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Abstract

Deep neural networks have been widely ap-
plied in real-world scenarios, such as product
restrictions on e-commerce and hate speech
monitoring on social media, to ensure se-
cure governance of various platforms. How-
ever, illegal merchants often deceive the de-
tection models by adding large-scale pertur-
bations to prohibited products, so as to earn
illegal profits. Current adversarial attacks us-
ing imperceptible perturbations encounter chal-
lenges in simulating such adversarial behav-
ior and evaluating the vulnerabilities of de-
tection models to such perturbations. To ad-
dress this issue, we propose a novel black-box
multimodal attack, termed Sparse Multimodal
Attack (SparseMA), which leverages sparse
perturbations to simulate the adversarial be-
havior exhibited by illegal merchants in the
black-box scenario. Moreover, SparseMA
bridges the gap between images and texts by
treating the separated image patches and text
words uniformly in the discrete space. Exten-
sive experiments demonstrate that SparseMA
can identify the vulnerability of the model
to different modalities, outperforming exist-
ing multimodal attacks and unimodal attacks.
SparseMA, which is the first proposed method
for black-box multimodal attacks to our knowl-
edge, would be used as an effective tool for
evaluating the robustness of multimodal mod-
els to different modalities. Code is available at
https://github.com/JHL-HUST/SparseMA.

1 Introduction

With the rapid development of Deep Neural Net-
works (DNNs), vision-language multimodal clas-
sification has been applied in various real-world
applications, such as product restrictions on e-
commerce (Zahavy et al., 2018) and hate speech
monitoring on social media (Kiela et al., 2020),
to ensure secure governance of various platforms.

∗The first three authors contributed equally.
†Corresponding author.

Smear key information
and perturb the text

Recognized as a illegal drug 
by the detection model

Recognized as a normal drug 
by the detection model Damage!!!

(illegal merchants)

Title: Drugs on sale Title: Medicines on sale

Figure 1: An example of a prohibited drug, where some
key information is smeared by the illegal merchant,
which is identified as compliant by the detection model.

However, there are always some illegal merchants
who attempt to sell prohibited goods to make ille-
gal profits, such as illegal drugs or smuggled goods,
which violate the rules and terms of platforms. Due
to the lack of professional knowledge in adversar-
ial attacks (Szegedy et al., 2014; Papernot et al.,
2016b), they often adopt large-scale and sparse per-
turbations, including smearing and mosaicing, to
deceive detection models deployed by various com-
panies, thereby posing a significant threat to the
security of platforms, as shown in Figure 1.

Current adversarial attacks (Goodfellow et al.,
2015; Papernot et al., 2016b) typically mislead the
victim model by adding imperceptible perturba-
tions to benign samples, which can not accurately
evaluate the vulnerability of detection models to the
adversarial behavior exhibited by illegal merchants.
In addition, prior research has mainly focused on
unimodal adversarial attacks in Computer Vision
(CV) (Goodfellow et al., 2015; Madry et al., 2018)
and Natural Language Processing (NLP) (Papernot
et al., 2016b; Liang et al., 2018), with little atten-
tion paid to the vulnerability of multimodal mod-
els (Yu et al., 2020; Yang et al., 2021) that are more
challenging but widely used in the real world. This
motivates us to develop a multimodal adversarial
attack that simulates physical adversarial behaviors
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in the black-box scenario, which can help ensure
secure governance of various platforms.

Existing multimodal attacks (Evtimov et al.,
2020; Zhang et al., 2022) typically process images
and texts independently due to the vastly different
data attributes of the two modalities, such as con-
tinuous images vs. discrete texts. When employing
different attack strategies to perturb images and
texts, these methods are unable to effectively com-
bine features from different input modalities, lead-
ing to relatively low attack performance. And these
attacks run in white-box attack settings, which are
almost impossible to apply to the real-world.

