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Abstract

Cross-domain few-shot named entity recog-
nition (NER) is a challenging task that aims
to recognize entities in target domains with
limited labeled data by leveraging relevant
knowledge from source domains. However, do-
main gaps limit the effect of knowledge trans-
fer and harm the performance of NER mod-
els. In this paper, we analyze those domain
gaps from two new perspectives, i.e., entity
annotations and entity structures and lever-
age word-to-tag and word-to-word relations to
model them, respectively. Moreover, we pro-
pose a novel method called Structure and Label
Constrained Data Augmentation (SLC-DA) for
Cross-domain Few-shot NER, which novelly
design a label constrained pre-train task and a
structure constrained optimization objectives
in the data augmentation process to generate
domain-specific augmented data to help NER
models smoothly transition from source to tar-
get domains. We evaluate our approach on sev-
eral standard datasets and achieve state-of-the-
art or competitive results, demonstrating the
effectiveness of our method in cross-domain
few-shot NER.

1 Introduction

Named entity recognition (NER) is a fundamental
Natural Language Processing (NLP) task to detect
entity mentions and classify them into predefined
labels (Grishman and Sundheim, 1996). Benefiting
from powerful feature representations, deep learn-
ing based NER approaches (Lample et al., 2016;
Devlin et al., 2019; Li et al., 2020) have achieved
promising performances. However, their success
depends heavily on the large-scale dataset with
accurate annotations that are labor-intensive and
time-consuming. Although some general domains
(e.g., news) provide rich annotations, it is unaf-
fordable to manually annotate NER labels in some
new environments (e.g., bio-medicine). Therefore,
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Figure 1: Examples for entities have different struc-
tures and labels between the source and target domains.
Different colors and combinations of squares represent
different entity types and structures, respectively.

few-shot NER (Fritzler et al., 2019; Hou et al.,
2020) has attracted increasing attentions, aiming to
build an NER model with only a small number of
supporting samples in specific domains.

Mainstream researches on cross-domain few-
shot NER aim to transfer relevant knowledge from
source domains. Most of them focus on optimizing
model architectures based on metric-learning, such
as Prototypical Network based ProtoBERT (Snell
et al., 2017; Fritzler et al., 2019; Hou et al., 2020),
a nearest neighbor based network NNShot (Yang
and Katiyar, 2020), a viterbi decoding variant near-
est neighbor based network StructShot (Yang and
Katiyar, 2020), and Container (Das et al., 2022), a
contrastive model. There are also studies based on
data augmentation methods, such as MELM Zhou
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et al. (2022), which uses cross-lingual pre-trained
models for data augmentation.

Cross-domain few-shot NER is full of challenges
because of the domain gaps, especially for NER
tasks. However, existing work lacks research on
this problem. As a structure prediction task, NER
requires synthetic entity with highly matching of
label dependencies. However, there are distinc-
tions among texts from various domains. The same
entity mention in various domains is labeled with
different entity types or distinct span boundaries.
Unfortunately, existing studies have not adequately
explored the influence of domain gaps on NER
tasks. Consequently, these gaps significantly im-
pact the performance of existing approaches.

In view of these challenges, we divide domain
gaps into two categories as shown in Figure 1(a).
Category-I: The structure of entities differs
across domains. For example, ‘the Lincoln Memo-
rial’ is represented as a contiguous location entity
in flat NER datasets, while it is additionally labeled
with a person entity "Lincoln" in the nested NER
datasets. Additionally, entity boundaries may vary
from domain to domain. For example, in different
datasets, the inclusion of "the" in the phrase "the
Lincoln Memorial" can vary. Category-II: The an-
notations of entities differs across domains. Dif-
ference domains usually have different pre-defined
entity types. For example, in OntoNotes dataset,
‘the Lincoln Memorial’ and ‘Washington D.C’ are
annotated as ‘LOC’ and ‘GPE’ types, respectively,
where as in WNUT dataset, both are classified as
‘location’. Our proposed method aims to alleviate
the negative impact of structure and annotations
differences on cross-domain few-shot NER. By do-
ing so, we aim to enhance the performance of NER
models in the target domain.

Based on the above analyses, we introduce two
types of relationships to sufficiently model two
kinds of domain gaps in cross domain few-shot
NER method. Word-to-word relation: ‘the Wash-
ington Monument’ is annotated as one entity in
flat NER datasets while annotated as two entities
in nested ones. When the source domain is a flat
entity dataset and the target domain is a nested
entity dataset, it is likely to generate non-nested
entity data, leading to the NER model not being
able to learn the knowledge in the target domain.
Word-to-tag relation: the corresponding entity
types of ‘Washington D.C.’ are ‘GPE’ and ‘loca-
tion’ in ‘OntoNotes’ and ‘WNUT’, respectively,

which may cause label conflict if directly learned.

In this paper, we propose a novel method
called Structure and Label Constrained Data
Augmentation (SLC-DA) for Cross-domain Few-
shot NER. SLC-DA novelly design a label con-
strained pre-train task, which allows the model to
learn the mapping relationships between entities
across diverse domains. Furthermore, SLC-DA in-
corporate structure constrained optimization objec-
tives in the data augmentation process to generate
domain-aware augmented data to help NER models
smoothly transition from source to target domains.

