for manipulated content are fake (Cheema
et al., 2022), forgery (Cozzolino et al., 2021), and
splice (Zampoglou et al., 2015).

Stage 3.2: Out-of-context Classification. Us-
ing unchanged content out-of-context is one of
the most common and easiest methods to cre-
ate multimodal misinformation (Luo et al., 2021;
Aneja et al., 2021), and involves (possibly mis-
informative) textual claims paired with content
(e.g. a video) taken out of context (Zhang et al.,
2018; Abdelnabi et al., 2022; Garimella and Eck-
les, 2020). Recent work has also studied the ap-
plicability of traditional multimodal misinforma-
tion detection methods to identify out-of-context
content (Zhang et al., 2023). Other terms used
for combining multimodal content in a misleading
way include cross-modal (in-) consistency (Müller-
Budack et al., 2020) and repurposing (Luo et al.,
2021).

Stage 3.3: Veracity Classification. This task is
the multimodal counterpart to classifying the ve-
racity of textual claims given retrieved evidence
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(Thorne and Vlachos, 2018). Veracity classification
of claims embedded in audio is also commonly re-
ferred to as deception detection (Kopev et al., 2019;
Kamboj et al., 2021). While earlier work consid-
ered mostly claims recorded in staged setups (New-
man et al., 2003) or from court trials (Pérez-Rosas
et al., 2015), more recently real-world political de-
bates have become popular. (Kopev et al., 2019;
Kamboj et al., 2021).

Stage 3.4: Justification Production. Different
to previous research on automated justification pro-
duction (Kotonya and Toni, 2020a), human fact-
checkers also give justifications for fact-checks
involving images, audios, or videos (Silverman,
2013). Justifications for multimodal misinforma-
tion can be grouped in three categories: (i) identi-
fying which part of the claim input is misleading
(e.g. specific areas in a visual claim or words in
a textual one) (Kou et al., 2020; Purwanto et al.,
2021; Lourenço and Paes, 2022); (ii) providing
natural language justifications following human
fact-checkers (Yao et al., 2022); (iii) selecting
and highlighting evidence parts used for verifica-
tion (Atanasova et al., 2020; Shang et al., 2022).
Justifications serve purposes beyond explaining
veracity classification, e.g. human fact-checkers
also use them to discuss uncertainties and poten-
tial errors – especially needed in fact-checking for
rapidly developing events (Silverman, 2013).

3 Datasets and Modeling Approaches

3.1 Stage 1: Claim Detection and Extraction

Input. Typical inputs to claim detection are uni-
modal, including image (Garimella and Eckles,
2020; Qu et al., 2022a), audio (Maros et al., 2021),
and video (Shang et al., 2021; Qi et al., 2022),
which are collected from social media platforms
such as WhatsApp and TikTok (see Table 2). The
written or spoken claim is extracted from the input
at this stage before fact-checking it.
Output. Claim detection is typically framed as
a classification task. Models predict if a claim
is checkable or check-worthy (Prabhakar et al.,
2021; Cheema et al., 2022; Barrón-Cedeño et al.,
2023). The verdict for factual-verifiability is of-
ten binary (Jin et al., 2017; Shang et al., 2021).
For check-worthiness, Prabhakar et al. (2021)
defines three categories of multimodal claims:
statistical/numerical claims, claims about world
events/places/noteworthy individuals, and other fac-