To address the above issue and simulate the
sparse perturbations commonly used by illegal mer-
chants, we propose to map them into the same
discrete space to bridge the gap between continu-
ous images and discrete texts. And then we perturb
both images and texts simultaneously using the
same sparse attack strategy. Although these sparse
perturbations are indeed visible, they generally do
not alter the semantics.

In this work, we propose a novel black-box mul-
timodal attack, named Sparse Multimodal Attack
(SparseMA). SparseMA splits the input image into
multiple patches, then evaluates the impact of each
patch in the image and each word in the input text
on the victim model based on the output logits.
After sorting all patches and words according to
their impacts, we sequentially replace the original
data with suitable candidates until an adversarial
example is found. Note that SparseMA only needs
access to the model output, making it more feasi-
ble in the real-world than white-box attacks, which
require full access to the model, including architec-
ture, parameter, gradient, output, etc.

To validate the effectiveness of the proposed
SparseMA, we do comparison with one image
attack, two text attacks, and two multimodal at-
tacks on the task of vision-language multimodal
classification. Extensive experiments demonstrate
that SparseMA could identify the vulnerability
of the model to different modalities, achieving a
higher attack success rate than almost all the base-
lines. Moreover, SparseMA could generate better
sparse adversarial examples with fewer perturba-
tions, making them more similar to benign sam-
ples and more applicable to real-world scenarios.
Through analyzing the impact of perturbations on
the model’s output in each modality, SparseMA
can reveal the relative importance of each modal-

ity in the model’s decision-making process. This
information is valuable for researchers to better
understand the multimodal model’s behavior and
enhance its robustness against adversarial attacks.

2 Related Work

This section provides a brief overview of unimodal
adversarial attacks on images or texts, as well as
multimodal adversarial attacks.

2.1 Unimodal Adversarial Attack

Image adversarial attacks Szegedy et al. (2014)
first show the existence of adversarial examples.
Subsequently, numerous works based on the l∞
or l2 norm, including FGSM (Goodfellow et al.,
2015), PGD (Madry et al., 2018), MIM (Dong et al.,
2018), NIM (Lin et al., 2020), etc., are proposed
to enhance the attack performance. JSMA (Pa-
pernot et al., 2016a) is the first to generate sparse
perturbations by minimizing the l0 norm. Croce
and Hein (2019) introduce the l0 norm variant of
PGD, known as PGD0, and a black-box sparse at-
tack of CornerSearch that evaluates the saliency
of each pixel based on the changes on logits.
LocSearchAdv (Narodytska and Kasiviswanathan,
2017), ADMM (Zhao et al., 2019), and Sparse-
RS (Croce et al., 2022) adopt local search, Bayes
optimization, and random search algorithms, re-
spectively, to search for the optimal sparse adver-
sarial example in the black-box setting.

Despite the prosperity of sparse black-box at-
tacks, they generally search for the optimal solution
or evaluate the importance for each pixel, which re-
quire more than 106 queries on images of size (224,
224). Even if ADMM and Sparse-RS optimize
the query efficiency, tens of thousands of queries
are still required, making it challenging to scale to
large-scale datasets, such as ImageNet (Deng et al.,
2009). In this work, SparseMA splits the image
into multiple patches, and does not need to pro-
cess each pixel. It allows us to achieve good attack
performance with only a few hundred queries.

Text adversarial attacks Existing text adver-
sarial attacks typically modify the character, word,
or sentence of the benign text to maximize the
loss on the ground-truth class, among which word-
level attacks (Li et al., 2020; Garg and Ramakr-
ishnan, 2020; Li et al., 2021a; Maheshwary et al.,
2021; Yu et al., 2022) show excellent performance.
PWWS (Ren et al., 2019) and TextFooler (Jin et al.,
2020) greedily substitute important words with syn-
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Figure 2: The overall framework of the proposed SparseMA algorithm. SparseMA first splits the image into multiple
sparse patches and the text into multiple words. Then it evaluates their importance based on the model output
by setting each patch as all 0s or each word as [UNK], and determines the replacement order. According to the
replacement order, SparseMA substitutes each element with a suitable candidate until we find an adversary. Finally,
it randomly recovers the redundant substitution back to the original data, thereby reducing the perturbation size.

onyms based on the output logits. GA (Alzantot
et al., 2018) and PSO (Zang et al., 2020) adopt evo-
lutionary algorithms to search for a near-optimal
text adversarial example.

