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Abstract

Question generation is a widely used data aug-
mentation approach with extensive applica-
tions, and extracting qualified candidate an-
swers from context passages is a critical step
for most question generation systems. How-
ever, existing methods for candidate answer
extraction are reliant on linguistic rules or an-
notated data that face the partial annotation is-
sue and challenges in generalization. To over-
come these limitations, we propose a novel
unsupervised candidate answer extraction ap-
proach that leverages the inherent structure
of context passages through a Differentiable
Masker-Reconstructor (DMR) Model with the
enforcement of self-consistency for picking up
salient information tokens. We curated two
datasets with exhaustively-annotated answers
and benchmark a comprehensive set of super-
vised and unsupervised candidate answer ex-
traction methods. We demonstrate the effec-
tiveness of the DMR model by showing its
performance is superior among unsupervised
methods and comparable to supervised meth-
ods. Our code and data are publicly available
at https://edillower.github.io/.

1 Introduction

Question Generation (QG) is a burgeoning field
of Natural Language Understanding and Genera-
tion. The objective of Question Generation is to
produce well-structured, coherent, and valuable
questions that correspond to a specific context pas-
sage and the intended answer. QG systems play
a vital upstream role in enhancing the robustness
and generalizability of Question Answering (QA)
and Machine Reading Comprehension (MRC) mod-
els (Du et al., 2017; Dong et al., 2023), empower-
ing chatbots and virtual assistants to answer more
user needs (Gottardi et al., 2022), and powering
AI-driven tutoring systems for educational pur-
poses (Kurdi et al., 2019). For most existing QG
systems, extracting qualified candidate answers

from the context passage is an indispensable pre-
requisite to ensure that the generated questions are
of high quality and relevant to the user’s interests
of salient information contained in the context pas-
sage.

Traditional methods for answer extraction rely
on linguistic rules and models to discover the syn-
tactic structure of the input passage’s sentences.
Constituency tags of Noun Phrases and Named
Entity Recognition (NER) tags of person, time,
location, etc., are popular choices of candidate an-
swers. However, this kind of answer extraction
method can only extract limited types of answers
and usually disregards the importance of different
possible answer tokens on the context and domain
basis. More recently, with the development of ma-
chine learning and large language models, candi-
date answer extraction has been formalized as a
sequence labeling problem and tackled with su-
pervised sequence learning and classification with
the use of annotated answers from MRC datasets
like SQuAD (Rajpurkar et al., 2016). Nevertheless,
the answer annotations of existing MRC and QA
datasets have the partial annotation issue due to the
annotation protocols that did not enforce exhaus-
tive answer extraction from the context passage,
leading to the overlooking of other essential details
that could be beneficial in helping readers grasp the
context (Bao et al., 2022). Training models with
partially annotated data could result in degraded
performance as the data provide misleading super-
vision signal (Yang et al., 2018; Zhang et al., 2017).
Furthermore, the supervised learning methods still
face the generalization challenge when applying
them to new domains where acquiring additional
human annotations is time-consuming and expen-
sive.

To overcome the aforementioned limitations and
challenges, we propose a novel unsupervised can-
didate answer extraction approach that leverages
the inherent structure of context passage. We posit
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that passage tokens can be categorized into two
types – backbone tokens and information tokens.
Backbone tokens are structural and common across
various passages within the same domain, and such
tokens are easily recoverable when masked. In
contrast, information tokens are difficult to recover
when masked, and such tokens are crucial infor-
mation of a specific context passage, making them
excellent candidate answers. In Section 3, we in-
troduce the Differentiable Masker-Reconstructor
model, in which the masker module learns to mask
out tokens that the reconstructor module can then
readily recover through the enforcement of self-
consistency. For comprehensive assessments, we
exhaustively annotated a total of 100 passages with
candidate answers on SQuAD and WikiHow cook-
ing texts as detailed in Section 4.1. We demonstrate
the competitive performance of the DMR model in
Section 5 by comparing it with a comprehensive list
of strong baselines that cover recent advancements
of both supervised and unsupervised candidate an-
swer extraction.

In summary, we make the following contribu-
tions:

• We propose a novel Differentiable Masker-
Reconstructor model, in light of recent
progress on self-consistency learning and
masked language models, for unsupervised
candidate answer extraction.