tual claims. Cheema et al. (2022) extend the binary
labels for textual check-worthiness (Hassan et al.,
2015b) with images to be considered as well. A
tweet is considered check-worthy if it is potentially
harmful, breaking news, or up-to-date.
Modeling Approaches. Detecting claims is a chal-
lenging task due to the vast number of posts that are
published every day. Existing claim detection meth-
ods primarily rely on input content since the large
volume of potentially check-worthy inputs makes
it difficult to retrieve and use evidence. The early
multimodal method directly concatenated visual
and textual features for detection (Jin et al., 2017;
Wang et al., 2018). However, simple modality fu-
sion may not be sufficient to capture the complex
relationships among multimodal information. As
a result, later efforts focused on jointly learning
representations across modalities. For instance,
Khattar et al. (2019) leverage a variational auto-
encoder (Kingma and Welling, 2014) to learn a
shared representation of visual and textual content.
Various attention mechanisms have also been de-
veloped to fuse multimodal representations (Qian
et al., 2021; Wu et al., 2021; Liu et al., 2023b; Qi
et al., 2023). Another popular approach is to use
graph neural networks (Kipf and Welling, 2017)
to model the interactions among different modali-
ties (Zheng et al., 2022; Sun et al., 2023).

Multimodal content can implicitly provide
claims, as seen in images and videos on social
media that often have accompanying text. To ex-
tract claims from visual input, OCR systems are
commonly used (Garimella and Eckles, 2020; Prab-
hakar et al., 2021). Qu et al. (2022b) use Google
Vision API to identify text in memes. Claim ex-
traction becomes more challenging when dealing
with video inputs. Shang et al. (2021) address this
challenge by extracting captions and audio chunks
after sampling video frames. These captions and
audio chunks were then encoded into representa-
tions to guide the visual feature extraction process.
For audio inputs, Maros et al. (2021) use Google’s
Speech-to-Text API to produce transcripts.

3.2 Stage 2: Evidence Retrieval

Previous work uses different types of evidence and
retrieval methods given the modalities involved.
Evidence data and retrieval approaches can be
grouped into (i) content-based and (ii) retrieval-
based (see column evidence in Table 3).
Content-based. Content-based approaches use the
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Dataset Input Context Output #Input Lang Source
Weibo (Jin et al., 2017) Img/Txt Meta 2 9,528 Zh Weibo/News

FauxBuster (Zhang et al., 2018) Img/Txt Txt/Meta 2 917 En Twitter/Reddit
Exfaux (Kou et al., 2020) Img/Txt Txt 2/4 263 En Twitter/Reddit

MuMIN (Nielsen and McConville, 2022) Img/Txt Meta 3 12,914 Mul Twitter
MMClaims (Cheema et al., 2022) Img/Txt - 4 3,400 En Twitter
ContrastFaux (Zong et al., 2023) Img/Txt - 2 1,841 En Twitter/Reddit

CLEF2023 (Barrón-Cedeño et al., 2023) Img/Txt - 4 6,000 Mul Twitter
MR2 (Hu et al., 2023) Img/Txt Txt/Img/Meta 3 14,700 Mul Twitter/Weibo

IndiaWApp (Garimella and Eckles, 2020) Img Meta 2 2,500 Mul WhatsApp
DisinfoMeme (Qu et al., 2022a) Img - 2 1,170 En Reddit
WhatsApp (Maros et al., 2021) Aud Meta 2 42,689 Pt WhatsApp

TikTok (Shang et al., 2021) Vid Txt/Meta 2 891 En TikTok
COVID-VTS (Liu et al., 2023a) Vid Txt/Aud 2 10,000 En Twitter

FakeSV (Qi et al., 2022) Vid Txt/Meta 2 3,654 Zh TikTok/Kuai
MisDissem (Resende et al., 2019) Vid/Aud/Img/Text Meta 2 121,781 Pt WhatsApp

CheckMate (Prabhakar et al., 2021) Vid/Img/Text Meta 3 2,200 Hi Sharechat

Table 2: Datasets for claim detection. Img, Txt, Vid, Aud, and Meta denote image, text, video, audio, and metadata,
respectively. Output indicates the number classification labels. Mul indicates that the input has multiple languages.