2.2 Multimodal Adversarial Attack

To the best of our knowledge, there are a few works
focusing on the vulnerability of multimodal mod-
els. Yu et al. (2020), Tian and Xu (2021) and Yang
et al. (2021) find that samples could be misclassi-
fied by perturbing only single modality using PGD,
revealing the vulnerability of multimodal models.
Evtimov et al. (2020) perturb images with PGD and
texts with HotFlip (Ebrahimi et al., 2018) to gener-
ate hateful posts that could fool multimodal models.
MUROAN (Vishwamitra et al., 2021) utilizes the
fusion features to decouple the input modalities and
generate adversarial examples by removing salient
data points. Co-Attack (Zhang et al., 2022) first per-
turbs the text and then perturbs the image according
to the perturbed fusion features to conduct a collab-
orative attack on the pre-trained multimodal model
to fool all downstream tasks.

In this work, by splitting the input image and text
into multiple sparse components, SparseMA estab-
lishes a more fine-grained connection between each
element rather than between the entire image and
text, allowing us to generate more well-designed
multimodal perturbations efficiently. To the best
of our knowledge, SparseMA is the first proposed
method for black-box multimodal attacks.

3 Methodology

In this section, we first formalize the problem of
multimodal adversarial attack and then provide a
detailed description of our method.

3.1 Multimodal Adversarial Attack
Given an input space X containing all input images
and texts, and an output space Y = {y1, . . . , yk},
we have a pre-trained multimodal classifier f :
X → Y , which maps the input image xI and text
xT = w1w2 . . . wn to its ground-truth label y ∈ Y .
The adversary adds an imperceptible perturbation
on the classified sample x = (xI , xT ) to craft an
adversarial example (x∗I , x

∗
T ) that misleads the clas-

sifier f to output a wrong prediction:

argmax
yi∈Y

f(yi|x∗I , x∗T ) ̸= y.

Meanwhile, we should also guarantee the imper-
ceptibility of adversarial perturbations. Therefore,
we propose evaluating the quality of generated ad-
versarial examples using multimodal similarity. To
achieve this, we input both images and texts into
pre-trained BLIP-2 (Li et al., 2023) and extract the
vector of the last hidden layer as the multimodal
feature vector of the sample. Then, we calculate
the cosine similarity between these two vectors as
the multimodal similarity. This approach provides
a more comprehensive evaluation of the generated
adversarial examples, taking into account both vi-
sual and textual aspects of the data.
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In this work, we propose a novel sparse
black-box multimodal attack approach, named
SparseMA, in which only the output score of the
target model is needed.

3.2 The Proposed SparseMA Method
Given a benign sample that contains image xI and
text xT , SparseMA first splits image xI into mul-
tiple patches and text xT into multiple words. As
illustrated in Figure 2, SparseMA consists of two
main stages: i.e., replacement order determination
and candidate substitution. Replacement order
determination determines the importance and re-
placement order of each patch and word. Can-
didate substitution sequentially substitutes each
patch or word with a suitable candidate and then
optimizes the redundant substitutions by random
recovery to generate an optimal adversary.