• We release two newly created datasets with
exhaustively-annotated candidate answers.

• We benchmark a comprehensive list of super-
vised and unsupervised candidate answer ex-
traction methods and show the strong perfor-
mance of our DMR model.

2 Related Work

Candidate Answer Extraction focuses on the ex-
traction of salient information tokens that usually
contain key information and knowledge the readers
may seek from the context passage. In previous
work, Named Entities are the most popular type of
candidate answers (Yang et al., 2017; Lewis et al.,
2019; Fabbri et al., 2020; Nie et al., 2022). In such
cases, tokens of the context passage are first pro-
cessed by existing NER models that tag tokens of
person, organization, location, date/time, and nu-
merical expressions. Noun Phrase (NP) is another
popular choice that has been used a lot (Yang et al.,

2017; Lewis et al., 2019; Nie et al., 2022). Among
them, Yang et al. and Nie et al. also consider
more diverse types of phrases including Adjective
Phrases (AP), Verb Phrases (VP), and sub-clauses
(S) extracted from the consistency parsing models
of the context passage. Specially, Nie et al. fur-
ther expand recognized named entities into longer
constituents for more diverse candidate answers.
Despite the reliance on NER and parsing models,
these linguistic and syntactic rules based candidate
answer extraction methods fail to take the impor-
tance of the information into account. With the
advancements of supervised learning methods for
neural networks, multiple studies (Du and Cardie,
2017; Subramanian et al., 2018; Wang et al., 2019)
utilize the annotated answer phrases of SQuAD,
a MRC dataset, to train neural models that are
capable of tagging and classifying candidate an-
swer tokens. However, Bao et al. point out that
the answer annotations of existing MRC and QA
datasets have the partial annotation issue due to the
annotation protocols that did not enforce exhaus-
tive answer extraction from the context passage,
leading to the overlooking of other essential details
that could be beneficial in helping readers grasp
the context. Training models with partially anno-
tated data could result in degraded performance
as the data provide misleading supervision signal.
To address the partial annotation problem, previ-
ous work resorts to Positive-Unlabeled (PU) learn-
ing (Kiryo et al., 2017), which uses modified risk
estimators to re-balance the weights of positively
labeled answer tokens and the remaining deemed-
as-unlabeled tokens for unbiased learning of an
unbiased binary classifier. Nevertheless, as a com-
mon problem across different tasks, the supervised
learning methods still face the generalization chal-
lenge when applying them to new domains where
acquiring additional human annotations is time-
consuming and expensive.

Self-consistency Learning has been adopted in
the field of Natural Language Processing in recent
years for tasks like text encoding (Li et al., 2015),
sentence compression and summarization (Baziotis
et al., 2019; Malireddy et al., 2020), NER (Iovine
et al., 2022), and data-to-text generation (Wang
et al., 2023). Models that leverage self-consistency
learning usually include two modules that are re-
versals of each other. Specifically, one compressor
module takes a sentence, paragraph, or document
as the initial input and compresses the text into
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Article Title Content of the step Heat the Olive Oil

How to Make
Caldo Tlalpeno

Add 2 tablespoons (30 ml) of olive oil to a large pot. Allow the oil to heat for 2 to 3 minutes
on medium-high heat, or until it begins to shimmer. You can substitute vegetable or canola
oil for the olive oil if you prefer.

How to Make
Slow Cooker Spaghetti Sauce

Place alarge skillet on the stove, and add 2 tablespoons (30 ml) of olive oil to it. Turn the
burner to medium, and allow the oil to heat for 3 to 5 minutes or until it starts to shimmer.

How to Make
Shrimp Bisque

Add 3 tablespoons (45 ml) of olive oil to a large pot or Dutch oven, and place it on the stove.
Turn the heat to medium, and allow the oil to heat for 5 minutes, or until it starts to shimmer.
If you prefer, you can substitute butter for the olive oil.

How to Make
an Omelette in a Jar

Place a large skillet on the stove, and add 1 tablespoon (15 ml) of olive oil. Turn the heat
to medium-high, and allow the oil to heat until it starts to shimmer, which should take
approximately 5 minutes. You can substitute butter for the olive oil if you prefer.