claim and its context (i.e. the same information
that is used for claim detection and extraction)
as evidence instead of retrieving additional data.
This is particularly common for audio and video
misinformation (Table 3). Acoustic or visual fea-
tures extracted from the input are used as evidence
for verdict prediction (Wu et al., 2015; Yi et al.,
2021; Ismael Al-Sanjary et al., 2016; Jiang et al.,
2020). Most approaches use audio (or video) fea-
tures and accompanying data (e.g. metadata, tran-
scripts if available) as evidence to identify incon-
sistencies (Kopev et al., 2019; Rössler et al., 2018;
Li et al., 2020b). Several datasets with image/text
claims (Tan et al., 2020; Luo et al., 2021; Aneja
et al., 2021) also do not retrieve additional evi-
dence (Table 3) but rely on the given claim input or
use accompanying metadata (Jaiswal et al., 2017;
Sabir et al., 2018). Metadata is also often used
as evidence for verdict prediction with images as
input (Table 3). Jaiswal et al. (2017) and Sabir
et al. (2018) use metadata (e.g. image timestamps)
to provide additional information. Similarly, Huh
et al. (2018) incorporate EXIF metadata (e.g. cam-
era version, focal length, resolution settings) to
detect manipulation. Image captions are also used
as evidence sometimes (Shao et al., 2023).

Retrieval-based. Retrieved evidence external to
the claim is mostly used for fact-checking text
claims, text/image and image claims while audio
and video fact-checks often don’t retrieve addi-
tional evidence data (Table 3) but rely on the con-
tent of the video/audio input. Fung et al. (2021)
leverage a knowledge base for additional back-
ground knowledge. They first construct a knowl-
edge graph of the input news article using its text

and images. They extract entities/relations from
this knowledge graph with an Information Extrac-
tion system (Li et al., 2020a; Lin et al., 2020) and
map the entities to Freebase (Bollacker et al., 2008)
as their background knowledge base. Two recent
datasets scrape claims from fact-checking websites,
and include text/image/video from those articles
as evidence (Singhal et al., 2022; Yao et al., 2022).
Akhtar et al. (2023) used chart images as evidence
to verify textual claims. To determine if an image
is used out-of-context, previous works also use (re-
verse) image search (Müller-Budack et al., 2020;
Abdelnabi et al., 2022), to find evidence sources
with images similar to or same as the claim image.
Müller-Budack et al. (2020) query search engines
and the WikiData knowledge graph using named
entities from the claim text. Abdelnabi et al. (2022)
use the claim image caption and the image itself as
query.

3.3 Stage 3: Verdict Prediction

As introduced in Section 2, the verdict prediction
stage includes manipulation, out-of-context, and
veracity classification as sub-tasks.
Input. As shown in Table 3, inputs of manipula-
tion classification datasets usually focus on one
modality. For dataset creation, manipulated images
are often collected from social media platforms
such as Twitter, Reddit, and YouTube (Gupta et al.,
2013; Heller et al., 2018). For verdict prediction
datasets with videos, in addition to social media (Is-
mael Al-Sanjary et al., 2016), film clips (Guera
and Delp, 2018), facial expressions (Rössler et al.,
2018), and interviews (Li et al., 2020b) are used.
Some works record videos to simulate real-world
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Dataset Input Evidence Output Tasks #Input Lang Source
MAIM (Jaiswal et al., 2017) Img/Txt Meta 2 O 239,968 En Flickr

MEIR (Sabir et al., 2018) Img/Txt Meta 2 O 140,096 En Flickr
TNews (Müller-Budack et al., 2020) Img/Txt Img 2 O 72,561 En News

News400 (Müller-Budack et al., 2020) Img/Txt Img 2 O 400 En/De News
NeuralNews (Tan et al., 2020) Img/Txt - 4 O 128,000 En Grover/GoodNews
COSMOS (Aneja et al., 2021) Img/Txt - 2 O 201,700 En News/Snopes

NewsCLIPings (Luo et al., 2021) Img/Txt - 2 O 988,283 En CLIP/VisualNews
InfoSurgeon (Fung et al., 2021) Img/Txt KB/Meta 2 O 30,000 En VoA