3.2.1 Replacement Order Determination
In order to map the image and text into a dis-
crete space, we split the image xI into m patches
{p1, p2, . . . , pm} of size (s, s) and the text xT into
n words {w1, w2, . . . , wn}. Intuitively, more im-
portant components with greater impact on the vic-
tim model should be replaced. To evaluate the
importance of each patch pi or word wj , we set
the patch pi to be all 0s, or set the word wj to be
unknown, i.e., [UNK], to obtain a modified sam-
ple x̂ = (x̂I , xT ) or (xI , x̂T ). We feed it into the
target model, and calculate the importance score
of each patch pi by examining the change of the
model output:

I(pi) =
f(y|xI , xT )− f(y|x̂I , xT )

d(x̂I , xI)
. (1)

Similarly, we could obtain the importance score
I(wj) of each word wj . I(·) measures the impact
of the unit perturbation on the victim model by
taking the perturbation size d(·, ·) into account. It
allows us to balance the choice of perturbation be-
tween image patches and text words to achieve
maximum impact on the model with minimal dis-
ruption. In the end, we sort all patches and words
in descending order based on the importance score
as the replacement order.

3.2.2 Candidate Substitution
To find the suitable candidate for substitution, we
pre-define candidate sets for each patch and word
to ensure that the replacement operation has little
impact on the semantics and similarity of samples.

Algorithm 1: The SparseMA Algorithm
Input: Input sample that contains the image

xI and the text xT with lable y;
Target classifier f ; Number of
iterations N for random recovery

Output: Adversarial example
/* Replacement Order Determination */

1 Split the image into m patches
2 for each patch in xI and each word in xT

do
3 Compute the importance score via Eq. 1

4 Sort all patches and words based on the
importance score in descending order

/* Candidate Substitution */

5 Construct the candidate set for each patch
and word

6 for each element in replacement order do
7 Replace it on the sample (xI , xT ) with

its optimal candidate via Eq. 2 to craft
a new sample (xI , xT )

8 if argmaxyi∈Y f(yi|xI , xT ) ̸= y then
9 break

10 if argmaxyi∈Y f(yi|xI , xT ) = y then
11 return None ; // Attack fails

12 for t = 1 to N do
13 Replace a randomly selected perturbed

element on (xI , xT ) with the original
data to craft a new sample (x̂I , x̂T )

14 if argmaxyi∈Y f(yi|x̂I , x̂T ) ̸= y then
15 Update (xI , xT )← (x̂I , x̂T )

16 return (xI , xT ) ; // Attack succeeds

For each image patch, we select all-black, all-white,
and crossed black-and-white patches as its candi-
date set to simulate the perturbation behavior that
illegal merchants are most likely to adopt in reality.
For each word, we select its top s nearest synonyms
in the counter-fitted embedding space (Mrkšić et al.,
2016) as its candidate set.

For the patch pi or word wj to be replaced on
sample xt = (xtI , x

t
T ) at the t-th iteration along the

obtained replacement order, we greedily substitute
it with the optimal candidate that has the greatest
impact ∆P on the model from its candidate sets:

∆P = f(y|xtI , xtT )− f(y|xt+1
I , xt+1

T ), (2)

where the sample xt+1 = (xt+1
I , xt+1

T ) is obtained
by replacing the patch pi or word wj with a candi-
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Dataset #Class Train Test Avg. words CLIPViT CLIPRes ALBEF

MVSA-Single 3 3,511 1,000 14 64.6 63.6 64.6
MVSA-Multi 3 17,886 1,000 14 76.6 73.4 72.0
CrisisMMD 7 17,126 1,000 118 95.8 95.3 89.5

Table 1: The statistics on the datasets and the classification accuracy (%) of victim models on the test set.

date on sample xt. Then, we sequentially substitute
each patch or word with its optimal candidate ac-
cording to the replacement order until we find an
adversarial example successfully.

Since some perturbed elements may have little
influence on the initial adversarial examples, i.e.,
there are redundant perturbations, greedy substi-
tution would result in suboptimal adversarial ex-
amples. To further reduce the perturbation while
keeping adversarial, we randomly change the per-
turbed patches or words back to the original data.
We continue this recovery operation on the result-
ing sample if it is still adversarial to find an opti-
mal adversarial example. The overall algorithm of
SparseMA is summarized in Algorithm 1.

4 Experiments

In this section, we conduct extensive experiments
to validate the effectiveness of SparseMA on three
datasets and three models that are widely used.