Concretely, for structure-constrained data aug-
mentation as shown in figure 1(b), we calculate the
word-to-word relation to model the entity structure
between entity word tokens and other tokens, and
generate structure-enhanced NER data in the tar-
get domain for training. For label-constrained data
augmentation as shown in figure 1(c), we replace
the same entity mentions with their corresponding
different categories for each instance and utilize
the language model to learn these word-to-tag rela-
tionships in different domains to avoid confusion.

To evaluate the effectiveness of our proposed
approach, we compare our approach with previous
works on flat NER and report results surpassing
the current state-of-the-art. Additionally, we report
competitive results on nested NER. Our findings
demonstrate that our proposed method is simple
yet highly effective. Finally, our main contributions
are summarized as follows:

• To bridge domain gaps for cross-domain few-
shot NER, we analyze this issue from two new
perspectives, i.e., entity annotations and entity
structures and define word-to-word and word-
to-tag relations to model them, respectively.

• We propose a method called Structure and
Label Constrained Data Augmentation (SLC-
DA), introducing a label-constrained pre-train
task and structure-constrained optimization
objectives in the data augmentation process.

• We achieved state-of-the-art results in the
cross-domain few-shot NER task. We also
achieved competitive results by transferring
from a flat entity dataset to a nested entity
dataset for the first time.
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2 Background

2.1 Few-shot NER
Since there are usually multiple entity instances in
a single sentence for NER task, which is different
from text classification tasks, we cannot following
the few-shot settings of text classification to con-
struct the support set by sampling K sentences for
each entity class, which can lead to an imbalance in
the data. Therefore, for few-shot NER, the dataset
consists of N entity classes, with K annotated in-
stances per class, denoted as the N-way K-shot
setting. To address the issue of imbalanced data
distribution across different entity categories, we
employ a specific strategy. Firstly, we calculate the
total number of entities for each category. Then,
we prioritize the selection of categories with fewer
entities. This approach ensures the rationality of
the support set size. Statistics of datasets used in
experiments can be found in A.4.

2.2 Domain Transfer for Few-shot NER
Domain transfer usually transfers knowledge from
the source domain to the target domain.For the few-
shot NER task, the NER model is first trained on
the source domain and then fine-tuned on the target
domain. During the source domain training, the
train, development, and test sets are fully utilized.
The data splits for train, development, and test are
described in Section 4.2. During the target domain
training, the training data consist of the generated
augmented data (data augmentation based on sup-
port set), the development set is the support set,
and we adopt the original test set from the target
domain for testing.

3 Method

In this section, we present our proposed method,
called Structure and Label Constrained Data Aug-
mentation (SLC-DA) for cross-domain few-shot
NER. Figure 2 depicts the overview of our method,
which includes two modules: structure constrained
data augmentation and label constrained pre-train
task. We illustrate the details of how we learn entity
structure and label relation.

3.1 Structure Constrained Data
Augmentation

To enhance the quality of generated NER data, we
propose to augment data with structure constrained
optimization objective by learning and preserving
entity structures.

In the structure constrained data augmentation
module, we first combine source domain data and
target domain support set to pretrain the data aug-
mentation model. Then, we capture the entity struc-
ture by modeling the word-to-word-relation. Sub-
sequently, the structure constrained data augmenta-
tion is used to generate more entities that conform
to the target domain entity structure and replace the
original entities to compose the augmentation data.

Let Dsource and Dtarget denote the source do-
main dataset and target domain support set. Given
a N tokens sentence X = [x1, x2, ..., xN ] with
corresponding NER labels L = [l1, l2, ..., lN ], we
encode the sentence to H = [h1, h2, ..., hN ]. Then
we randomly mask entity tokens to generate a new
sequence X ′ and M = [m1,m2, ...,mN ], where
mi = 1 if xi is masked else mi = 0.

For a masked entity token x
′
i, we use masked

language model (MLM) to generate the entity x
′′
i

which is the most similar to the entity xi, and the
new sequence X

′′
is generated by minimizing the

loss

LMLM (x
′′
i ) = −milogpθ(xi|X

′
), (1)

where θ represents model parameters.
Following Qian et al. (2021), we exploit Gaus-

sian embedding, which is innately more expressive
than point embedding. For token embedding hi, we
compute its Gaussian Embedding Gi ∼ N (µi,Σi)
as follows:

µi = ReLU(hi), (2)

Σi = ELU(ReLU(hi)) + (1 + ϵ), (3)

where µi denotes the semantics of xi, covariance
matrix Σi represents the uncertainty, ELU repre-
sents exponential linear unit, and ϵ is set toe−14

for numerical stability. We use KL-divergence to
calculate the similarity of entity structure

DKL(i, j) =
1

2
(log

|Σi|
|Σj |

−D + tr(Σ−1
i Σj) (4)

+ (µi − µj)
TΣ−1

µ (µi − µj).

Since the KL-divergence is asymmetric, we ob-
tain the similarity by calculating the KL-divergence
in both directions

d(i, j) =
1

2
(DKL(i, j) +DKL(j, i)). (5)

We define the optimization objective as follows to
minimize the structure difference between newly
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Figure 2: An overview of our proposed approach, which comprises structure constrained data augmentation (bottom)
and label constrained pre-train task (top). First, we introduce the word-to-tag relation for label constrained pre-
train task. Then, we compute the word-to-word relation for structure constrained data augmentation to generate
augmented data for the target domain support set. Among the sentences generated for each sentence, we’ll pick the
top-K sentences that meet our satisfaction criteria, which we’ll denote as

√
. Finally, we merge the generated data

with the source domain data to train the NER model.

generated entities and original ones.