Factify (Suryavardan et al., 2023b) Img/Txt Txt 5 O 50,000 En Twitter
FakingSandy (Gupta et al., 2013) Img Txt/Meta 2 M 16,117 - Twitter
MediaEval (Boididou et al., 2014) Img Txt/Meta 2 M 13,924 - Twitter

In-the-Wild (Huh et al., 2018) Img Meta 2 M 201 - Reddit/Onion
PS-Battles (Heller et al., 2018) Img Txt/Meta 2 M 103,028 - Reddit

DGM (Shao et al., 2023) Img Txt 2 M 230,000 - News
VTD (Ismael Al-Sanjary et al., 2016) Vid - 2 M 33 En YouTube
Faceforensics (Rössler et al., 2018) Vid - 2 M 1,004 En YouTube

DeepfakeDetect (Guera and Delp, 2018) Vid - 2 M 600 En Vid Webs./HOHA
DFDC (Dolhansky et al., 2019) Vid - 2 M 128,154 En Recorded

DeeperForensics-1.0 (Jiang et al., 2020) Vid - 2 M 60,000 En Recorded
Celeb-DF (Li et al., 2020b) Vid - 2 M 6,229 En YouTube
KoDF (Kwon et al., 2021) Vid - 2 M 237,942 Ko Recorded

DF-Platter (Narayan et al., 2023) Vid - 2 M 133,260 En YouTube
ASVspoof (Wu et al., 2015) Aud - 2 M 16,375 En SAS

Phonespoof (Lavrentyeva et al., 2019) Aud - 2 M 34,407 En ASVspoof
FoR (Reimao and Tzerpos, 2019) Aud - 2 M 53,868 En TTS Systems

DeepSonar (Wang et al., 2020) Aud - 2 M 18,614 En/Zh TTS Systems/VCC
HAD (Yi et al., 2021) Aud - 3 M 88,035 Zh AISHELL-3

FakeAVCeleb (Khalid et al., 2021) Vid/Aud - 4 M 20,000 En VoxCeleb2
MedVideo (Hou et al., 2019) Vid - 2 VC 250 En YouTube

CLEF2018 Audio (Kopev et al., 2019) Aud Meta 3 VC 286 En Debates
FactDrill (Singhal et al., 2022) Txt Vid/Aud/Img/Txt/Meta 5 VC 22,435 Mul FC webs.

MMM (Gupta et al., 2022) Txt Img/Meta 2 VC 10,473 Mul FC webs.
ChartFC (Akhtar et al., 2023) Txt Img 2 VC 15,886 En TabFact

Fauxtography (Zlatkova et al., 2019) Img/Txt Meta 2 VC 1,233 En Snopes/Reuters
MOCHEG (Yao et al., 2022) Img/Txt Img/Txt 3 VC 21,184 En FC webs.

r/Fakeddit (Nakamura et al., 2020) Img/Txt Meta 2/3/6 O/M/VC 1,063,106 En Reddit

Table 3: Datasets for manipulation, out-of-context, and veracity classification. O, M and VC denote out-of-context,
manipulation and veracity classification, respectively. Mul indicates the input has multiple languages.

scenarios (Dolhansky et al., 2019; Jiang et al., 2020;
Kwon et al., 2021). To create datasets of manip-
ulated content, altering methods based on GANs
have also been applied in earlier works (Zakharov
et al., 2019; Nirkin et al., 2019; Karras et al., 2019).
For audio manipulations, most benchmarks (Wu
et al., 2015; Kinnunen et al., 2017; Reimao and
Tzerpos, 2019; Wang et al., 2020; Yi et al., 2021)
use speech synthesis and voice conversion algo-
rithms to collect manipulated audios. To assess
real-world audio manipulations, Lavrentyeva et al.
(2019) emulate realistic telephone channels.