How to Make
a White Pizza

Add 2 tablespoons (30 ml) of olive oil to a medium, heavy-bottomed saucepan. Place the
pan on the stove, and heat it over medium heat until it begins to shimmer, which should take
approximately 5 minutes. You can substitute vegetable oil for the olive oil.

Table 1: Content of multiple WikiHow articles with different expressions of the step Heat the Olive Oil

intermediate outputs of dense encoding, abstrac-
tive text, or structured data that preserve the key
information of the original input text. Sequentially,
another reversal module attempts to reconstruct
the initial input based on the first module’s inter-
mediate condensed outputs. The two modules are
progressively trained by enforcing the consistency
between the initial input and reconstructed input.
Notably, the differentiability of the intermediate
outputs greatly affects the back-propagation of the
learning signals from the reversal module to the
compressor module. Except the application of self-
consistency learning for text encoding, most other
applications including ours have the challenge of
handling non-differentiable discrete intermediate
outputs. To deal with this issue, Iovine et al. and
Wang et al. adopt cycle training that alternatively
changes the roles of the two modules, and Baziotis
et al. draw support from Gumbel-Softmax with
the strike-through approach for differentiable sam-
pling from the categorical distribution. However,
the ablation study conducted by Baziotis et al. sug-
gests that the generation of a relevant and fluent
summary was mainly driven by a topic loss.

Masked Language Modeling (MLM) is a fun-
damental technique for the pretraining of Large
Language Models (LLM), first popularized by the
BERT model (Devlin et al., 2019). During the
pretraining stage, some percentage of the input
tokens are masked at random, and the model’s
objective is to predict the original tokens based
on their context tokens. This is different from
traditional language models that typically predict
the next word in a sequence, enabling models to
bidirectionally understand the context and achieve
strong language understanding capability. Follow-

ing BERT, RoBERTa (Liu et al., 2019) also uses
MLM as its pretraining objective. It improves upon
BERT by using dynamic masking that changes the
masking pattern applied to the input text rather than
static masking that always masking the same words,
which results in a more robust LLM. Along this
vein, MLM becomes one of the most popular pre-
training objectives for large language models, in-
cluding ALBERT (Lan et al., 2020), BART (Lewis
et al., 2020), Longformer (Beltagy et al., 2020), etc.
that optimized BERT from different aspects.

3 Approach

Our approach is based on the intuition and obser-
vation that the text passages within the same do-
main have inherent structure shaped by the under-
lying writing style, knowledge space, and expres-
sion formulation. We convey these concepts by
showing a typical example we sourced from the
WikiHow1 cooking articles. WikiHow is a popular
online resource that offers user-curated, step-by-
step guides on how to perform certain tasks. As
shown in Table 1, multiple WikiHow articles on
the cooking of five different dishes have the same
step Heat the Olive Oil. We can observe explicit
templates, like Add AMOUNT of olive oil to
a CONTAINER and Place a CONTAINER on the
stove, and add AMOUNT of olive oil, from
these passages. For the step of Heat the Olive Oil,
it is easier for the Masked Language Models to fill
the masks of [MASK] 3 tablespoons (45 ml)
[MASK][MASK][MASK][MASK][MASK] large pot
or Dutch oven with correct tokens than filling the
masks of Add [MASK][MASK][MASK] of olive

1https://www.wikihow.com/
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Allow the oil to heat for 2 to 3 minutes on medium heat

                                Allow the oil [M] [M] [M] 2 to 3 minutes [M] [M] [M]

Masker Module

Reconstructor Module

Allow the oil to heat for 2 to 3 minutes on high heat

   Masked Passage

Original Passage

Reconstructed 
Passage

R
econstruction Loss

Length Penalty

Figure 1: The Masker-Reconstructor Model ([M] represents the special token [MASK]). Reconstruction loss guides
the learning of the Reconstructor module as well as penalizes the Masker module for masking out hard-to-recover
tokens (illustrated by [M] and high in red). Length penalty enforces the learning of the Masker module so that those
easy-to-recover tokens (illustrated by Allow the oil in red) are more likely to be masked out as masking them
would yield the gain of both length and reconstruction loss.