Lstructure(xi) = log
∑n

j=1,j ̸=i |(d(xi,xj)−d(x
′
i,xj)|

n−1 .

(6)

To sum up, for sequence X , the total loss is
formulated as

Ltotal = LMLM + Lstructure. (7)

In this way, we generate entities that conform
to the target domain entity structure. So we can
combine the generated data with the source domain
data to train the NER model.

3.2 Label Constrained Pre-train Task
In the label constrained pre-training module, to
alleviate label inconsistency between different do-
mains, we design several label constraint strategies

to align predefined labels between source and tar-
get domains. First, we extract all entities and corre-
sponding sentences from the support set, and find
sentences containing these entities in the source
domain data set. Then, we form a sentence pair
containing the same entity with the sentences in
the support set. Let the pretrain language model
(PLM) learn different labels of the same entity in
different domains and learn the relationship be-
tween these two labels. This PLM is subsequently
trained with the train data and structure constrained
of the source domain to become a NER model.
Finally, when inference, we utilize a pre-trained
label-constrained model to compute the mapping
relationships between labels in the source and tar-
get domains. This allows us to bridge the gap be-
tween the two domains. We also predefine the label
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mapping to bridge the source and target domain.
To alleviate the label inconsistency among differ-

ent domains, we propose a novel label-constrained
pre-training task to align the inconsistent prede-
fined labels between the source and the target do-
mains in training and prediction process. Based on
pre-trained contextual representations, we design a
label mapping strategy by calculating the similarity
of various predefined labels to align inconsistent
labels between the source and target domains in
training and prediction process.

In the training process, we first filter out
all the entities E and their labels L from the
sentences S in the target domain denoted as
[e1, e2, ..., eN ], [l1, l2, ..., lN ], and [s1, s2, ..., sN ],
respectively. si is a sequence of m tokens
[x1, x2, ..., xm]. We then select sentences contain-
ing these entities and labels from the source domain
data as [s

′
1, s

′
2, ..., s

′
p] and [l

′
1, l

′
2, ..., lp

′
] and match

all sentences which have the same entity up as
[e1; s1; s

′
1, e2; s2; s

′
2, ..., en; sn; s

′
p]. Then we swap

entities in these sentences with their correspond-
ing labels and generate the representations of two
labels li and l

′
i and compute the KL-Distribution

between them as:

L(i) = −log
exp(−d(li, l

′
i))∑n

j=1 exp(−d(li, lj)
(8)

and achieve label alignment by learning the rela-
tionship between the labels of these entities in the
source and the target domains. Finally, we apply
the saved parameters to initialize the NER model.

In the prediction process, we propose a simple
but efficient post processing method to align la-
bels from different domains. Since the NER model
is pre-trained on the source domain, it will be af-
fected by predefined labels of the source domain
when identifying entities, making some predictions
of predefined labels not part of the target domain.
Therefore, during inference, we post-process re-
sults predicted by the model.

We employ label-constrained pre-training task
to obtain contextual representations for different
entity labels and then compute the mapping rela-
tionships of entity categories between the source
and target domains (including the "other" category).
Specifically, according to the official annotation
guidelines for each dataset, we generate descrip-
tive statements for each entity category and calcu-
late KL divergence based on the representations
of description sentences for each entity category

between the source and target domains. This pro-
cess allows us to derive the mapping relationships
between entity categories in the source domain and
entity categories in the target domain.

4 Experiments

We validate our proposed method in the flat entity
and nested entity settings. The details of the ex-
periments are elaborated in this section. We use
precision (P), recall (R), and F (F1) as evaluation
metrics. All experimental results are the average
score over five runs with random seeds.

4.1 Datasets

We validate our proposed method on various do-
main datasets. We use OntoNotes 5.0 (Gen-
eral) (Pradhan et al., 2013) standard training
set as our source domain training data, and
use CoNLL 2003 (News) (Sang and Meulder,
2003), Wnut 17 (Social) (Derczynski et al.,
2017), I2B2(Medical) (Stubbs and Uzuner, 2015),
GUM(Mixed) (Zeldes, 2017) as our flat NER
setting target domain, ACE2004 (Event) (Dod-
dington et al., 2004), ACE2005 (Event) (Walker
and Consortium, 2005) as our nested NER tar-
get domain. For the source domain, we use the
OntoNotes train/development/test splits released
for the CoNLL 2012 shared task. For the tar-
get domains, we consider all datasets except for
OntoNotes, and then extract the support set as men-
tioned in Section 2.2. The statistics of datasets used
in experiments can be found in A.4.

4.2 Baselines

We compare the performances of SLC-DA on dif-
ferent datasets in the flat and nested entity set-
tings with the following cross-domain Few-Shot
NER models. 1) Direct-Transfer: which trains
the NER model on the source domain data and
evaluates it on the target domain support set. 2)
MELM (Zhou et al., 2022): our baseline method,
which exploits the Masked Entity Language Model
(MELM) to generate the augmented NER data. 3)
ProtoBERT (Snell et al., 2017; Fritzler et al., 2019;
Hou et al., 2020): an implementation of Proto-
typical Network based on BERT. 4) NNShot and
Structshot (Yang and Katiyar, 2020):a nearest
neighbor based network and a viterbi decoding
variant nearest neighbor based network. 5) CON-
TaiNER (Das et al., 2022): a model based on con-
trastive learning to learn the relationship between
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Flat entity settings Nested entity settings