Most out-of-context classification datasets have
image-caption pairs as input (Table 3). Jaiswal et al.
(2017) replace captions of Flickr images to get mis-
matched pairs. As replacing the entire caption can
be easy to detect, later efforts (Sabir et al., 2018;
Müller-Budack et al., 2020) propose to change spe-
cific entities in them. Luo et al. (2021) show that
such text manipulations introduce linguistic biases
and can be solved without the images. They use
CLIP (Radford et al., 2021) to filter out pairs that do
not require multimodal modeling. Popular sources
for out of context datasets with text and image

claims include Flickr and news/fact-checking web-
sites (Aneja et al., 2021; Jaiswal et al., 2017; Sabir
et al., 2018).

The primary input to multimodal veracity clas-
sification is the content-to-be-checked itself – typ-
ically text, audio or video in past benchmarks.
Kopev et al. (2019) include verified speeches from
the CLEF-2018 Task 2 (Nakov et al., 2018) while
Hou et al. (2019) collect videos about prostate can-
cer verified by urologists. Zlatkova et al. (2019)
and Yao et al. (2022) collect viral images with
texts verified by dedicated agencies. Nakamura
et al. (2020) collect image-text pairs from Reddit
via distant supervision, e.g. labeling a post from
the subreddit “fakefacts” as misleading and from
“photoshopbattles” as manipulated. For veracity
classification of spoken claims, real-world political
debates are popular sources for claims (Kopev et al.,
2019; Kamboj et al., 2021). For example, Kopev
et al. (2019) and Kamboj et al. (2021) use claims
labelled by fact checking organizations, and video
recordings as well as transcripts of the respective
political debates.

Output. Most manipulation and out-of-context
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classification datasets use binary labels: “out-of-
context/not out-of-context” (Müller-Budack et al.,
2020; Luo et al., 2021), “pristine/falsified” (Boi-
didou et al., 2014; Heller et al., 2018), “manipula-
tion/no manipulation” (Dolhansky et al., 2019; Li
et al., 2020b). Following fact-checkers, veracity
classification datasets (Singhal et al., 2022; Naka-
mura et al., 2020) sometimes employ multi-class
labels to represent degrees of truthfulness (e.g. true,
mostly-true, half-true) (see Table 3). Mishra et al.
(2022) adopt labels to denote the entailment be-
tween different claim and evidence modalities, e.g.
the label support text denotes that only the textual
part of the evidence supports the claim but not the
accompanying image while support multimodal
includes both modalities.

Modeling Approaches. To detect visual manip-
ulations, early approaches mostly use CNN mod-
els, such as VGG16 (Amerini et al., 2019; Dang
et al., 2020), ResNet (Amerini et al., 2019; Sabir
et al., 2019), and InceptionV3 (Guera and Delp,
2018). Some works extend them to capture tempo-
ral aspects of video manipulation classification.
Amerini et al. (2019) adopt optical flow fields to
capture the correlation between consequent video
frames and detect dissimilarities caused by manip-
ulation. Guera and Delp (2018) model temporal
information with an LSTM model and a sequence
of features vectors per video frame to classify ma-
nipulated videos. Sabir et al. (2019) similarly ex-
tract features for video frames and detect discrep-
ancies between frames using a recurrent convolu-
tion network. Some recent models also integrate
transformer-based components (Vaswani et al.,
2017; Zheng et al., 2021). For example, Wang
et al. (2022) combine CNNs and vision transform-
ers (ViTs) (Dosovitskiy et al., 2021) while Wodajo
and Atnafu (2021) introduce a multi-scale ViT with
variable patch sizes.