oil to a [MASK][MASK][MASK][MASK][MASK].
The reason is that the black tokens are repeatedly
seen in the domain and result in statistically higher
prediction probability when the colored tokens are
given as the context for the MLM. On the other
hand, the colored tokens are precise and specific
information of a particular passage that do not have
the prediction probability as high as the black to-
kens. Therefore, tokens of the text passages can be
categorized into the following two types:
Backbone Tokens are those black tokens of the
content shown in Table 1, are structural and com-
mon across various passages within the same do-
main, and such tokens are easily recoverable when
masked.
Information Tokens, in contrast to Backbone To-
kens, are difficult to recover when masked, and
such tokens are crucial information of a specific
context passage, making them excellent candidate
answers. Examples of Information Tokens are col-
ored tokens in Table 1 that express the AMOUNT,
CONTAINER, TIME, HEAT-LEVEL, SUBSTITUTION
of the specific context. Besides the cooking do-
main, Wikipedia articles regarding a person may
have similar structure that has date of birth, place
of birth, occupation, education, etc. as informa-
tion tokens. News articles may express who, what,
where, when of events as information tokens with
a shared explicit or implicit template.

3.1 The Masker-Reconstructor Model

To extract candidate answers without accessing
ground truth labels and upstream constituency
parser or named entity recognizer, we develop the

Masker-Reconstructor Model to discriminate back-
bone tokens and information tokens based on the
idea of self-consistency learning as mentioned in
Section 2. As illustrated in Figure 1, the Masker-
Reconstructor Model consists of a Masker module
and a Reconstructor module. The Masker mod-
ule is a token classification model CM powered by
LLM. It takes the original context passage P as in-
put and makes a binary classification for each token
with 1 indicating the token should be preserved and
0 indicating the token should be masked. Based on
the classification results of CM and the original pas-
sage P , the Masker module outputs an intermediate
passage P̂ with masked tokens represented by the
special token [MASK]. Sequentially, the Reconstruc-
tor module, a Mask-Filling model CR powered by
LLM as well, takes the intermediate masked pas-
sage P̂ as input and predicts the conditional proba-
bility of possible original surface tokens for each
[MASK]. Relate to other works in self-consistency
learning, in our work, the Masker module and the
Reconstructor module are reversals of each other,
and the two modules can therefore be progressively
trained by enforcing the self-consistency between
the initial input and reconstructed input. Specif-
ically, the reconstructed passage P ′ is compared
with the original passage P for the calculation of
the reconstruction loss as follows:

L(P, P ′) = − 1

|P |

|P |∑

i=1

[1− CM (P̂i|P )]

· [Prob(Pi) · log(CR(P
′
i |P̂ ))]

The reconstruction loss not only guides the learn-
ing of the Reconstructor module but also ensures
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that the Masker module is getting more penalty if
it masked out tokens that are harder for the Recon-
structor module to recover. Also, this learning pro-
cedure is solely dependent on the self-consistency
between the original input passage and the asso-
ciated reconstructed passage. However, a short
cut for the Masker module to achieve low recon-
struction loss is to classify all the tokens as 1 that
preserves all the tokens, which betrays our goal of
finding those hard-to-recover information tokens
for the candidate answer extraction purpose. To en-
force the learning of the Masker module, a length
penalty is needed in conjunction with the recon-
struction loss. In our work, the length loss is calcu-
lated as:

Llength =
1

|P |

|P |∑

i=1

CM (P̂i|P )

Therefore, the final loss of the Masker module is:

LCM
= L(P, P ′) + λ · Llength

where λ is a weighting factor that balances the two
loss terms. Higher λ enforces the model to mask
out more tokens.

3.2 Differentiable Self-consistency Learning
An unaddressed challenge at this point is the non-
differentiability of the intermediate outputs as the
Masker’s binary classification is a discrete step,
which obstructs the backpropagation of the main
training signal, reconstruction loss, to the Masker
module. To achieve differentiable self-consistency
learning, our masker-reconstructor model em-
ploys the Straight-Through Gumbel-Softmax esti-
mator(Jang et al., 2017).