Models
CoNLL WNUT I2B2 GUM Avg ACE04 ACE05

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

Direct Transfer 15.5 15.5 0 0 0 0 0 0 3.9 34.1 34.1 25.2 25.2
MELM‡ 17.8 20.8 1.0 9.1 0 4.4 0.4 1.1 6.8 34.1 31.8 24.2 24.2
Proto† 49.9 61.3 17.4 22.8 13.4 17.9 17.8 19.5 27.5 - - - -
NNShot† 61.2 74.1 22.7 27.3 15.3 22.0 10.5 15.9 31.1 - - - -
StructShot† 62.4 74.8 24.2 30.4 21.4 30.3 7.8 13.3 33.1 - - - -
CONTaiNER† 61.2 75.8 27.5 32.5 21.5 36.7 18.5 25.2 37.4 - - - -
ProML† 69.2 79.1 43.9 53.4 25.0 58.2 15.3 37.0 47.6 - - - -
SLC-DA (ours) 79.2 81.7 44.1 46.1 35.3 49.1 19.2 41.3 49.5 39.9 41.2 32.6 40.2

Table 1: Main results of SLC-DA and comparison methods for cross-domain few-shot NER. We use F (F1) as
evaluation metrics. ‘†’ represents the results are cited from the initial paper, and ‘‡’ represents the results re-
implemented by us. All experimental results are the average score over 5 runs with random seeds.

entities of different categories. 6) ProML (Chen
et al., 2022): designed multiple prompt schemas
are to enhance label semantics.

4.3 Main Results

Table 1 presents the results of flat and nested NER.
Compared with these strong baselines, SLC-DA
leads to significant improvements and achieves
state-of-the-art performances in flat NER setting.

We also report competitive results in the newly
proposed nested-entity cross-domain setting. Par-
ticularly, in the flat NER setting, our method im-
proves 1.9% on average compared to SOTA, and
improves 12.1% on average compared to CON-
TaiNER. In the nested NER setting, our method
improves 6.45% and 11.2% on average compared
to SOTA, 7.6% and 12.2% compared to baseline
for ACE04 and ACE05, respectively. All these re-
sults well demonstrate the effective of our method.
The reason we did not report all baselines for the
ACE04/ACE05 datasets is because these datasets
contain nested named entities, which pose a chal-
lenge for traditional baseline methods designed
for flat entities. These baseline methods, such as
container-based approaches, are not suitable for
accurately handling nested entities. Therefore, in-
cluding their results in the evaluation would not
provide a fair comparison.

The experimental results demonstrate that our
method and the metric-based method can achieve
good performance when there is small domain dif-
ference between the source and target domains
(where the target domain is the CoNLL dataset
in the news domain). However, our method has sig-
nificant advantages over other methods when there
is a large domain difference and limited target do-
main data, as demonstrated by the experiments on

I2B2 (medical) and GUM (mixed) datasets. This in-
dicates that our data augmentation method can help
the NER model smoothly transfer from the source
domain to the target domain. In addition, due to
the different usage of the target domain support
set, our method only uses the generated augmented
data and source domain data in the training set,
while other metric-based comparison methods use
the support set as the training set. As k-shot in-
creases, our method performs slightly worse than
ProML method on WNUT and I2B2 datasets but
better than other methods.

MELM in the nested NER setting is even less
effective than direct migration. The main reason
is that the labels of ACE04 and ACE05 are iden-
tical to the labels of OntoNotes in five cases, but
ACE04 and ACE05 have nested entities, resulting
in the failure of data augmentation. By contrast,
our SLC-DA can learn the entity structure of target
domain and thus generate appropriate augmented
data, benefiting the NER model to learn the knowl-
edge effectively and further improve the ability of
recognizing entity in the target domain. Parameter
settings can be found in A.1.

In our study, the migration from OntoNotes to
CoNLL dataset cannot strictly be considered as a
cross-domain setup, since the OntoNotes dataset
includes news data as one of its sources. However,
to maintain consistency with existing literature and
experimental settings, we conducted experiments
under this particular setup.

5 Analysis and Discussion

5.1 Ablation Study

We conduct ablation studies to explore the effect of
structure-constrained and label-constrained mod-
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Flat entity settings

Models
CoNLL WNUT

1-shot 5-shot 1-shot 5-shot
P R F P R F P R F P R F

Direct Transfer 39.5 11.8 15.5 39.5 11.8 15.5 0 0 0 0 0 0
SLC-DA 82.9 76.4 79.2 85.0 78.6 81.7 70.5 32.1 44.1 68.7 34.6 46.1
- w/o structure-constrained 65.9 52.3 58.5 68.3 54.3 60.5 36.5 23.6 28.7 35.5 23.9 28.6
- w/o label-constrained 83.5 75.0 79.0 81.3 77.6 79.4 55.1 29.8 38.7 51.6 30.8 38.5

Nested entity settings

Models
ACE04 ACE05

1-shot 5-shot 1-shot 5-shot
P R F P R F P R F P R F

Direct Transfer 69.8 22.5 34.1 69.8 22.5 34.1 63.1 15.77 25.2 63.1 15.77 25.2
SLC-DA 72.2 27.6 39.9 67.0 29.7 41.2 55.6 23.1 32.6 61.0 30.0 40.2
- w/o structure-constrained 70.6 21.7 33.2 66.5 23.4 34.6 60.8 9.3 16.1 60.8 13.6 22.2
- w/o label-constrained 68.2 25.5 37.2 68.3 28.1 39.8 56.9 19.8 29.4 58.6 28.5 38.3

