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Abstract

The aim of implicit discourse relation recog-
nition is to comprehend the sense of connec-
tion between two arguments. In this work, we
present a classification method that is solely
based on generative models. Our proposed
approach employs a combination of instruc-
tion templates and in-context learning to refine
the generative model for effectively addressing
the implicit discourse relation recognition task.
Furthermore, we utilize Chain-of-Thoughts to
partition the inference process into a sequence
of three successive stages. This strategy en-
ables us to fully utilize the autoregressive gen-
erative model’s potential for knowledge acqui-
sition and inference, ultimately leading to en-
hanced performance on this natural language
understanding task. The results of our experi-
ments, evaluated on benchmark datasets PDTB
2.0, PDTB 3.0, and the CoNLL16 shared task,
demonstrate superior performance compared to
previous state-of-the-art models.

1 Introduction

Discourse relation recognition refers to identifying
the sense of the relation between two arguments.
This task is categorized into two types: explicit
discourse relation recognition (EDRR) and implicit
discourse relation recognition (IDRR) depending
on whether explicit connectives, such as "because"
and "but", are present or absent between the argu-
ment pair. Our work investigates the potential of
generative models and natural language generation
for improving the performance of IDRR.

Recognizing implicit discourse relations in-
volves comprehending and examining the seman-
tic connections between argument pairs. Previ-
ous works have commonly employed semantic en-
coding to enhance the model’s classification accu-
racy (Liu et al., 2020; Dou et al., 2021; Xiang et al.,
2022a). Generative models have also been utilized
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Arg1: Solo woodwind players have to be creative
Arg2: they want to work a lot
Implicit Connective： if
Relation sense： Contingency
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Figure 1: Chain-of-Thoughts.

for IDRR. As an example, generation tasks have
been used as an auxiliary task (Jiang et al., 2021)
and in a limited form that restricts prompt learn-
ing (Zhou et al., 2022; Xiang et al., 2022b). With
the emergence of large language models, there is
a growing interest in utilizing generative models
rather than encoder-only models for NLP appli-
cations. However, some studies also suggest that
generic generative models do not perform as well
as fine-tuning relatively small encoder-only models
for NLU tasks (Qin et al., 2023). Our experiments
also reveal that employing generative models to
directly generate relation sense in the context of
IDRR is an ineffective approach.

This work investigates how simple yet effective
methods (IICOT) can unleash the inference capabil-
ities of generative models. Figure 1 illustrates our
approach of utilizing a thinking process to guide the
model’s output (COT). Specifically, we do not al-
low the model to output the relation sense directly;
we compel the model to first identify whether the
argument pair pertains to implicit or explicit re-
lation data. This approach reduces the unwanted
noise generated by explicit data. Next, the model
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Instruction

In-context

The task is to determine the conjunction that connects two
given text fragments and identify whether they have a
temporal, comparative, contingency, or extensional
relationship. This analysis should consider both implicit
and explicit relation sense. The expected output format is:
"type-conjunction-relationship".

Example 1-
Input: Text fragment1: "that prevents the production of
pollen" Text fragment2: "the gene can prevent a plant
from fertilizing itself"
Output: implicit-thus-contingency
Example 2- 
....

Instruction Prompt

Input Prompt

Input: Text fragment1: "<Arg1>"  Text fragment2: "<Arg2>"
Output: <Rel>-<Conn>-<Label>

Figure 2: The full prompt template of our model.

identifies a reasonable conjunction between the ar-
gument pairs and bases its final inference on this
analysis. To optimize the model’s performance, we
formulate a prefix prompt for better guidance which
is in the form of instructions (I). By fine-tuning
the instructions, we enhance the model’s ability to
learn and understand the task definition. Addition-
ally, we employ the In-context learning (Min et al.,
2022) (I) approach to provide additional examples
to aid the model’s comprehension of the prompt.

Contributions: Our work makes the following
contributions. (a) We use generative methods on
the IDRR task and explore methods for improving
the inference power of generative models. (b) We
investigate the impact of instruction learning, in-
context learning, and Chain-of-Thoughts (COT) on
the performance of generative models. Through our
exploration, we are able to identify the causes and
effects of these learning methods. (c) We achieve
state-of-the-art performance on all three datasets,
indicating the effectiveness of our approach.

2 Apporach

2.1 Instruction Learning

The primary objective of instruction fine-tuning
is to enhance the language models’ capacity to re-
spond to natural language instructions. The method
entails utilizing supervised signals to instruct lan-
guage models on performing tasks described in
instructions. As a result of instruction fine-tuning,
language models learn to follow instructions and

respond to the same tasks. To test this approach,
we devise instruction fine-tuning templates, as il-
lustrated in Figure 2. The templates provide a com-
prehensive task definition for the model, enabling a
deeper understanding of the task at hand. They uti-
lize natural language to guide the model’s thought
process and restrict the format of the model’s out-
put to facilitate subsequent evaluation.