Gumbel-Softmax(Maddison et al., 2017), a re-
laxation of discrete sampling operations, introduces
stochasticity into the model by generating differen-
tiable approximations of discrete random variables.
This permits the masker-reconstructor model to
sample different tokens in a differentiable manner.
However, standard Gumbel-Softmax does not allow
for hard decisions, i.e., decisions with binary val-
ues (1 for preserved tokens, 0 for masked tokens),
which are desirable in our case. Therefore, we use
the Straight-Through Gumbel-Softmax, an estima-
tor that offers an elegant way of approximating hard
decisions while keeping the process differentiable.
During the forward pass, the Straight-Through
Gumbel-Softmax uses the Gumbel-Softmax func-
tion with temperature approaching zero, yielding

one-hot (hard) vectors. Meanwhile, in the back-
ward pass, it can utilize the gradient calculated
from the continuous approximation of the standard
Gumbel-Softmax distribution.

Through this differentiable self-consistency en-
forced learning paradigm, we demonstrate in Sec-
tion 5 that the proposed DMR model is capable of
picking up information tokens that are excellent
candidate answers in an unsupervised manner.

4 Experimental Setup

4.1 Data

A prevailing challenge of the candidate answer ex-
traction task is the absence of a specific dataset for
comprehensive evaluation and training. Although
the answer annotations from MRC and QA datasets
have been ubiquitously adapted for the task of can-
didate answer extraction, researchers have pointed
out that these data have the partial annotation prob-
lem for the candidate answer extraction task (Bao
et al., 2022). As the annotation protocols used
for the construction of MRC and QA datasets did
not require their annotators to find an exhaustive
list of candidate answers and come up with associ-
ated questions, using data with missing annotations
could provide wrong supervision signals to the can-
didate answer extraction models, and evaluating
with this kind of data could lead to wrong conclu-
sion. Bao et al.’s analysis found that 48.89% and
62.44% of candidate answers are missing from the
SQuAD dataset and the DROP dataset (Dua et al.,
2019) respectively. Our answer/context ratio analy-
sis (available in Appendix A) on existing MRC and
QA datasets also suggests that their annotated an-
swers only cover a very small portion, with 13.35%
being the highest and as low as 0.26% of the infor-
mation contained in the context passages.

In consideration of the training and evaluation
challenge, we prepared and curated the following
three datasets to facilitate the assessment of our
work:
Original (Partially-annotated) SQuAD: SQuAD
is a large scale MRC and QA dataset with 97,095
pairs of question-answer pairs corresponding to
20,947 context passages. It is also the most fre-
quently used dataset for candidate answer extrac-
tion in previous work. Despite the partial annoation
issue, SQuAD has the highest answer/context ra-
tio of 13.55% so far, and its partially annotated
answers can still provide valuable supervision and
bring some generalizability through its large scale.
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Dataset SQuAD WH-C
Source Wikipedia WikiHow
Domain Open-domain Cooking

Context Passage Amount 20,947 16,642
Average Passage Length 135 Tokens 66 Tokens
Answer/Context Ratio

(Original)
13.35% N/A

Answer/Context Ratio
(Exhaustively-annotated)

35.11% 50.51%

Table 2: Dataset Statistics

We use the original SQuAD dataset mainly for the
purpose of training and comparing with supervised
methods, and we also report the performance of
different candidate answer extraction methods on
its partially annotated answers as a reference.
Exhaustively-annotated SQuAD: For a more
comprehensive evaluation, we have exhaustively
annotated a subset of SQuAD. We employed two
annotators, both possessing Bachelor’s degrees
from accredited universities and having experience
in Natural Language Processing. We followed Bao
et al.’s annotation guidelines2 to encourage annota-
tors to label similar types of information as well as
any important information missed in the original
SQuAD dataset. We conducted the annotation on
50 SQuAD passages using the text annotation tool
POTATO (Pei et al., 2022). The annotation resulted
in a high agreement of 87.8% and a satisfactory
Cohen’s kappa score (Cohen, 1960; Carletta, 1996;
Artstein and Poesio, 2008) of 0.7486. We com-
bined the the two annotators agreed set of candidate
answers, balancing extensiveness and importance,
with the original SQuAD answers as the final labels
for each passage.
Exhaustively-annotated WH-C: We obtained
16,142 cooking-related passages from WikiHow
for the self-consistency learning. For the evalua-
tion of candidate answer extraction on WikiHow,
we annotated 50 passages following the same anno-
tation schema as mentioned above. The annotation
resulted in an agreement of 89.67% and a satisfac-
tory Cohen’s kappa score of 0.7908. As it shows in
Table 2, compared to SQuAD, the WikiHow cook-
ing data pertains to a more specialized domain with
shorter context passage. However, our annotation
results suggest that passages of WH-C are more
information-intensive than SQuAD. This is proba-

2Ideally, we would like to use Bao et al.’s annotation on
SQuAD. However, its first author informed us that the anno-
tated data was unfortunately lost due to a storage issue after
his graduation.

bly due the instructional and task-oriented nature
of WH-C content.