Table 2: Ablation study on SLC-DA method for cross domain few-shot NER.

ules on the overall performance. The results of flat
NER and nested NER are reported in Table 2.

w/o structure-constrained: Structure con-
strained is not used in data augmentation, and
entities predicted by language model are directly
used as newly generated data. When ablating
the structure-constrained module, Table 2 shows
that the performances of SLC-DA drop dramati-
cally for both flat and nested NER in the 1-shot
and 5-shot settings. Particularly, for flat NER in
both 1-shot and 5-shot settings, when removing
the ‘structure-constrained’ module, the F1-scores
drop by over 20% and 10% on the CoNLL and
WNUT datasets, respectively. For nested NER, the
F1-scores drop by over 6% and 15% on ACE04 and
ACE05 datasets, respectively. Overall, these results
prove that our structure-constrained data augmen-
tation module plays an important role in SLC-DA
and it is necessary to exploiting entity structure
information in data augmentation methods.

w/o label-constrained: The NER model are di-
rectly initialized by pretrained bert-base-cased and
no longer learns the relationship between entity
labels from the source and target domain. When
ablating the label-constrained module, Table 2 il-
lustrates that the performances of SLC-DA drop
slightly for both flat and nested NER in the 1-shot
and 5-shot settings. Concretely, for flat NER in
both 1-shot and 5-shot settings, when removing
the ‘label-constrained’ module, the F1-scores drop
by approximately 1.5% and 1% on the CoNLL
and WNUT datasets, respectively. For nested

NER, the F1-scores drop by over 2% and 2.5%
on ACE04 and ACE05 datasets, separately. Subse-
quently, these analyses demonstrate that the label-
constrained data augmentation module also have a
consistent effect on the performance of SLC-DA
and modeling relations among different labels of
the same entities contributes to data augmentation.

In summary, both ‘structure-constrained’ and
‘label-constrained’ module have important effects
on performances of our proposed method. How-
ever, compared with the operation ‘w/o structure-
constrained’, removing the ‘label constrained’ mod-
ule from SLC-DA results in a more marginal de-
crease of performances on both flat and nested
NER, illustrating that ‘structure-constrained’ mod-
ule is more influential than ‘label-constrained’ in
the SLC-DA method. We conjecture that there
are two possible reasons: I) ‘structure-constrained’
module directly participates in the process of aug-
mented data generation while ‘label-constrained’
does not, since ‘structure-constrained’ is one of the
optimization objective of data generation process
while ‘label-constrained’ is only used as the initial-
ization of parameters. II) the scale of training data
for ‘structure-constrained’ module is larger than
that for ‘label-constrained’ module, leading to the
differences of model’s ability on capturing entity
structure and label-relation information.

5.2 Results on Different Labels

Table 3 shows the results of our SLC-DA model on
different label entities in CoNLL, WNUT, ACE04
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Dataset Entity Type MELM Structure Label SLC-DA
P R F P R F P R F P R F

CoNLL

PER 100.0 0.6 1.2 87.9 84.1 86.0 82.4 57.2 67.6 90.5 87.2 88.8
ORG 72.4 78.4 75.2 68.7 79.4 73.6 59.3 40.9 48.4 76.3 79.5 77.8
LOC 70.4 3.7 7.1 90.1 74.2 81.3 69.7 62.5 65.9 88.8 75.2 81.4
MISC 100.0 0.6 1.2 84.9 66.3 74.5 57.8 59.5 58.7 87.0 65.1 74.5

WNUT

corporation 13.2 10.6 11.7 10.5 3.0 4.7 11.1 2.4 4.0 40.0 6.1 10.5
creative-work 20.0 4.2 7.0 39.7 20.4 27.0 28.1 16.2 20.5 38.3 25.4 30.5

group 41.7 3.0 5.6 21.7 18.2 19.8 11.4 36.3 17.3 22.0 20.0 21.0
location 50.0 3.3 6.2 60.2 35.3 44.5 45.8 32.7 38.1 62.8 36.0 45.8
person 47.7 7.4 12.9 71.6 47.6 57.1 59.8 35.0 44.1 78.8 47.6 59.3
product 23.8 3.9 6.7 40.7 8.7 14.3 20.0 6.3 9.6 34.2 11.0 16.7

ACE04

GPE 79.0 29.9 43.4 73.2 46.0 56.5 75.1 39.4 51.6 73.6 47.7 57.9
ORG 69.6 29.9 41.8 67.1 30.6 42.0 70.2 29.0 41.0 67.7 34.2 45.5
PER 64.5 15.3 24.7 66.4 19.9 30.6 61.8 15.9 25.3 64.7 22.8 33.7
FAC 66.7 5.4 9.9 50.0 6.3 11.1 60.0 2.7 5.1 45.0 8.0 13.6
VEH 60.8 9.3 16.1 56.9 19.8 29.4 62.8 15.0 24.2 55.6 23.1 32.6
LOC 43.5 9.5 15.6 43.2 15.2 22.5 36.8 13.3 19.6 40.9 17.1 24.2
WEA 0 0 0 68.2 25.5 37.2 70.6 21.7 33.2 72.2 27.6 39.9