4.1 Experimental Setup

Datasets We adopt three widely investigated
datasets for vision-language multimodal classi-
fication, including MVSA-Single (Niu et al.,
2016), MVSA-Multi (Niu et al., 2016) and Cri-
sisMMD (Alam et al., 2018). MVSA-Single
and MVSA-Multi are two sentiment classification
datasets that contain three sentiments (positive, neg-
ative and neutral). CrisisMMD is a multimodal
dataset consisting of tweets and associated images
collected during seven disaster events.

Victim Models We consider ALBEF (Li et al.,
2021b) and CLIP (Radford et al., 2021) as the vic-
tim models in this work. As CLIP is an aligned
model, we construct a 2-layer multilayer percep-
tron for predicting the target label. Addition-
ally, we consider two different image encoders
for CLIP: ViT-B/16 (Dosovitskiy et al., 2021) and
ResNet-50 (He et al., 2016), denoted as CLIPViT
and CLIPRes, respectively. More details of these
datasets and the classification accuracy of each
model are shown in Table 1.

Baselines Since there are only a few multi-
modal attacks proposed recently, we select repre-
sentative works from unimodal and multimodal
black-box attacks as our baselines. For image ad-
versarial attacks, we choose the state-of-the-art
sparse black-box attack Sparse-RS (Croce et al.,
2022). For text adversarial attacks, we choose the
word-level black-box attacks PWWS (Ren et al.,
2019) and PSO (Zang et al., 2020). For multimodal
attacks, we combine Sparse-RS and PWWS to at-
tack images and texts respectively to perform the
multimodal attack, named Sp-RS&PWWS.

Experimental Settings The side length s of
image patches is set to 20, and the number of iter-
ations N for random recovery is set to four times
the number of perturbed elements in the initial ad-
versarial example. To ensure high semantic sim-
ilarity between adversarial texts and benign texts
for SparseMA and all text baselines, we also set
the number of synonyms to 4. All evaluations are
conducted on 1,000 randomly sampled texts from
the corresponding test set. For a fair comparison
with our SparseMA, we increase the maximum
number of pixels perturbed to 3,600 and decrease
the number of iterations accordingly to 2,000 for
Sparse-RS.

4.2 Evaluation on Attack Effectiveness

To validate the effectiveness of SparseMA, we con-
duct experiments for vision-language classification
on three victim models using three datasets. The
results, including attack success rate, multimodal
similarity and the number of queries, are summa-
rized in Table 2.

We could observe that SparseMA achieves the
highest attack success rate on 7 of 9 cases com-
pared to all unimodal and multimodal baselines
and is only slightly weaker than Sp-RS&PWWS in
the other two cases. And we always generate ad-
versarial examples that are more similar to the orig-
inal samples, compared to Sp-RS&PWWS, indicat-
ing that we generate better adversarial examples.
Meanwhile, the number of queries of SparseMA
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Model Attack
MVSA-Multi MVSA-Single CrisisMMD

Succ. Sim. Query Succ. Sim. Query Succ. Sim. Query

CLIPViT

Sparse-RS 70.7 95.3 914 80.8 95.2 779 12.9 95.0 1,840

PWWS 20.9 96.7 56 24.7 95.6 60 10.0 99.1 64
PSO 27.6 97.1 3,427 29.4 95.4 3,568 13.3 98.9 4,443

Sp-RS&PWWS 71.8 94.5 969 81.2 94.0 838 17.7 94.4 1,903
SparseMA 82.5 96.6 388 80.0 96.9 366 27.1 97.1 557

CLIPRes

Sparse-RS 54.2 95.3 1,184 67.2 95.2 937 8.0 95.4 1,894

PWWS 17.0 96.6 57 26.2 96.9 60 9.8 99.1 64
PSO 20.8 96.5 3,702 30.7 96.0 3,527 13.3 99.1 4,446

Sp-RS&PWWS 56.4 96.4 1,240 69.6 94.2 996 13.4 94.3 1,957
SparseMA 64.5 96.7 410 81.1 96.7 336 24.2 97.6 563