4.2 Baselines

We compare our approach with a comprehensive
list of methods representing recent progress on both
supervised and unsupervised candidate answer ex-
traction.
FT-LLM leverages the recent advancement in
Large Language Models (LLM) and the associ-
ated fine-tuning (FT) technique. It is a represen-
tative and robust supervised method. We train the
RoBERTa classification model with the original
SQuAD dataset.
SCOPE (Bao et al., 2022) is the state-of-the-art
supervised method that attempt to learn a candidate
answer extraction model from partially annotated
data with the Positive-Unlabeled Learning tech-
nique. Specifically, we train the RoBERTa classifi-
cation model with the Original SQuAD dataset and
the PU objective function described in the SCOPE
paper with prior distribution π of all positive sam-
ples calculated from our exhaustively annotated
SQuAD data.
Noun Phrases extracted by the off-the-shelf library
spaCy (Honnibal et al., 2020).
Named Entities extracted by the off-the-shelf li-
brary spaCy.
Extended NE (Nie et al., 2022) extends each recog-
nized named entity by finding a longer constituent
that contains the named entity in the constituency
parse tree with at least 80% of the sentence length.
DiverseQA refers to another candidate answer ex-
traction method of Nie et al. that combines Ex-
tended NE and constituents tagged as NP, ADJP,
VP, and S in the constituency parse tree as candi-
date answers as described in the DiverseQA paper.
We also report the standalone performance of ADJP,
VP, and S as the reference.
ChatGPT (Ouyang et al., 2022) is a recent break-
through that has demonstrated leading zero-shot
learning capability. We prompt ChatGPT 3 with the
context passage accompanied by the prepended in-
struction "Extracting qualified candidate answers
from context passages is a critical step for most
question generation systems. Please extract an ex-
haustive list of candidate answers (substrings from
the following context passage): ......". For repro-
ducible results, we set the temperature to 0 when

3ChatGPT model version: gpt-3.5-turbo (released on
March 1st, 2023).
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Dataset Original (Partially-annotated) Exhaustively-annotated
Metric Precision Recall F1 Precision Recall F1

Supervised Methods
FT-LLM 47.45(0.20) 33.22(0.96) 39.07(0.70) 60.31(3.77) 19.90(1.80) 29.84(1.59)

SCOPE 32.28(1.65) 69.38(3.59) 44.09(0.84) 45.81(0.27) 59.00(1.32) 51.57(0.49)

Unsupervised Methods
Noun Phrases 18.91 75.45 30.24 37.90 69.42 49.04
Named Entities 25.37 38.00 30.42 43.54 26.02 32.60
Extended NE 20.07 44.04 27.57 40.19 36.08 38.02
DiverseQA 16.87 94.12 28.62 35.69 89.26 50.99
|- ADJP 17.85 5.64 8.57 36.74 4.91 8.66
|- VP 16.23 47.24 24.16 30.93 38.84 34.43
|- S 15.86 28.22 20.31 29.01 24.00 26.27
ChatGPT 23.75 53.79 32.95 41.00 39.80 40.39
DMR (Ours) 18.14(0.03) 80.63(0.34) 29.61(0.05) 37.94(0.32) 77.98(1.17) 51.04(0.07)

Table 3: Experiment Results on Original (Left) and Exhaustively-annotated (Right) SQuAD data. We bold the highest
among supervised and unsupervised methods respectively and underline the second highest among unsupervised
methods. For trained models, we report the average and standard deviation (in parenthesized subscripts) of each
metric for 3 repeated runs with different random seeds.

querying ChatGPT.