Models for out-of-context and veracity clas-
sification typically consist of unimodal encoders,
a fusion component to obtain joint, multimodal
representations, and a classification component.
To obtain text representations, early approaches
used combinations of word2vec models (Mikolov
et al., 2013), LSTMs (Hochreiter and Schmidhuber,
1997), and TF-IDF scores for n-grams (Jin et al.,
2017; Tanwar and Sharma, 2020; Hou et al., 2019).
More recent efforts use pretrained language mod-
els (Fung et al., 2021; Aneja et al., 2021; La et al.,
2022). To encode visual data, many approaches

first detect objects in visual content using a Mask
R-CNN model (He et al., 2017) before extracting
visual features (Aneja et al., 2021; La et al., 2022;
Shang et al., 2022). Visual representations for im-
ages and videos are commonly obtained using CNN
models such as ResNet (He et al., 2016; Garimella
and Eckles, 2020; Abdelnabi et al., 2022), VGG (Si-
monyan and Zisserman, 2015; Jin et al., 2017; Sabir
et al., 2018), and Inception (Szegedy et al., 2015;
Guera and Delp, 2018; Roy and Ekbal, 2021). To
obtain audio features for voice quality, loudness,
and tonality, Shang et al. (2021) extract the Mel-
frequency cepstral coefficient, Kopev et al. (2019)
use the INTERSPEECH 2013 ComParE feature
set (Eyben et al., 2013), and Hou et al. (2019) use
the openEAR toolkit (Eyben et al., 2009). Var-
ious approaches have been used to obtain mul-
timodal representations. Early fusion, which
joins representations immediately after the encod-
ing step (Baltrusaitis et al., 2019) is more com-
mon (Aneja et al., 2021; Tanwar and Sharma, 2020;
La et al., 2022) than late fusion (Yao et al., 2022).
Moreover, model-agnostic methods (e.g. concate-
nation and dot product) are more prevalent (Aneja
et al., 2021; Kopev et al., 2019; Jin et al., 2017;
La et al., 2022) than model-based approaches (e.g.
neural networks) (Jaiswal et al., 2017; Shang et al.,
2022). Also popular for out-of-context classifica-
tion are cross-modality checks that compare modal-
ities present in a claim to each other, e.g. a video
and its caption (Müller-Budack et al., 2020; Fung
et al., 2021).

3.4 Stage 3: Justification Production

A small number of datasets is available for mul-
timodal justification production. Previous work
can be grouped into two categories: (1) highlight-
ing parts of the input, and (2) generating natural
language justifications.
Highlighting Input. The first category highlights
input parts as justification which contribute to mod-
els’ results. A popular approach for this are Graph
Neural Networks (Kipf and Welling, 2017). Sev-
eral papers encode multimodal data as graph ele-
ments, combining entities and their relations in and
between modalities. Models are trained to detect
inconsistencies between different modalities, or to
detect relations (i.e., between entities) that may be
misinformative. This detection could be based on
the local graph structure, or on an external knowl-
edge base (Fung et al., 2021; Shang et al., 2022;
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Kou et al., 2020). Highlighted entities and relations
serve as explanations for the potential misinforma-
tiveness of the entire graph. Conversely, Zhou et al.
(2018) and Wu et al. (2019) use a multitask model
for manipulation classification and identification
of manipulated regions. Rather than labeled data,
some papers rely on attention mechanisms to high-
light areas as explanations. Bonettini et al. (2020);
Dang et al. (2020) use this approach to highlight
manipulated image regions; Purwanto et al. (2021)
also include captions.
Natural Language Justifications. Yao et al.
(2022) recently introduced a multimodal dataset
with natural language justifications. They scrape
text and visual content from web pages referenced
by fact-checking articles. The dataset includes sum-
maries in the fact-checking articles as gold justifica-
tions for the verdicts. However, such a setting is not
realistic, as fact-checking articles are not available
when verifying a new claim.