ALBEF

Sparse-RS 22.1 96.7 1,666 50.4 97.2 1,258 30.4 97.2 1,583

PWWS 22.3 97.7 56 39.2 95.9 66 34.4 99.1 61
PSO 31.4 97.1 1,001 44.6 96.5 732 39.8 99.2 999

Sp-RS&PWWS 29.1 95.0 1,721 61.8 94.9 1,316 46.5 96.5 1,643
SparseMA 40.7 96.6 428 61.7 96.1 341 56.3 98.4 375

Table 2: Attack success rate (Succ., %) , multimodal similarity (Sim., %) and the number of queries (Query) of
various attacks (image attack Sparse-RS, text attacks PWWS and PSO, and multimodal attacks Sp-RS&PWWS and
SparseMA) on three models using three datasets for multimodal classification. The highest attack success rate is
highlighted in bold. The second highest attack success rate is underlined.

is lower than that of all baselines except PWWS,
being about 1/3 that of the multimodal attack Sp-
RS&PWWS. Despite the lower query number and
higher similarity of PWWS, our attack success rate
is significantly higher than PWWS. Therefore, it
cannot be concluded that PWWS implies a better
effectiveness.

In conclusion, SparseMA achieves a higher at-
tack success rate and similarity with a lower query
number compared to the combined multimodal at-
tack Sp-RS&PWWS, demonstrating the necessity
of bridging the gap between different modalities for
effective multimodal attack. These results validate
the superiority of our proposed method. Moreover,
we find that by perturbing only 2% to 3% of the
top-level features, we can make the victim model
output completely different predictions, thus con-
firming the vulnerability of the multimodal model.
These discoveries suggest that the model relies
heavily on these small subsets of high-level fea-
tures to determine its output, but these features are
highly susceptible to adversarial attacks. Therefore,
improving the robustness of the model’s high-level
features against perturbations would be a crucial
method to enhance the model’s robustness.

Then, we present two instances of adversarial
examples in Figure 3. It can be seen that SparseMA
adds patches to the image to generate adversarial
examples, which have fewer perturbations and are
easier to add for attackers in the real-world. Al-
though the perturbations are indeed visible, they
do not alter the semantics of adversarial images,
which are still recognizable by humans. Addi-
tionally, SparseMA perturbs fewer words than
Sp-RS&PWWS. These evaluations demonstrate
the high quality and practicality in the physical
world of the adversarial examples generated by
SparseMA.

4.3 Vulnerability on Different Modalities

Multimodal classifier utilizes information from var-
ious modalities to predict the classification results,
which is expected to be robust to all modalities
and achieves better performance. However, we
find that multimodal models tend to be robust to
one modality while being vulnerable to another.
When attacking the robust modality, the attack per-
formance is usually poor. In contrast, attacking
the vulnerable modality would result in good at-
tack performance. For instance, PWWS for text
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(a) The sample with positive label perturbed by
various attacks is misclassified as negative.

(b) The sample with negative label perturbed by
various attacks is misclassified as positive.

Back aux(to) school stress: Here's how 
to cope. Tips from parenting expert 
@anndouglas. 
#HamOnt http://t.co/gq4iPoBVOv

Sp-RS&PWWS SparseMA

Back aux(to) tuition(school) stress: Here's 
modes(how) aux(to) cope. Tips z(from) 
fatherhood(parenting) specialist(expert) 
@anndouglas. 
#HamOnt http://t.co/gq4iPoBVOv

fewer perturbations

     fewer 
perturbations

easier to add

Sp-RS&PWWS SparseMA

fewer perturbations

     fewer 
perturbations

easier to add

How does ec(this) happen? 3 cars, 
3 different directions! 100Ave 
&amp; 116st #yeg @yegtraffic 
@1023nowradio @925FreshRadio

How ai(does) ec(this) happen? 3 cars, 
3 diverse(different) directions! 100Ave 
&amp; 116st #yeg @yegtraffic 
@1023nowradio @925FreshRadio

Figure 3: Adversarial examples generated by SparseMA and Sp-RS&PWWS on MVSA-Multi dataset. The
adversarial images generated by SparseMA have fewer perturbations and are easier to add for attackers in the
real-world than that of Sp-RS&PWWS. And SparseMA perturbs fewer words than Sp-RS&PWWS. We highlight
the words replaced by the attacks in Red. The corresponding original words are highlighted in Green.