4.3 Training Parameters

For the models trained with either supervised
learning methods or the self-consistency learning
method, we use the RoBERTa-base model which
has 12 layers, a hidden size of 768, 12 self-attention
heads, and approximately 125M parameters. We
use the AdamW optimizer with linear weight de-
cay, maximum input length of 512, learning rate of
5e-5, and effective batch size of 256. We train each
model until convergence and report the average per-
formance and standard deviation across three runs
that have different random seeds. For the weighting
parameter λ of the DMR model, we initialize it as
0.35 and gradually increase it every epoch for a
final value of 0.65. Data-wise, supervised learning
methods have access to both context passage and
annotated answers while other methods only have
access to the context passage.

5 Results and Analysis

Table 3 displays the candidate answer extraction
performance of different methods on Original,
partially-annotated, SQuAD data and Exhaustively-
annotated SQuAD data. Table 4 shows the counter-
part on Exhaustively-annotated WH-C data.

The SCOPE model consistently outperforms the
FT-LLM model across all three datasets. The per-
formance gain of +5.02, +21.73, and +39.44 in F1
is mainly driven by the improvement in recall, and
the performance gaps on exhaustively-annotated
datasets are larger than the gap on the partially-

Metric Precision Recall F1
Supervised Methods

FT-LLM 83.64(4.29) 20.65(2.46) 33.03(2.91)

SCOPE 67.23(1.88) 78.59(1.89) 72.47(1.90)

Unsupervised Methods
Noun Phrases 60.69 71.17 65.51
Named Entities 88.18 13.83 23.91
Extended NE 71.57 15.74 25.80
DiverseQA 52.28 87.65 65.49
|- ADJP 69.61 7.53 13.58
|- VP 46.42 53.58 49.74
|- S 47.76 33.28 39.23
ChatGPT 75.91 52.78 62.27
DMR (Ours) 58.20(1.04) 78.04(2.73) 66.64(0.48)

Table 4: Experiment Results on Exhaustively-annotated
WH-C data (format is the same as Table 3).

annotated dataset. These results signify the partial
annotation problem that brings misleading training
signal and evaluation challenge. The high precision
of Named Entities suggests that tokens of person,
organization, location, date/time, and numerical ex-
pressions are key pieces of information in a passage
that the reader might seek. However, the low recall
implies that key information can also be expressed
in various forms beyond named entities. The high
recall of Noun Phrases reflects the dominant role of
noun words in conveying information, but the low
precision hints at the difference in information im-
portance from the reader’s perspective. Also, it is
noteworthy that the recall of Noun Phrases dropped
by 6.03 basis points when evaluation on SQuAD
data changed to the exhaustively-annotated version.
This drop suggests that many complex and diverse
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forms of candidate answers have been omitted by
the crowd-sourcing workers of SQuAD.

For the partially-annotated data, as the precision
of each method might be underestimated due to
the partial annotation of answers, we mainly look
at the recall metric to assess their coverage of the
existing answers. Methods that intend to extract
a more comprehensive set of candidate answers
including SCOPE, DMR, and DiverseQA have
achieved high recall as expected. As for the eval-
uation on exhaustively-annotated data, the afore-
mentioned methods were able to maintain high
recall. Notably, SCOPE consistently achieved the
best performance, as measured by F1, with the help
of a mass amount of annotated answers from the
original SQuAD dataset. When such annotated
data is not available, our DMR model achieved the
best performance among the unsupervised methods.
Compared to DiverseQA, another competitive un-
supervised method, the performance gain of DMR
is mainly accomplished by balancing the precision,
which emphasizes the importance of potential can-
didate answers, and recall, which emphasizes the
extensiveness and diversity of potential candidate
answers.

We also would like to point out that, compared to
unsupervised methods with second highest F1, our
DMR model has the performance gain of +0.05
and +1.13 on exhaustively-annotated SQuAD and
WH-C respectively. The gain on the former dataset
is quite insignificant while substantial on the later
dataset. We attribute this difference to the fact that
WH-C is more focused on a specialized cooking
domain while SQuAD consists of open-domain
data. Therefore, WH-C should have a more promi-
nent underlying structure that can be captured by
the DMR model through self-consistency learning
to discriminate backbone tokens and information
tokens. This finding could guide the future devel-
opment and application of DMR model.