ACE05

GPE 76.2 31.7 44.8 74.5 40.9 52.8 73.4 31.0 43.6 69.5 43.3 53.5
ORG 65.4 21.8 32.7 63.3 28.3 39.1 71.4 25.5 37.6 61.6 28.7 39.1
PER 52.4 8.9 15.2 54.8 29.4 38.3 53.8 9.5 16.1 59.3 30.8 40.5
FAC 33.3 0.7 1.4 52.4 8.1 14.0 50.0 4.4 8.1 73.9 12.5 21.4
VEH 15.8 3.0 5.0 20.0 2.9 5.1 66.7 3.9 7.4 42.9 5.9 10.3
LOC 30.8 7.4 11.9 52.2 22.2 31.2 29.4 9.3 14.1 66.7 29.6 41.0
WEA 0 0 0 13.3 4.0 6.2 9.1 2.0 3.3 25.0 4.0 6.9

Table 3: Performance of SLC-DA and comparison methods on each entity type of all datasets in the 5-shot
settings. ‘Structure’ denotes only structure constrained is used in data augmentation, and ‘Label’ denotes only label
constrained is used in data augmentation.

and ACE05 in the 5-shot settings. Our method
achieves the best F1-score (87.6%) on almost all
labels and an extremely highest recall (86.6%) com-
pared with MELM. The results well demonstrate
the effective of our method.

Upon observing the results of the ablation ex-
periments, it can be seen that the MELM model
only performed well on the ’ORG’ category in the
CoNLL dataset, which is because this category is
included in the source domain OntoNotes. For the
other categories, the MELM model showed high
precision but low recall and F1 scores, indicating
that the model could not identify most entities be-
longing to the target domain label. On the other
hand, our SLC-DA model achieved better results in
all categories except for ’corporation’ in the WNUT
dataset, with an increase in recall proving that our
method helped the NER model learn to identify
entities belonging to the target domain, and thus,
demonstrated that our approach can help NER mod-
els more smoothly and effectively transfer from the

source to the target domain.
In term of the abnormal result of label ‘cor-

poration’, we conjecture it is because ‘corpora-
tion’ and ‘group’ are overlapped by label ‘ORG’
in OntoNotes. Since there are more entities with
‘group’ label than ‘corporation’ label, the model
better learns the mapping relationship between
‘group’ and ‘ORG’. Consequently, some data that
should be labeled as ‘corporation’ is labeled as
‘group’. These results in the precision decrease in
label ‘group’ and the recall drop in label ‘corpora-
tion’ by comparison.

5.3 Case Study

In Table 4, we present some cases by comparing
words generated by SLC-DA and MELM to verify
the effectiveness of our method. It can be seen
that our method can generate appropriate entities
according to the entity structure when encounter-
ing unseen entities in the source domain. In addi-
tion, when the target domain contains more difficult
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Text I switched the channel last night to [Indepen-
dence Day]creative_work.

MELM American Football, Between Football,Hard
Trek

SLC-DA [Seven Days]creative_work ,
[Saturday Night]creative_work

[The Trek]creative_work,
Text ...that were imposed in 1998 to punish and iso-

late the regime of [[Yugoslav]GPE President
Slobodan Milosevic]PER.

MELM [Yugoslavia President Slobodan
Milosevic]PER

[communist President Slobodan
Milosevic]PER

[former President Slobodan Milosevic]PER

SLC-DA [[Serbian]GPE President Slobodan
Milosevic]PER

[[Montenegro]GPE President Slobodan
Milosevic]PER

[[Kosovo]GPE President Slobodan
Milosevic]PER

Text What they say are [the [Bush]PER

administration]ORG ’ s neglectful atti-
tudes about their problems

MELM United [Houston]GPE Workers
[Social United Administration ]ORG

[The United House administration]ORG

SLC-DA [the [Reagan]PER administration]ORG

[the [Carter]PER administration]ORG

[the [Clinton]PER administration]ORG

Table 4: Case study of augmented data, blue represents
all entities and red represents nested entities.

nested entities, our method can also generate appro-
priate entities. And the results on different labels
can be found in 5.2.

6 Related Work

6.1 Cross-domain Few-shot NER

Recently, few-shot NER tasks have attracted a lot
of researches. For example, Snell et al. (2017);
Fritzler et al. (2019); Hou et al. (2020)applied pro-
totype networks to the few-shot NER task, while
Yang and Katiyar (2020) proposed StructShot, a
model that learns class-specific features and ex-
tends intermediate representations to new domains.
Das et al. (2022) proposed Container, a model
based on contrastive learning to learn the relation-
ship between entities of different categories for
better understanding of new unseen classes. Liu
et al. (2022) devises two prompting mechanisms
for better training data generation, which is heav-
ily influenced by the prompt strategies and needs
heavy computation. However, these methods suffer
from serious label inconsistency issues in cross-

domain scenarios. The knowledge they learned in
the source domain cannot be directly applied to the
target domain. Moreover, due to the complexity of
NER tasks, these works need to design complex
learning strategies to be applied to few-shot NER
tasks. Unlike previous works, our work focuses on
the knowledge of entity internal structure. As far as
we know, we are the first to introduce entity struc-
ture and label information in data augmentation
to solve cross-domain few-shot NER tasks, which
may inspire the following exploration to study in-
ternal structure knowledge of entities.