Model
MVSA-Multi MVSA-Single CrisisMMD

Image Text Both Image Text Both Image Text Both

CLIPViT 51.0 3.4 45.2 60.0 3.6 36.0 15.0 15.8 68.9
CLIPRes 58.0 1.0 41.0 56.0 2.5 41.0 17.0 17.8 64.9
ALBEF 20.0 24.0 56.3 27.0 28.6 44.4 12.0 33.9 54.2

Table 3: Percentage (%) of adversarial examples generated by SparseMA that perturb only on image or text, or both.

attack shows poor attack performance when attack-
ing CLIPViT model on MVSA-Multi dataset, as
shown in Table 2. Conversely, Sparse-RS for im-
age attack performs better. We believe this is due
to the model over-relying on one modality while
disregarding the other. To better evaluate the vul-
nerability or robustness of multimodal models to
different modalities, we present the percentage of
adversarial examples generated by SparseMA that
perturb only on image or text, or both, in Table 3.

We can see that SparseMA prefers to perturb the
more vulnerable modality. For example, SparseMA
perturbs more images on the CLIPViT model using
the MVSA-Multi dataset, where image attacks per-
form well. In addition, SparseMA tends to perturb
both modalities simultaneously when the multi-
modal model is robust to both modalities, such
as on the ALBEF model using the MVSA-Multi
dataset, where both image attacks and text attacks
perform poorly. This demonstrates that SparseMA
has discovered the vulnerability of the model and
generated corresponding perturbations for the at-
tack. It also indicates that SparseMA may be a
good metric to evaluate the vulnerability or robust-
ness of the model to different modalities.

Attack Clean Brig. Cont. Satu. Shar.

Sparse-RS 70.7 28.0 30.2 41.5 32.5
Sp-RS&PWWS 71.8 36.5 39.8 46.7 39.8
SparseMA 82.5 38.9 40.9 53.4 45.0

Table 4: Attack success rate (Succ., %) of different
attacks on CLIPViT model using MVSA-Multi dataset
when Brightness (Brig.), Contrast (Cont.), Saturation
(Satu.) or Sharpness (Shar.) varies in the real-world.

4.4 Evaluation in the Real-World

Adversarial images captured by digital devices are
usually affected by physical factors, such as bright-
ness, saturation, contrast or sharpness, etc. Thus, a
good physical attack should generate perturbations
that are easy to be added to images, and also be re-
sistant to various physical factors. To evaluate the
effectiveness of SparseMA in the real-world, we
randomly adjust the brightness, contrast, saturation,
and sharpness of the adversarial images generated
by various attacks on CLIPViT model using MVSA-
Multi dataset to 0.5 to 1.5 times the original value.
Then we evaluate their attack success rate as shown
in Table 4. The results are averaged on five runs
to eliminate randomness. We could observe that
brightness typically has the largest effect, and sat-
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s Succ. PertI PertT SimI SimT Sim Image Text Both Query

8 83.7 2.8 5.6 94.0 85.6 97.0 70.0 0.5 29.4 1,642
12 83.8 5.1 5.9 91.6 84.3 96.8 66.0 1.4 32.9 811
16 76.3 7.4 8.1 89.9 78.5 96.4 57.0 3.9 39.6 510
20 80.0 8.7 6.7 88.7 81.2 96.9 60.0 3.6 36.0 366
24 77.3 10.7 7.3 86.9 79.8 96.5 57.0 5.4 37.9 273
28 78.8 12.8 7.2 85.1 79.7 96.7 56.0 5.0 39.1 188
32 75.4 15.5 8.0 82.7 77.1 95.5 51.0 6.4 42.6 159

Table 5: Attack performance and query number (Query) of SparseMA varying different side length s of the patch on
CLIPViT model using MVSA-Single dataset.

uration has the least effect on all attacks. Notably,
SparseMA consistently achieves the highest attack
success rate among all baselines, demonstrating the
practicality of SparseMA in the real-world.