Lastly, it is also interesting to see that ChatGPT
achieved the second highest precision across all
the datasets among unsupervised methods. Upon
checking ChatGPT extracted answers, we find
ChatGPT significantly prefers to extract Noun
Phrases and Named Entities as candidate answers.
This preference results in the omission of more
diverse answer forms and a lower recall.

6 Conclusions

In this work, we target the underexplored task
of unsupervised candidate answer extraction
and introduce a novel Differentiable Masker-
Reconstructor model inspired by recent progress
in self-consistency learning and masked language
models. We have created two exhaustively anno-
tated datasets that mitigate the partial annotation is-
sue of existing MRC/QA datasets, thus allowing for
a fairer evaluation of candidate answer extraction
methods. We demonstrate that the DMR model,
without the reliance on annotated data and external
tools, achieves superior performance compared to
other unsupervised methods, and its performance
is also comparable to that of supervised methods.

Limitations and Future Work

Despite the effort we have made, our work still has
the following limitations:
Relatively Low Precision: Although the DMR
model is capable of extracting extensive and di-
verse candidate answers, the precision of our model
has a large gap with the supervised methods as well
as Named Entities based methods. Part of the rea-
son is that the reconstructor model usually relies
on the first word of each sentence and sometimes
few other structural words for a success reconstruc-
tion of the original passage. Such tokens are not
valuable candidate answers and could add noise to
the extractions. Hence, it’s necessary to explore
alternative ways to better encode the underlying
structure beyond using preserved tokens. Also,
given the fact that partially annotated answers are
available for some domains. It worth exploring pos-
sible ways of incorporating those valuable labels
with the DMR model.
Fragmented Candidate Answer Phrases: The
DMR model sometimes would mask out structural
tokens within a candidate answer phrase. For in-
stance, it may mask out the token “to” for the
phrase “3 to 5 minutes”, which results in frag-
mented answers. As a future work, we would like
to explore the possibilities and approaches of mask-
ing and reconstructing by constituents instead of
doing it by tokens.
Effect on downstream applications: The effec-
tiveness of different candidate answer extraction
models on downstream applications can be affected
by various factors including candidate answer re-
fining methods, capabilities of question generation
models, capabilities of question answering mod-
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els, etc. Due to the space and resource constraints,
we were not able to conduct comprehensive ex-
periments and analysis to quantify the effect of
different candidate answer extraction methods on
downstream applications. In the future, we would
like to explore if the DMR model itself can be used
as a refining method in collaboration with other
extraction methods, and we also would like to de-
sign controlled experiments to see the effect of
different candidate answer extraction methods on
downstream QG and QA tasks.

Ethics Statement

Although our DMR model has achieved strong per-
formance, it may still extract undesired or incorrect
tokens as candidate answers. The errors generated
by our model can propagate and amplify in down-
stream models, such as those used in QG and QA
systems. As a result, QG systems may generate in-
appropriate or offensive answers and QA systems
may provide inaccurate responses or misleading
information, which could lead to real-world conse-
quences. We urge downstream users and end users
to use our models and data with caution.
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Appendix

A Analysis of Extractive MRC/QA
Datasets

In this section, we analyze extractive MRC/QA
datasets that has been used at the MRQA 2019
Shared Task (Fisch et al., 2019). Our analysis is
based on the preprocessed data released by the
MRQA 2019 organizer, and the detailed statistics
and comparison can be found in Table 5 (continued
in next page).
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Dataset Question/Answer
Source

Context
Source

Context
Token Length

Anser/Context Ratio

SQuAD Crowdsourced Wikipedia 134.88 13.35%
NewsQA Crowdsourced News Articles 589.82 6.69%
TriviaQA Trivia Web Snippets 753.42 0.31%
SearchQA Jeopardy Web Snippets 738.57 0.26%
HotpotQA Crowdsourced Wikipedia 176.84 1.80%

Natural Questions Search Logs Wikipedia 205.03 7.61%
BioASQ Domain Experts Science Articles 241.29 1.23%
DROP Crowdsourced Wikipedia 225.66 7.75%
DuoRC Crowdsourced Movie Plots 692.14 2.33%
RACE Domain Experts Examinations 343.42 0.93%

Relation Extraction Synthetic Wikipedia 29.25 11.06%
TextbookQA Domain Experts Textbook 571.21 1.28%

Table 5: Statistics and comparison of MRC/QA datasets.
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