4 Challenges and Future Directions

Claim extraction from multimodal content.
Multimodal claims, e.g. manipulated videos, are
often embedded in specific contexts and framed
as (part of) larger stories. For example, counter-
ing the misinformation in Figure 1 requires not
only classifying if the image is manipulated, but
understanding that it depicts the arrest of the former
president in one of the cases he is being charged in.
Only then can relevant evidence data be extracted
and used to verify the story of Trump’s arrest.To
determine what is being claimed is a challenging
first step in multimodal automated fact-checking.
However, current efforts for multimodal claim ex-
traction are limited to text extraction from visual
content or transcribing audios and videos (Qu et al.,
2022b; Garimella and Eckles, 2020; Maros et al.,
2021). Addressing this challenge will require mod-
eling approaches to effectively align and integrate
all modalities present in and around the claim. For
example, methods for pixel-based language mod-
eling have recently been introduced to better align
visually situated language with image content (Lee
et al., 2022). Such approaches considering modal-
ities beyond text and vision for multimodal data
alignment can be useful for claim extracting from
multimodal input.

Multimodal evidence retrieval. Evidence re-
trieval for audio and video fact-checking remains
a major challenge. Different to other modalities,

they cannot be easily searched on the web or social
media networks (Silverman, 2013). Fact-checkers
often use text accompanying the videos to find evi-
dence (Silverman, 2013). Reverse image search en-
gines, e.g. Google Lens or TinEye, require screen-
shots from the video as input – and thus require
the correct timeframe, which can be challenging to
extract. A dedicated adversary can render current
tools very difficult to use. Very often evidence for
image or audio fact-checking is retrieved using text
accompanying them , e.g. metadata, social media
comments, or captions (Gupta et al., 2013; Huh
et al., 2018; Müller-Budack et al., 2020; Kopev
et al., 2019). While incorporating the textual infor-
mation and the other modality (e.g. audio/image)
in retrieval would provide more information, this
is missing currently. How to best retrieve evidence
data that is non-textual or has a different modality
than the claim, also remains a challenge.

Multilinguality and multimodality. While
there is increasing work on multilingual fact-
checking (Gupta and Srikumar, 2021; Shahi and
Nandini, 2020; Hammouchi and Ghogho, 2022),
it is mostly limited to text-only benchmarks and
models. Surveying benchmarks for different
pipeline stages (Figure 2), we found limited
multimodal datasets for non-English languages
(see Table 3). Previous work on multilingual
multimodality shows that training and testing on
English data alone introduces biases, as models fail
to capture concepts and images prevalent in other
languages and cultures (Liu et al., 2021). Moreover,
some types of multimodal misinformation exploit
cross-lingual sources to mislead, e.g. images or
videos from non-English newspapers appearing
as out-of-context data for English multimodal
misinformation (Silverman, 2013). To prevent
false conclusions and biases, it is thus necessary
to take approaches that are both multimodal and
multilingual (Ruder et al., 2022). Construction of
large-scale multimodal, multilingual AFC datasets
would facilitate futures research in this direction,
similar to benchmarks and shared tasks created for
automated fact-checking tasks in English (Thorne
et al., 2018; Suryavardan et al., 2023a).

Generalizing detection of visual manipula-
tions. The recent popularity of diffusion models
(DMs) for visual manipulation have raised ques-
tions regarding the generalizability of manipula-
tion detectors developed for earlier models (e.g.
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GANs (Goodfellow et al., 2020)). Detection mod-
els are biased towards specific manipulation mod-
els and struggle to generalize (Wu et al., 2023a;
Ricker et al., 2022). A recent study (Ricker et al.,
2022) shows that detectors initially developed for
GANs, have average performance drops of around
15% for image by DMs. While new detection ap-
proaches for DM manipulations are already being
developed (Guarnera et al., 2023; Wu et al., 2023b),
the question how to generalize and increase ro-
bustness of manipulation detectors for potential fu-
ture manipulation models remains open. Potential
solutions can include evidence-based approaches,
where the manipulated content is used to retrieve
evidence data (e.g. the original video or counter-
factual evidence) to prove the manipulation.