6.2 Data Augmentation

Data augmentation is a popular solution for few-
shot learning tasks, which is also studied in cross-
domain few-shot NER. However, noise is in-
evitably introduced in the process of introducing
augmented data. As a token-level task, NER is
vulnerable to the noise caused by augmented data.
Dai and Adel (2020) uses label-wise token replace-
ment, synonym replacement, and mention replace-
ment to augmented data but does not increase the
diversity of entities. Ding et al. (2020) and Zhou
et al. (2022) respectively train language model and
mask language model to fuse the alignment infor-
mation of entities and labels to constrain the newly
generated words to match labels, but inevitably in-
troduce a lot of noise. While current methods aim
to align the newly generated entities with the orig-
inal labels, they face limitations in cross-domain
few-shot NER. This is because each domain may
have distinct entity structures and labels, render-
ing the generated data incompatible with the target
domain’s entity structure. Consequently, conven-
tional data augmentation methods are not directly
applicable to cross-domain few-shot NER.

7 Conclusion

In this paper, we propose a Structure and Label
Constrained Data Augmentation (SLC-DA) for
cross-domain few-shot NER, by introducing en-
tity structure and label information from various
domains in the data augmentation process, to ob-
tain high-quality synthetic data in the target do-
main. Experimental results on both flat and nested
few-shot NER tasks show that our method can sig-
nificantly improve the quality of generated data and
help NER model find more target domain entities.
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Limitations

Named entities are typically classified as flat,
nested, or discontinuous entities, with significant
structural differences between the three types. This
makes it challenging for existing methods to ef-
fectively transfer from flat NER datasets to ei-
ther nested or discontinuous NER datasets. While
our experiments in this paper validate that our
method can effectively transfer NER models from
flat to nested datasets, we have yet to demonstrate
its efficacy in transferring to discontinuous NER
datasets. This is an avenue for future research,
as our method’s effectiveness on discontinuous
datasets remains to be explored.
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A Example Appendix

A.1 Parameter Settings

We elaborate experimental settings of SLC-DA and
NER models.

SLC-DA: We use bert-base-cased (Devlin et al.,
2019) with a language model head for our structure
constrained data augmentation model. The model
is trained for 20 epochs on source domain training
data and target domain support set, using Adam
optimizer with batch size set to 16 and learning
rate set to 1e-5.

We calculate the loss for each word generated
by the masked language model and select the best
top-K. For a sentence containing n entities, this re-
sults in generating Kn new sentences (with k=5 in
the presented experimental results). The additional
time required by our method compared to MELM
is not substantial because of the few-shot setting
of the target domain’s support set. Let’s take the
example of the WNUT 2017 dataset with a 5-shot
setting. The support set consists of 216 sentences
and 334 entity words. MELM requires approxi-
mately 4 minutes for data augmentation, while our
method takes around 13 minutes.

NER Model: For flat NER setting, we use bert-
base-cased (Devlin et al., 2019) with CRF (Lample
et al., 2016) head as the NER model. The model
is trained for 5 epochs on source domain training
data and target domain support set, using Adam
optimizer (Loshchilov and Hutter, 2019) with batch
size set to 32 and learning rate set to 5e-5. For
nested NER setting, we use the MRC-NER (Li
et al., 2020) model as the NER model. The model
is trained for 7 epochs on source domain training
data and finetuned for 20 epochs on the SLC-DA
generated data, using Adam optimizer with batch
size set to 16 and learning rate set to 2e-5. For
Direct Transfer setting, the model is trained only
on the source domain training data.

The server used for running our program is
NVIDIA Tesla P100-SXM2. The average train-
ing time per epoch for our structure constrained
data augmentation component is approximately 0.5

528

https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://aclanthology.org/W13-3516/
https://aclanthology.org/W13-3516/
https://ojs.aaai.org/index.php/AAAI/article/view/17613
https://ojs.aaai.org/index.php/AAAI/article/view/17613
https://aclanthology.org/W03-0419/
https://aclanthology.org/W03-0419/
https://proceedings.neurips.cc/paper/2017/hash/cb8da6767461f2812ae4290eac7cbc42-Abstract.html
https://doi.org/10.1016/j.jbi.2015.07.020
https://doi.org/10.1016/j.jbi.2015.07.020
https://doi.org/10.1016/j.jbi.2015.07.020
https://books.google.co.jp/books?id=SbjjuQEACAAJ
https://books.google.co.jp/books?id=SbjjuQEACAAJ
https://doi.org/10.18653/v1/2020.emnlp-main.516
https://doi.org/10.18653/v1/2020.emnlp-main.516
https://doi.org/10.18653/v1/2020.emnlp-main.516
https://doi.org/10.1007/s10579-016-9343-x
https://doi.org/10.1007/s10579-016-9343-x
https://doi.org/10.18653/v1/2022.acl-long.160
https://doi.org/10.18653/v1/2022.acl-long.160
https://doi.org/10.18653/v1/2022.acl-long.160


Models CoNLL WNUT I2B2 GUM

Direct Transfer 15.5 15.5 0 0
MELM‡ 17.5 11.1 5.4 1.2
CONTaiNER‡ 77.6 35.4 41.0 28.1
ProML‡ 81.5 55.0 61.2 39.6
SLC-DA (ours) 83.2 50.4 56.1 59.5

Table 5: Overall performances of all systems on four
datasets in 10-shot settings for few-shot NER. We use F1
scores as evaluation metrics. ‘‡’ represents the results
re-implemented by us. Each experimental result is the
average of performance over 5 runs with random seeds.