4.5 Parameter Study
To investigate the impact of the hyper-parameters
in SparseMA, including the side length s of patches
and the number of iterations N for random recov-
ery, we conduct a series of experiments on CLIPViT
model using MVSA-Single dataset. We addition-
ally evaluate the similarity to the original samples
using the Structural Similarity (SSIM) (Wang et al.,
2004) for images and the Universal Sequence En-
coder (USE) (Cer et al., 2018) for texts, denoted
as SimI and SimT. And we adopt the perturbation
rate to measure the percentage of pixels perturbed
in an image or words perturbed in a text, denoted
as PertI and PertT.

On the side length of patches The side length
restricts the minimum perturbation unit of images.
In Table 5, we evaluate the attack performance
of SparseMA using various side lengths from 8
to 32 with an interval of 4. SparseMA performs
well when s = 8, achieving a high attack success
rate. It also has the lowest perturbation rate and the
highest similarity, which prefers to perturb images
individually. However, it has a high query cost for
the victim model. As we increase the side length
of the image patch, the attack success rate will
change unpredictably. Also, increasing the patch
size results in a decrease in the number of queries
but an increase in the perturbation rate. Addition-
ally, SparseMA gradually boosts its preference for
text perturbations. To balance attack performance
and query cost, we select an intermediate value of
s = 20 for our experiments.

On the number of iterations for random re-
covery To perform random recovery in the initial

adversarial example with different numbers of per-
turbed elements, we set the number of iterations N
to be an integer time of the number of perturbed
elements. We evaluate the final perturbation rate
and multimodal similarity in final adversarial ex-
amples using various iterations from 2 to 8 times
the number of perturbed elements with an interval
of 2. We observe that they achieve similar per-
turbation rates (8.71% ∼ 8.78% in images and
6.73% ∼ 6.92% in texts) and similar multimodal
similarity (96.91% ∼ 96.94%). More iterations
will result in a lower perturbation rate but more
queries, so we choose an intermediate value, i.e.,
N is four times the number of perturbed elements.

5 Conclusion

We propose a vision-language black-box adversar-
ial attack method called Sparse Multimodal Attack
(SparseMA). SparseMA maps the input image and
text into discrete space by splitting the image into
patches and the text into words. Then it evaluates
the importance of each patch or word based on
its affects to the model’s output. By greedily sub-
stituting important patches or words with suitable
candidates, SparseMA generates adversarial exam-
ples with fewer perturbations and higher quality,
which achieves a higher attack success rate than
the baselines. Additionally, SparseMA can reveal
the vulnerability of multimodal models to differ-
ent modalities and concentrate on perturbing the
more vulnerable ones. It could be served as a good
metric to measure the vulnerability of multimodal
models to different modalities. And it can help us
better understand the multimodal model’s behav-
ior, and enhance its robustness against adversarial
attacks. Experiments show that the sparse pertur-
bations generated by SparseMA are more practical
in the physical world that are easier to be added
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for attackers, and perform well against real-world
influences. SparseMA would be a strong baseline
for future works and may inspire more researches
on multimodal attacks.

Limitations

SparseMA focuses on the two most typical modali-
ties in the multimodal classification task, i.e., con-
tinuous images and discrete text. It does not take
other types of modalities, such as audio and sig-
nal, into consideration. Actually, data from these
modalities can also be processed by a similar sparse
strategy, and then apply our method to generate ad-
versarial examples. We will continue to investigate
the potential of SparseMA in our future work.
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