Justifications for multimodal fact-checking.
While explainable fact-checking has received atten-
tion recently (Kotonya and Toni, 2020b; Atanasova
et al., 2020), there is limited work on producing
justifications for multimodal content. Previous ef-
forts on multimodal justification production have
mostly focused on highlighting parts of the input to
increase interpretability (Kou et al., 2020; Shang
et al., 2022). Natural language justifications that
explain the fact-check of multimodal claims so that
it is accessible to non-technical have not been de-
veloped yet. To develop solutions, we first need ap-
propriate benchmarks to measure progress. More-
over, with the recent advances of neural models
for visual and audio generation and editing, an-
other so far unexplored direction presents itself:
editing input images/videos/audios or generating
entirely content to explain fact-checking results.
This could include, for example, the generation
of infographics or video clips to explanation fact-
checks. Such a system, especially if guided by
human fact-checkers (Nakov et al., 2021), would
be a potent tool. As noted in Lewandowsky et al.
(2020), “well-designed graphs, videos, photos, and
other semantic aids can be helpful to convey correc-
tions involving complex or statistical information
clearly and concisely”.

5 Conclusion

We survey research on multimodal automated fact-
checking and introduce a framework that combines
and organizes tasks introduced in various communi-
ties studying misinformation. We discuss common
terms and definitions in context of our framework.
We further study popular benchmarks and model-

ing approaches, and discuss promising directions
for future research.

Limitations

While we cite many datasets and modeling ap-
proaches for multimodal fact-checking, we de-
scribe most of them only briefly due to space con-
straints. Our aim was to provide an overview of
multimodal fact-checking and organise previous
works in a framework. Moreover, the presented
survey focuses primarily on four modalities. While
there are other modalities we could have included,
we concentrated on those prevalent in real-world
fact-checking that have not been discussed as part
of a fact-checking framework in previous surveys.

Ethics Statement

As we mention in Section 4, most datasets for mul-
timodal fact-checking tasks are available only in
English. Thus, models are evaluated based on their
performance on English benchmarks only. This
can lead to a distorted view about advancements
on multimodal automated fact-checking as it is lim-
ited to a single language out of more than 7000
world languages. While we call for future work
on a variety of languages, this survey provides an
overview on the state-of-the-art of mostly-English
research efforts. Finally, we want to point out that
multimodal fact-checking works we cite in this sur-
vey might include misleading statements or images
given as examples.
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A Methodology

We applied the following methodological approach
to find and select relevant research papers for the
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First, after defining the research scope, we col-
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et al. (2020)) and related surveys (e.g. (Alam et al.,
2022)), resulting in 25 papers, as well as papers
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Figure 3: Example from the FaceForensic video ma-
nipulation dataset (Rössler et al., 2018) showing the
manipulation generation approach.

Figure 4: An entry from the MAIM dataset (Jaiswal
et al., 2017) showing an image/text claim with metadata.

We manually screened and filtered the papers
based on abstracts and introduction sections, before
creating an overview of papers across the follow-
ing dimensions: (1) modality; (2) fact-checking
task; (3) contribution type (i.e. dataset, modeling
approach, demo); (4) paper type (i.e. survey, posi-
tion paper, solution paper (e.g. introducing a new
benchmark or modeling approach), or evaluation
paper (e.g. investigating previously proposed ap-
proaches)). Papers were mostly excluded because
they focused on other tasks than fact-checking (e.g.
hate speech detection) or used modalities out of our
scope (e.g. tables). Moreover, during the screening
process we found and added further related works,
and concluded the screening with 84 unique papers.

The taxonomy of tasks (Section 2) was created in
an iterative manner starting with the task labels we
assigned to works during screening. As a starting
point we also used taxonomies of text-only fact-
checking surveys (Guo et al., 2022; Thorne and
Vlachos, 2018) and adapted them for multimodal
fact-checking works.

B Examples: multimodal misinformation
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Figure 5: An entry from the Factify dataset (Suryavar-
dan et al., 2023b) depicting an image/text claim and
supporting image/text evidence document.

Figure 6: Left a misleading, right a non-misleading
video screenshot from the Shang et al. (2021) dataset on
COVID-19 TikTok Short Videos.
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