Models CoNLL WNUT I2B2 GUM
50shot full 50shot full 50shot full 50shot full

Direct Transfer 15.5 15.5 0 0 0 0 0 0
MELM‡ 22.8 91.2 13.0 45.6 9.6 97.9 1.4 31.7
SLC-DA (ours) 85.1 91.7 56.2 47.5 61.9 98.0 73.8 60.3

Table 6: Performances of systems in 50-shot and full set
settings for few-shot NER.

hours. For our label constrained data augmentation
component, the training time per epoch is influ-
enced by the difference in size between the source
and target domains, ranging from 0.5 to 3 hours.
For training the NER model, taking the Onton-
Notes5.0 dataset of approximately 70k samples as
an example, the training time is around 1 hour.

A.2 Experiments on a few more samples

Dataset Support Data Augmented Data
10-shot 50-shot 10-shot 50-shot

CoNLL 401 1422 65,870 123,376
WNUT 423 697 53,622 75,561
I2B2 894 1793 134,944 196,003
GUM 866 2107 239,766 590,523

Table 7: Statistics of support and augmented data used
in our experiments.

We provide experimental results in the 10-shot,
50-shot and full set settings, as shown in Table 5
and 6. The statistics of the support sets and aug-
mented data used in our experiments is shown in
Table 7.

In the 10-shot settings, our SLC-DA method still
outperforms all other comparisons on CoNLL and
GUM datasets. Although ProML method performs
better than us on WNUT and I2B2 datasets, our
approach based on data augmentation explore a
various direction and can be combined with ProML
to achieve more improvements.

Dataset Entity Type Dataset Entity Type

OntoNotes

NORP

I2B2

IDNUM
ORG MEDICALRECORD

PERSON PHONE
DATE ZIP
GPE age
FAC city

CARDINAL country
TIME date

ORDINAL device
EVENT email

QUANTITY fax
PERCENT hospital

LOC organization
WORK_OF_ART person

MONEY profession
LAW state

PRODUCT street
LANGUAGE username

CoNLL WNUT

corporation
PER creative-work
ORG group
LOC location
MISC person

product

GUM

abstract
animal
event GPE
object ORG

organization PER
person ACE04 FAC
place /ACE05 VEH
plant LOC

quantity WEA
substance

time

Table 8: Statistics of predefined labels in all datasets
from both source and target domains.

A.3 Statistics of Predefined Labels

Table 8 displays all predefined labels from vari-
ous datasets in both source and target domains.
Concretely, ‘OntoNotes’ dataset from the source
domain contains 18 predefined entity types. For
the target domains, there are 18, 11, 7, 6, and 4 en-
tity categories in ‘I2B2’, ‘GUM’, ‘ACE04/ACE05’,
‘WNUT’ and ‘CoNLL’ dataset, respectively. Note
that we collect their corresponding label descrip-
tions from the annotation guidelines.

A.4 Statistics of datasets used in experiments

The datasets utilized in our study are open-source
and consist of various entity types. Further infor-
mation on the datasets can be found in Table 9. The
table lists the entity types present in the datasets,
along with the percentage of nested entities relative
to the total number of entities.

We report the size of the augment data generated
by the support set for each data set in the table 10.
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Dataset Domian Class Nested Entity/Enity 1-shot entity 5-shot entity 1-shot sentence 5-shot sentence

OntoNotes General 18 - - - - -
CoNLL News 4 - 79 259 25 87
WNUT Social 6 - 82 334 51 216
I2B2 Medical 18 - 238 1133 162 706
GUM Mixed 11 - 170 868 81 276
ACE04 Event 7 12k/27k 202 352 61 102
ACE05 Event 7 12k/30k 162 407 43 115

Table 9: Statistics of support set used in experiments

Dataset 1-shot sentence 5-shot sentence

OntoNotes - -
CoNLL 8618 48809
WNUT 3734 14770
I2B2 5546 49066
GUM 8303 130857
ACE04 18198 48855
ACE05 54371 92278

Table 10: Statistics of augment data used in experiments

Dataset CoNLL WNUT I2B2 GUM

zero-shot 68.4 33.3 15.6 16.3
5-shot 76.2 40.0 9.5 13.2
10-shot 68.4 40.0 8.6 10.5

Table 11: Results of GPT3.5 in different settings.

A.5 Result of GPT3.5

As shown in Table 11, we provide the result of
GPT3.5 on zero-shot, 5-shot and 10-shot setting.
When constructing the input prompt using the sup-
port set, we used the following template: First,
input a prompt: "As a good linguist, you are
asked to identify and label the named entities
in the given sentences. There are some exam-
ples, please remember them:" Secondly, input the
support-generated prompt one by one, for example:
"Sentence is: John lives in New York City. Entities
are: <John, PER> <New York City, LOC>."

We observed that the performance of GPT 3.5
varies on different datasets, performing well on
common entities but worse on scarce entities(e.g.,
medical dataset I2B2). Additionally, compared re-
sults of ‘5-shot’ and ‘10-shot’, we find that GPT 3.5
does not perform better with the increase of support
samples due to the match degree between inputs
and prompts, which highlights the importance of se-
lecting proper prompts for the application of LLMs
to few-shot tasks.

Compared to GPT 3.5, our method achieves bet-
ter performance in the few-shot NER scenario. Fur-
thermore, our core idea can be easily applied to
LLMs by modeling structure and label relation-
ships with appropriate prompts, which can help
select input data and improve their performance.
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