2.2 In-context Learning

In-context learning enables a language model to
grasp a task and produce answers to queries based
on given illustrative examples. Essentially, it en-
tails training a proficient language model for esti-
mating a conditional probability distribution model,
relative to a specific condition. However, we have
discovered in our research that providing the model
with a specific number of instances during train-
ing enhances its adherence to format and facilitates
more effective convergence. During our experi-
ments, we meticulously prepare an example to rep-
resent each of the four relation senses, which is
visually illustrated in Appendix A.

2.3 Chain-of-Thoughts

While regular training methods require models to
tackle complex problems in a single step, people
prefer an incremental approach, breaking down
problems into smaller components to facilitate com-
plex reasoning. This inclination towards incremen-
tal thinking enables people to engage in more nu-
anced and effective problem-solving. Our approach
presents a simple yet effective method of prompt-
ing that mimics thinking process in the form of
natural language prompts, as shown in Figure 2.
Rather than providing a categorical answer directly,
the model first considers whether the implied rela-
tionship is explicit or implicit. It then identifies ap-
propriate connectives between pairs of arguments
before finally providing the answer.

In the autoregressive generative mode, each to-
ken output by the model is influenced by its prede-
cessors, creating a natural progression of thought.
The reasoning process under standard generation
prompt and with COT1 is depicted in Figure 1. The
latter method requires the model to provide a COT
before producing a response. By incorporating
COT into the prompting strategy, the performance

1The training set of PDTB 2.0 and PDTB 3.0 lacks explicit
data on implicit chapter relations. To enhance the model’s
ability to generate the intended COT, a limited amount of
explicit data was artificially incorporated.
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Model PDTB 2.0 PDTB 3.0 CoNLL16

Macro-F1 Acc. Macro-F1 Acc. Test Acc. Blind Acc.

Baseline (roberta-base) 57.65 65.50 63.32 65.50 61.11 62.42
Baseline (roberta-large) 64.03 70.46 67.52 71.44 64.52 68.13
BMGF (Liu et al., 2020) 63.39 69.06 - - 65.15 72.21
CVAE (Dou et al., 2021) 65.06 70.17 - - - -
MANF (Xiang et al., 2022a) - - 56.63 64.04 - -
CPrompt (Xiang et al., 2022b) - - 70.88 75.17 - -
PCP (roberta-base)(Zhou et al., 2022) 64.95 70.84 - - 68.98 71.31
PCP (roberta-large) (Zhou et al., 2022) 67.79 73.80 - - 72.36 74.51

IICOT (flan-t5-base) 65.26 71.13 69.79 73.98 69.84 72.38
IICOT (flan-t5-large) 69.23 76.04 73.06 77.46 73.46 75.84

Table 1: Main experiments on the 4-class classification in Macro-F1 and accuracy. The highest reported results of
previous works are denoted by underlines.

Model (PDTB 2.0) Tem Com Con Exp
BMGF (Liu et al., 2020) 50.26 59.44 60.98 77.66
JMCG (He et al., 2020) 41.54 55.40 57.04 74.76
CVAE (Dou et al., 2021) 44.01 55.72 63.39 80.34
PCP (Zhou et al., 2022) 56.41 70.38 64.18 80.17
IICOT (Ours) 56.99 71.23 68.80 81.24
Model (PDTB 3.0) Tem Com Con Exp
MANF (Xiang et al., 2022a) 42.13 35.83 63.55 70.00
IICOT (Ours) 67.63 70.65 79.78 79.71

Table 2: The binary classification performance on PDTB
2.0 and PDTB 3.0 benchmark datasets.

of the model improves. All the specific prompt
templates we used are in the Appendix B

3 Experiment

3.1 Experiment Settings
This study involves conducting experiments on
three benchmark datasets: PDTB 2.0 (Prasad
et al., 2008), PDTB 3.0 (Prasad et al., 2019),
and CoNLL16 (Xue et al., 2016). Notably, the
CoNLL16 dataset lacks manually annotated liga-
tures in 450 training data instances. To address
this, we utilize the gpt-3.5-turbo model to predict
the ligatures and establish them as the ground trut.
Detailed statistics for each dataset and the settings
of hyperparameters can be found in Appendix C.
To ensure reproducibility, we will make all of our
source code publicly availableh2.

3.2 Main results
Table 1 and 2 present the results of our 4-way and
binary classification performance on PDTB 2.0,
PDTB 3.0, and CoNLL16 benchmark datasets. We
employ the flan-t5 pre-trained model, a t5-based

2https://github.com/Destiny-Lu/IICOT_IDRR.

Model Tem Com Con Exp M-F1
Fine-tuning 57.52 61.24 75.98 78.31 67.90

+Instruction 58.85 63.65 77.23 78.17 69.58
+ICL 58.50 62.93 77.83 77.41 69.23
+ICL&Rel 59.36 64.28 78.19 78.03 69.54
+ICL&Conn 59.66 69.33 78.30 78.62 72.97
+Rel&Conn 63.64 67.66 78.15 78.79 72.03

IICOT (Ours) 67.63 70.65 79.78 79.71 73.06

Table 3: We conduct ablation experiments on the latest
PDTB3.0 dataset of IDRR, evaluating the F1 and Macro-
F1 metrics in the binary and 4-way scenario.

model specifically fine-tuned for a broad range of
natural language processing tasks to better suit
instruction learning. Remarkably, our approach
outperforms current state-of-the-art methods in all
datasets. Specifically, we achieve an impressive
4.62% increase in the Contingency category on
PDTB 2.0, while realizing significant improve-
ments in all of the categories on PDTB 3.0.

3.3 Ablation Experiments

Table 3 presents the findings of our ablation exper-
iments, where Fine-tuning denotes that the input
is only the argument pair while the direct output
relation sense; Instruction indicates that the task
definition directs the model to output labels; ICL
refers to In-context learning; Conn refers to pre-
dicting connected words; Rel denotes predicting
explicit or implicit data.

Our ablation experiments lead to four key con-
clusions: First, using instruction and ICL improves
the model’s performance in comparison to directly
outputting results. Providing a certain amount of
example enhances the model’s understanding of
the task. Second, appending Rel or Conn to ICL
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(a) Representation distribu-
tion with COT

(b) Representation distribu-
tion without COT

Figure 3: The noise reduction effect of COT is demon-
strated through the distribution.

to predict chains before labels further improve the
model’s reasoning ability. Third, without ICL,
adding both Rel and Conn also lead to a perfor-
mance improvement. This indicates that the COT
approach is highly effective. Fourth, the optimal
value is reached by combining the approaches men-
tioned above, thereby demonstrating their individ-
ual validity and mutual reinforcement.

4 Analysis

4.1 Explicit Data

Our experiment of the CoNLL16 task reveals that
incorporating both Explicit and Implicit judgments
into the COT further enhances model performance.
Accordingly, we propose the inclusion of explicit
data in the PDTB dataset to scrutinize whether the
performance improves. Our experimental findings
(Appendix D) demonstrate that the performance
improves upon the inclusion of a limited amount of
explicit data. However, with increasing amounts of
explicit data, the performance deteriorates substan-
tially. This is because the distribution of explicit
data differs from implicit data and the introduction
of more explicit data results in amplified noise.

Figure 4 and 5 demonstrate that an increase in ex-
plicit data corresponds to a decrease in the model’s
accuracy in distinguishing between explicit and im-
plicit data. Nonetheless, the model maintains a
high accuracy rate of 96.83% and exhibits optimal
performance at the 20% threshold of explicit data.
These results suggest that the model remains rela-
tively unaffected by noise and that successful data
augmentation has been achieved.

4.2 How Chain-of-Thoughts works

Denoising It is believed that the model achieves
denoising ability while generating COT. In order
to demonstrate the denoising process, we analyze
the output vectors of the model in terms of their

representations. This allows us to gain insight into
the denoising mechanism of the model.

The t-SNE method is frequently preferred for
visualizing high-dimensional data, as it effectively
presents local relationships and clustering struc-
tures. Specifically, t-SNE is adept at capturing
similarities and differences within the data. Fig-
ure 3-(b) illustrates the model that incorporates Rel
within the COT framework. This contrasts the COT
model shown in Figure 3-(a), which does not fea-
ture these judgments. The generative model, such
as flan-T5, lacks a dedicated token [CLS], unlike
the BERT model. Consequently, in our study, we
employ the encoding vector of the [BOS] token to
represent the sentence after applying t-SNE dimen-
sionality reduction. This approach enables us to
examine the distribution pattern. The COT judg-
ment effectively reduces noise and facilitates the
acquisition of semantic knowledge pertaining to
explicit data. The results demonstrate that the dif-
ferent types of data are well-separated upon the
inclusion of COT judgment.

Mitigating overfitting It is our contention that
the efficacy of COT also lies in its ability to alle-
viate model overfitting. Figure 6 presents data on
training loss, loss on the development (dev) set dur-
ing training, and changes in dev set performance
for models trained both with and without COT. The
table illustrates that abstaining from COT leads to
a further drop in training loss, but also to a shift in
dev set loss from low to high, along with a trend
of decreasing performance. These phenomena sug-
gest that the model overfits the training data.

COT enhances the informational content of
model outputs. Although it increases the complex-
ity of the task, this additional information effec-
tively guides the model towards the desired direc-
tion, thereby mitigating the potential of overfitting.

5 Conclusion

We aim to enhance the reasoning capabilities of
generative models in IDRR by employing a gener-
ation task framework and incorporating Instruction
learning, in-context learning, and COT. Through
our approach, we achieve a notable improvement
over the baseline model, leading to state-of-the-art
performance on three benchmark datasets.

In our future research, we plan to further investi-
gate the utilization of generative models and even
large language models. Specifically, we aim to ex-
plore the efficacy of larger models, including the
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implementation of knowledge distillation to trans-
fer knowledge from large models to smaller ones.
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6 Limitations

The current design of our COT is not yet perfect,
leaving ample room for improvement. Furthermore,
our experimentation has been limited to the English
corpus, without exploring other languages.
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PDTB2.0 PDTB3.0 CoNLL16

Implicit Tem. Com. Con. Exp. Tem. Com. Con. Exp. Tem. Com. Con. Exp.

Train 704 2,104 3,622 7,394 1,515 2,044 6,481 8,660 697 1,952 3,435 7,072
Dev./Blind 54 191 287 651 136 190 579 748 30 185 274 705

Test 68 146 276 556 148 154 529 643 36 88 122 276
PDTB2.0 PDTB3.0 CoNLL16

Explicit Tem. Com. Con. Exp. Tem. Com. Con. Exp. Tem. Com. Con. Exp.

Train 2,904 4,674 2,792 5,342 3,435 5,104 3,356 8,634 2,752 4,383 2,579 5,008
Dev./Blind 248 431 277 506 348 422 249 748 318 404 254 503

Test 288 366 181 450 280 488 340 836 169 192 107 212

Table 4: Descriptive statistics of implicit discourse relation instances are reported for the datasets.

A In-context Learning Examples

Example 1-
Argument1: there’s a satisfaction in going against
the rules
Argument2: he means the rule that a player can’t
cut it after a certain age
Relation sense: Extension
Example 2-
Argument1: that prevents the production of pollen
Argument2: the gene can prevent a plant from fer-
tilizing itself
relation sense: Comparison
Example 3-
Argument1: he was heralded by a trumpet fanfare
Argument2: the judge marched down the center
aisle in his flowing black robe
Relarion sense: Temporal
Example 4-
Argument1: however, the maximum coupon at
which the notes can be reset is 16 1/4%
Argument2: the minimum coupon is 13 3/4%
Relarion sense: Comparison

B Chain-of-Thoughts prompt

Only label:
Instruction: The task is to determine whether they
have a temporal, comparative, contingency, or ex-
tensional relationship. This analysis should con-
sider both implicit and explicit relationships.
Conn & Label:
Instruction: The task is to determine the conjunc-
tion that connects two given text fragments and
identify whether they have a temporal, compara-
tive, contingency, or extensional relationship. This
analysis should consider both implicit and explicit
relation sense. The expected output format is:
"conjunction-relationship".
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Figure 4: Experiments with adding explicit data on
PDTB 2.0.
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Figure 5: Experiments with adding explicit data on
PDTB 3.0.

Rel & Conn & Label:
Instruction: The task is to determine the conjunc-
tion that connects two given text fragments and
identify whether they have a temporal, comparative,
contingency, or extensional relationship. This anal-
ysis should consider both implicit and explicit rela-
tion sense. The expected output format is: "type-
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(a) Training loss.
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(b) Evaluation loss.
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(c) Macro-F1 performance (%)

Figure 6: The experimental records encompass training loss, evaluation set loss, and performance metrics.

conjunction-relationship".

C Dataset statistics and the
hyperparameters

Table 4 presents the statistical information for spe-
cific datasets. In our evaluation process, we ex-
clusively employ implicit data from the PDTB 2.0
dataset and PDTB 3.0 dataset. Conversely, for the
CoNLL16 dataset, we utilize all available data in
accordance with the official partitioning strategy.

During our training process, we employ a batch
size of 16 and set the learning rate to 5e-5. We
train the AdamW optimizer for 5 epochs, utilizing
the default parameter settings. Moreover, we incor-
porate both warmup and linear learning rate decay
strategies, with a warmup ratio of 0.1.

D Add Explicit Data

To examine the impact of explicit data on model
performance, we gradually augment the amount of
explicit data in the training sets of PDTB 2.0 and
PDTB 3.0. The experiment results are detailed in
Figure 4 and 5.

E Observation of Overfitting

The presence of overfitting can be readily observed
by analyzing the training loss, evaluation set loss,
and performance variation in the absence of the
COT model. In contrast, the inclusion of the COT
model leads to improved performance. It is im-
portant to highlight that the training steps differ
between the two experiments due to the utilization
of the early stop strategy.
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